Convolutional Neural Nets II EECS 442 – David Fouhey Fall 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Administrivia

 If you need a team-mate for your project, email me. I'm matching people.

Previously – Backpropagation

$f(x) = (-x+3)^2$

Forward pass: compute function Backward pass: compute derivative of all parts of the function

Setting Up A Neural Net Input Hidden 1 Hidden 2 Output

Fully Connected Network

Each neuron connects to each neuron in the previous layer

Fully Connected Network

Define New Block: "Linear Layer" (Ok technically it's Affine)

Can get gradient with respect to all the inputs

Fully Connected Network

Convolutional Layer

New Block: 2D Convoluiton

Convolution Layer

Convolutional Neural Network (CNN)

Convert HxW image into a F-dimensional vector

- What's the probability this image is a cat (F=1)
- Which of 1000 categories is this image? (F=1000)
- At what GPS coord was this image taken? (F=2)
- Identify the X,Y coordinates of 28 body joints of an image of a human (F=56)

Running example: image classification P(image is class #1) P(image is class #2) P(image is class #2)

- Provide:
 - Examples of images and desired outputs
 - Sequence of layers producing a 1x1xF output
 - A loss function that measures success
- Train the network -> network figures out the parameters that makes this work

Layer Collection

You can construct functions out of layers. The only requirement is the layers "fit" together. Optimization figures out what the parameters of the layers are.

Review – Pooling

Idea: just want spatial resolution of activations / images smaller; applied per-channel

1	1	2	4
5	6	7	8
3	2	1	0
1	1	3	4

Max-pool 2x2 Filter Stride 2

Review – Pooling

Other Layers – Fully Connected 1x1xC 1x1xF

Map C-dimensional feature to F-dimensional feature using linear transformation W (FxC matrix) + b (Fx1 vector)

How can we write this as a convolution?

Set Fh=1, Fw=1 1x1 Convolution with F Filters $b + \sum_{i=1}^{F_h} \sum_{j=1}^{F_w} \sum_{k=1}^{c} F_{i,j,k} * I_{y+i,x+j,c} \longrightarrow b + \sum_{k=1}^{c} F_k * I_c$

Converting to a Vector HxWxC 1x1xF

How can we do this?

Converting to a Vector* – Pool HxWxC 1x1xF

Converting to a Vector – Convolve HxWxC 1x1xF

HxW Convolution with F Filters

Looking At Networks

- We'll look at 3 landmark networks, each trained to solve a 1000-way classification output (Imagenet)
 - Alexnet (2012)
 - VGG-16 (2014)
 - Resnet (2015)

CNN Terminology

All layers followed by ReLU Red layers are followed by maxpool Early layers have "normalization"

AlexNet – Details

Input	Conv 1	Conv 2	Conv 3	Conv 4	Conv 5	FC 6	FC 7	Output
227x227	55x55	27x27	13x13	13x13	13x13	1x1	1x1	1x1
3	96	256	384	384	256	4096	4096	1000

Input	Conv 1	Conv 2	Conv 3	Conv 4	Conv 5	FC 6	FC 7	Output
227x227	55x55	27x27	13x13	13x13	13x13	1x1	1x1	1x1
3	96	256	384	384	256	4096	4096	1000

Alexnet – How Many Parameters

How long would it take you to list the parameters of Alexnet at 4s / parameter?

1 year? 4 years? 8 years? 16 years?

- 62.4 million parameters
- Vast majority in fully connected layers
- But... paper notes that removing the convolutions is disastrous for performance.

Dataset – ILSVRC

- Imagenet Largescale Visual Recognition Challenge
- 1.4M images
- 1000 Categories, often ridiculously precise

Dataset – ILSVRC

cock

ruffed grouse

quail

partridge ...

cars

birds

pill bottle beer bottle wine bottle water bottle pop bottle . . .

Figure Credit: O. Russakovsky

Visualizing Filters

Conv 1 Filters

 Q. How many input dimensions?

• A: 3

- What does the input mean?
 - R, G, B, duh.

What's Learned

First layer filters of a network trained to distinguish 1000 categories of objects

Remember these filters go over color.

Figure Credit: Karpathy and Fei-Fei

Visualizing Later Filters

Conv 2 Filters

- Q. How many input dimensions?
 - A: 96.... hmmm
- What does the input mean?
 - Uh, the uh, previous slide

Visualizing Later Filters

 Understanding the meaning of the later filters from their values is typically impossible: too many input dimensions, not even clear what the input means.

Input	Conv	Conv	Conv	Conv	Conv	
	1	2	3	4	5	
227x227	55x55	27x27	13x13	13x13	13x13	
3	96	256	384	384	256	

Feed an image in, see what score the filter gives it. A more pleasant version of a real neuroscience procedure.

Figure Credit: Girschick et al. CVPR 2014.

Due to convolution, each later layer's value depends on / "sees" only a fraction of the input image.

Can use receptive fields to see where the network is "looking" to make its decisions

A very active area of research (lots of great work done by Bolei Zhou, MIT \rightarrow CUHK)

B. Zhou et al. Learning Deep Features for Discriminative Localization. CVPR 2016.

Input

227x227 3

Input SIFT 227x227 227x227 128 3 Dense SIFT (a few layers)

Recall: can compute a descriptor based on histograms of image gradients. Do it densely (at each pixel).

Classic vs Deep Recognition

Classic Pipeline of handengineered steps

Deep

Pipeline of learned convolutions + simple operations

What are some differences?

The classic steps don't: talk to each other or have many parameters that are learned from data.

Last Time on EECS 442

Input	Conv 1	Conv 2	Conv 3	Conv 4	Conv 5	FC 6	FC 7	Output
227x227	55x55	27x27	13x13	13x13	13x13	1x1	1x1	1x1
3	96	256	384	384	256	4096	4096	1000

3 Key Developments Since Alexnet

- 3x3 Filters
- Batch Normalization
- Residual Learning

3x3 filter followed by 3x3 filter

Filter with 5x5 receptive field

3x3 filter followed by 3x3 filter followed by 3x3 filter

Filter with 7x7 receptive field

Why Does This Make A Difference?

Empirically, repeated 3x3 filters do better compared to a 7x7 filter.

Why?

Key Idea – 3x3 Filters

Receptive Field: 7x7 pixels Parameters/channel: 49 Number of ReLUs: 1

Receptive Field: 7x7 pixels Parameters/channel: 3x3x3=**27** Number of ReLUs: **3**

We Want More Non-linearity!

Can they implement xor?

VGG16

Training Deeper Networks

Why not just stack continuously? What will happen to gradient going back?

Backprop

Every backpropagation step multiplies the gradient by the local gradient

*d * d * d ... * d =
$$d^{n-1}$$

1

What if d << 1, n big?

Vanishing Gradients

Backprop

Every backpropagation step multiplies the gradient by the local gradient

$$1 * d * d * d ... * d = d^{n-1}$$

What if d >> 1, n big?

Exploding Gradients

Solution 1 – Batch Normalization Learning algorithms work far better when data looks like the right as opposed to the left

Solution 1 – Batch Normalization

Idea: make layer (**Batch Norm**) that normalizes things going through it based on estimates of $Var(x_i)$ in each batch. Stick in between **other layers**

Mean(x) = Mean(Y) = 0Var(x) = Var(y) = 1

S. loffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

There exists vs. We Can Find

- Still can't fit models to the data: Deeper model fits worse than shallower model on the training data.
- There exists a deeper model that's identical to the shallow model. Why?

K. He et al. Deep Residual Learning for Image Recognition. CVPR 2016

Residual Learning New Building Block: x + F(x)

Lets you train networks with 100s of layers.

Evaluating Results

At training time, we minimize: $-\log\left(\frac{\exp((Wx)_{y_i})}{\sum_k \exp((Wx)_k)}\right)$

At test time, we evaluate, given predicted class \hat{y}_i :

Accuracy:
$$\frac{1}{n} \sum_{i=1}^{n} 1(y_i = \widehat{y}_i)$$

Evaluating Many Categories

Does this image depict a cat or a dog?

To avoid penalizing ambiguous images, many challenges let you make five guesses (top-5 accuracy):

Your prediction is correct if one of the guesses is right.

Accuracy over the Years

	Top 1 Error	Top 5 Error
Best Pre-Deep	_	26.2%*
Alexnet	43.5%	20.9%
VGG-16	28.4%	9.6%
+Batch Norm	26.6%	8.5%
Resnet-152	21.7%	5.9%
Human*	-	5.1%

A Practical Aside

- People usually use hardware specialized for matrix multiplies (the card below does 13.4T flops if it's matrix multiplies).
- The real answer to why we love homogeneous coordinates?
 - Makes rendering matrix multiplies \rightarrow
 - leads to matrix multiplication hardware \rightarrow
 - deep learning.

Training a CNN

- Download a big dataset
- Initialize network weights randomly
- for epoch in range(epochs):
 - Shuffle dataset
 - for each minibatch in datsaet.:
 - Put data on GPU
 - Compute gradient
 - Update gradient with SGD

Training a CNN from Scratch

Need to start **w** somewhere

- AlexNet: weights ~ Normal(0,0.01), bias = 1
- "Xavier" initialization: Uniform $(\frac{-1}{\sqrt{n}}, \frac{1}{\sqrt{n}})$ where n is the number of neurons
- "Kaiming" initialization: Normal $(0,\sqrt{2/n})$

Take-home: important, but use defaults

Training a ConvNet

- Convnets typically have millions of parameters:
 - AlexNet: 62 million
 - VGG16: 138 million
- Convnets typically fit on ~1.2 million images
- Remember least squares: if we have fewer data points than parameters, we're in trouble
- Solution: need regularization / more data

Training a CNN – Weight Decay

SGD Update $w_{t+1} = w_t - \epsilon \frac{\partial L}{\partial w_t}$

+Weight Decay $w_{t+1} = w_t - \eta \epsilon w_t + \epsilon \frac{\partial L}{\partial w_t}$

What does this remind you of?

Weight decay is very similar to regularization but might not be the same for more complex optimization techniques.

Quick Quiz

Raise your hand if it's a hippo

Horizontal Flip

Color Jitter Image Cropping

Training a CNN –Augmentation

- Apply transformations that don't affect the output
- Produces more data but you have to be careful that it doesn't change the meaning of the output

Training a CNN – Fine-tuning

• What if you don't have data?

Fine-Tuning: Pre-trained Features

Extract some layer from an existing network
Use as your new feature.
Learn a linear model.
Surprisingly effective

Fine-Tuning: Transfer Learning

- Rather than initialize from random weights, initialize from some "pre-trained" model that does something else.
- Most common model is trained on ImageNet.
- Other pretraining tasks exist but are less popular.

Fine-Tuning: Transfer Learning

Why should this work? Transferring from objects (dog) to scenes (waterfall)

Bau and Zhou et al. Network Dissection: Quantifying Interpretability of Deep Visual Representations. CVPR 2017.

Recommendations

- <10K images: features</p>
- Always try fine-tuning
- >100K images: consider trying from scratch

Summary

- We learned about converting an image into a vector output (e.g., which of K classes is this image, or predict K continuous outputs)
- We learned about some building blocks for doing this