
Convolutional
Neural Nets II

EECS 442 – David Fouhey

Fall 2019, University of Michigan
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Administrivia

• If you need a team-mate for your project, email
me. I’m matching people.

Previously – Backpropagation

-n

x -x -x+3

n+3

(-x+3)2

n2

1
−2𝑥 + 62x − 6 −2𝑥 + 6

𝑓 𝑥 = −𝑥 + 3 2

Forward pass: compute function

Backward pass: compute derivative of all

parts of the function

Setting Up A Neural Net

y1

y2

y3

x2

x1

h1

h2

h3

h4

Input Hidden Output

Setting Up A Neural Net

y1

y2

y3

x2

x1

a1

a2

a3

a4

Input Hidden 1 Output

h1

h2

h3

h4

Hidden 2

Fully Connected Network

Each neuron connects

to each neuron in the

previous layer

y1

y2

y3

x2

x1

a1

a2

a3

a4

h1

h2

h3

h4

Fully Connected Network

Define New Block: “Linear Layer”
(Ok technically it’s Affine)

n L

W b

𝐿 𝒏 = 𝑾𝒏 + 𝒃

Can get gradient with respect to all the inputs

Fully Connected Network

y1

y2

y3

x2

x1

a1

a2

a3

a4

h1

h2

h3

h4

x L f(n)

W1 b1

L f(n)

W2 b2

L f(n)

W3 b3

Convolutional Layer

New Block: 2D Convoluiton

n C

W b

𝐶 𝒏 = 𝒏 ∗𝑾+ 𝒃

Convolution Layer

32

32

3

𝑏 +

𝑖=1

𝐹ℎ

𝑗=1

𝐹𝑤

𝑘=1

𝑐

𝐹𝑖,𝑗,𝑘 ∗ 𝐼𝑦+𝑖,𝑥+𝑗,𝑐

Fh

c

Fw

Slide credit: Karpathy and Fei-Fei

Convolutional Neural Network
(CNN)

x C f(n)

W1 b1

C f(n)

W2 b2

C f(n)

W3 b3

Today

H

W
C

1
1 F

CNN

Convert HxW image into a F-dimensional vector

• What’s the probability this image is a cat (F=1)

• Which of 1000 categories is this image? (F=1000)

• At what GPS coord was this image taken? (F=2)

• Identify the X,Y coordinates of 28 body joints of an

image of a human (F=56)

Today’s Running Example:
Classification

H

W
C

1
1 F

CNN

Running example:

image classification

P(image is class #1)
P(image is class #2)

P(image is class #F)

Today’s Running Example:
Classification

H

W
C

1
1

CNN 0.5 0.2 0.1 0.2

“Hippo”

yi: class #0

− log
exp(𝑊𝑥 𝑦𝑖

σ𝑘 exp(𝑊𝑥 𝑘))

Loss function

Today’s Running Example:
Classification

H

W
C

1
1

CNN 0.5 0.2 0.1 0.2

“Baboon”

yi: class #3

− log
exp(𝑊𝑥 𝑦𝑖

σ𝑘 exp(𝑊𝑥 𝑘))

Loss function

Model For Your Head

H

W
C

1
1 F

CNN

• Provide:

• Examples of images and desired outputs

• Sequence of layers producing a 1x1xF output

• A loss function that measures success

• Train the network -> network figures out the

parameters that makes this work

Layer Collection

Image credit: lego.com

You can construct functions out of layers. The only

requirement is the layers “fit” together. Optimization

figures out what the parameters of the layers are.

Review – Pooling

Idea: just want spatial resolution of activations

/ images smaller; applied per-channel

1 1 2

5 6 7

3 2 1

4

8

0

1 1 3 4

6 8

3 4

Max-pool

2x2 Filter

Stride 2

Slide credit: Karpathy and Fei-Fei

Review – Pooling

6 8

3 4

Max-pool

2x2 Filter

Stride 21 1 2

5 6 7

3 2 1

4

8

0

1 1 3 4

Other Layers – Fully Connected

1x1xC 1x1xF

Map C-dimensional feature to F-dimensional

feature using linear transformation

W (FxC matrix) + b (Fx1 vector)

How can we write this as a convolution?

Everything’s a Convolution

1x1 Convolution with F Filters

1x1xC 1x1xF

𝑏 +

𝑖=1

𝐹ℎ

𝑗=1

𝐹𝑤

𝑘=1

𝑐

𝐹𝑖,𝑗,𝑘 ∗ 𝐼𝑦+𝑖,𝑥+𝑗,𝑐 𝑏 +

𝑘=1

𝑐

𝐹𝑘 ∗ 𝐼𝑐

Set Fh=1, Fw=1

Converting to a Vector

HxWxC 1x1xF

How can we do this?

Converting to a Vector* – Pool

HxWxC 1x1xF

1 1 2

5 6 7

3 2 1

4

8

0

1 1 3 4

3.1

Avg Pool

HxW Filter

Stride 1

*(If F == C)

Converting to a Vector – Convolve

HxW Convolution with F Filters

∗
Single value

Per-filter

HxWxC 1x1xF

Looking At Networks

• We’ll look at 3 landmark networks, each trained
to solve a 1000-way classification output
(Imagenet)

• Alexnet (2012)

• VGG-16 (2014)

• Resnet (2015)

AlexNet
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

13x13

384

Conv

3

13x13

384

Each block is a HxWxC volume.

You transform one volume to another with convolution

CNN Terminology
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

13x13

384

Conv

3

13x13

384

Each entry is called an

“activation”/“neuron”/“feature”

AlexNet
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

13x13

384

Conv

3

13x13

384

AlexNet
Conv

1

55x55

96

Input

227x227

3

227x227

3

55x55

96

11x11 filter, stride of 4

(227-11)/4+1 = 55

55x55

96

ReLU

AlexNet
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

13x13

384

Conv

3

13x13

384

All layers followed by ReLU

Red layers are followed by maxpool

Early layers have “normalization”

AlexNet – Details
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

13x13

384

Conv

3

13x13

384

C: 11

P: 3

C:5

P:3

C:3 C:3 C:3

P:3
C: Size of conv

P: Size of pool

AlexNet
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

13x13

384

Conv

3

13x13

384

13x13 Input, 1x1 output. How?

Alexnet – How Many Parameters?
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

13x13

384

Conv

3

13x13

384

Alexnet – How Many Parameters?
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

13x13

384

Conv

3

13x13

384

96 11x11 filters on 3-channel input

11x11x3x96+96 = 34,944

Alexnet – How Many Parameters?
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

13x13

384

Conv

3

13x13

384

6x6x256x4096+4096 = 38 million

4096 6x6 filters on 256-channel input

Note: max pool to 6x6

Alexnet – How Many Parameters?
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

13x13

384

Conv

3

13x13

384

4096 1x1 filters on 4096-channel input

1x1x4096x4096+4096 = 17 million

Alexnet – How Many Parameters

• 62.4 million parameters

• Vast majority in fully connected layers

• But... paper notes that removing the

convolutions is disastrous for performance.

How long would it take you to list the

parameters of Alexnet at 4s / parameter?

1 year? 4 years? 8 years? 16 years?

Dataset – ILSVRC

• Imagenet Largescale Visual Recognition
Challenge

• 1.4M images

• 1000 Categories, often ridiculously precise

Dataset – ILSVRC

Figure Credit: O. Russakovsky

Visualizing Filters
Conv

1

55x55

96

Input

227x227

3

Conv 1 Filters

• Q. How many input

dimensions?

• A: 3

• What does the input mean?

• R, G, B, duh.

What’s Learned

First layer filters of a

network trained to

distinguish 1000

categories of objects

Remember these

filters go over color.

Figure Credit: Karpathy and Fei-Fei

Visualizing Later Filters
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv 2 Filters

• Q. How many input

dimensions?

• A: 96…. hmmm

• What does the input mean?

• Uh, the uh, previous slide

Visualizing Later Filters

• Understanding the meaning of the later filters
from their values is typically impossible: too
many input dimensions, not even clear what
the input means.

Understanding Later Filters
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

13x13

384

Conv

3

13x13

384

CNN that extracts a

13x13x256 output

2-hidden layer

Neural network

Understanding Later Filters
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

13x13

384

Conv

3

13x13

384

CNN that extracts a

1x1x4096 feature

1-hidden

layer NN

Understanding Later Filters

CNN that extracts a

13x13x256 output

Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

Conv

4

13x13

384

Conv

3

13x13

384

Understanding Later Filters

13x13

256

13x13

256

Feed an image in, see what score the filter

gives it. A more pleasant version of a real

neuroscience procedure.

Which one’s bigger? What image

makes the output biggest?

Figure Credit: Girschick et al. CVPR 2014.

What’s Up With the White Boxes?

227

227

3

13

13

384

What’s Up With the White Boxes?

227

227

13

13

3 384

Receptive

Field

Due to convolution, each later layer’s value depends

on / “sees” only a fraction of the input image.

1

Can use receptive fields to see where the

network is “looking” to make its decisions

B. Zhou et al. Learning Deep Features for Discriminative Localization. CVPR 2016.

A very active area of research

(lots of great work done by Bolei Zhou, MIT → CUHK)

Classic Recognition
Input

227x227

3

Classic Recognition
Input

227x227

3

227x227

128

SIFT Recall: can compute a

descriptor based on

histograms of image

gradients. Do it densely

(at each pixel).

Dense

SIFT

(a few

layers)

Classic Recognition
Input

227x227

3

227x227

128

SIFT

HxW

#codewords

Bag of Words

Can do bag-of-words-like

techniques on SIFT, taking into

consideration spatial location.

Dense

SIFT

(a few

layers)

Classic Recognition
Input

227x227

3

227x227

128

SIFT

HxW

#codewords

Bag of Words

Dense

SIFT

(a few

layers)

BOW

1x1

1000

Output

Classifier

Classic Recognition
Input

227x227

3

227x227

128

SIFT

HxW

#codewords

Bag of Words

Dense

SIFT

(a few

layers)

BOW

1x1

1000

Output

Classifier

Classic vs Deep Recognition

Pipeline of hand-

engineered steps
Classic

Pipeline of learned

convolutions +

simple operations

Deep

What are some differences?

The classic steps don’t: talk to each other or have

many parameters that are learned from data.

Last Time on EECS 442
Conv

2

27x27

256

Conv

1

55x55

96

Input

227x227

3

Conv

5

13x13

256

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

13x13

384

Conv

3

13x13

384

3 Key Developments Since Alexnet

• 3x3 Filters

• Batch Normalization

• Residual Learning

Key Idea – 3x3 Filters

3x3 filter followed by

3x3 filter

→

Filter with 5x5

receptive field

2 21 →5

Key Idea – 3x3 Filters

3x3 filter followed by

3x3 filter followed by

3x3 filter

→

Filter with 7x7

receptive field

3 31 →7

Why Does This Make A Difference?

Empirically, repeated 3x3

filters do better compared to a

7x7 filter.

Why?

Key Idea – 3x3 Filters

Receptive Field: 7x7 pixels

Parameters/channel: 49

Number of ReLUs: 1

Receptive Field: 7x7 pixels

Parameters/channel: 3x3x3=27

Number of ReLUs: 3

We Want More Non-linearity!

+
+ +

+
+
+

+
+

-
- -

-

-
- -

-

y1

x2

x1 h2

h3

y1

x1

x2

Can they

implement xor?

No Yes

VGG16
Conv

2

112x112

128

Conv

1

224x224

64

Input

224x224

3

Conv

5

14x14

512

FC

6

1x1

4096

FC

7

1x1

4096

Output

1x1

1000

Conv

4

28x28

512

Conv

3

56x56

256

All filters 3x3

All filters followed by ReLU

Training Deeper Networks

Why not just stack continuously?

What will happen to gradient going back?

…

Backprop

Every backpropagation step multiplies

the gradient by the local gradient

…

1 *d * d * d … * d = dn-1
What if d << 1, n big?

Vanishing Gradients

Backprop

Every backpropagation step multiplies

the gradient by the local gradient

…

1 *d * d * d … * d = dn-1
What if d >> 1, n big?

Exploding Gradients

Solution 1 – Batch Normalization

X

Y Data

Mean(x) != Mean(Y) != 0

Var(x) != Var(y) != 0

Cov(x,y) != 0

X

Y
Data

Mean(x) = Mean(Y) = 0

Var(x) = Var(y) = 1

Cov(x,y) = 0

Learning algorithms work far better when data looks

like the right as opposed to the left

Solution 1 – Batch Normalization

S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

X

Y
Data

Mean(x) = Mean(Y) = 0

Var(x) = Var(y) = 1

Idea: make layer (Batch Norm)

that normalizes things going

through it based on estimates of

Var(xi) in each batch.

Stick in between other layers

There exists vs. We Can Find

• Still can’t fit models to the data: Deeper model fits

worse than shallower model on the training data.

• There exists a deeper model that’s identical to

the shallow model. Why?

K. He et al. Deep Residual Learning for Image Recognition. CVPR 2016

Residual Learning

F(x)x

+

x+F(x)

𝒙 + 𝐹 𝒙New Building Block:

Lets you train networks with 100s of layers.

Evaluating Results

− log
exp(𝑊𝑥 𝑦𝑖

σ𝑘 exp(𝑊𝑥 𝑘))
At training time, we minimize:

At test time, we evaluate, given predicted class ෝ𝑦𝑖:

Accuracy:
1

𝑛

𝑖=1

𝑛

1(𝑦𝑖 = ෝ𝑦𝑖)

Evaluating Many Categories

Does this image depict a cat or a dog?

Image credit: Coco dataset

To avoid penalizing

ambiguous images, many

challenges let you make

five guesses (top-5

accuracy):

Your prediction is correct if

one of the guesses is right.

Accuracy over the Years

Top 1 Error Top 5 Error

Best Pre-Deep - 26.2%*

Alexnet 43.5% 20.9%

VGG-16 28.4% 9.6%

+Batch Norm 26.6% 8.5%

Resnet-152 21.7% 5.9%

Human* 5.1%-

A Practical Aside

• People usually use hardware specialized for
matrix multiplies (the card below does 13.4T
flops if it’s matrix multiplies).

• The real answer to why we love homogeneous
coordinates?

• Makes rendering matrix multiplies →

• leads to matrix multiplication hardware →

• deep learning.

Training a CNN

• Download a big dataset

• Initialize network weights randomly

• for epoch in range(epochs):

• Shuffle dataset

• for each minibatch in datsaet.:
• Put data on GPU

• Compute gradient

• Update gradient with SGD

Training a CNN from Scratch

Need to start w somewhere

• AlexNet: weights ~ Normal(0,0.01), bias = 1

• “Xavier” initialization: Uniform(
−1

𝑛
,
1

𝑛
) where n

is the number of neurons

• “Kaiming” initialization: Normal(0, 2/𝑛)

Take-home: important, but use defaults

Training a ConvNet

• Convnets typically have millions of parameters:
• AlexNet: 62 million

• VGG16: 138 million

• Convnets typically fit on ~1.2 million images

• Remember least squares: if we have fewer
data points than parameters, we’re in trouble

• Solution: need regularization / more data

Training a CNN – Weight Decay

𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜖
𝜕𝐿

𝜕𝒘𝒕

SGD

Update

𝒘𝒕+𝟏 = 𝒘𝒕 − 𝜂𝜖𝒘𝒕 + 𝜖
𝜕𝐿

𝜕𝒘𝒕

+Weight

Decay

What does this remind you of?

Weight decay is very similar to regularization but might not be

the same for more complex optimization techniques.

Quick Quiz

Raise your hand if it’s a hippo

Horizontal

Flip

Color

Jitter

Image

Cropping

Training a CNN –Augmentation

• Apply transformations
that don’t affect the
output

• Produces more data
but you have to be
careful that it doesn’t
change the meaning of
the output

Training a CNN – Fine-tuning

• What if you don’t have data?

Fine-Tuning: Pre-trained Features

Convolutions that extract a

1x1x4096 feature (Fixed/Frozen/Locked)

Wx

+b

1. Extract some layer from an existing network

2. Use as your new feature.

3. Learn a linear model.

Surprisingly effective

Fine-Tuning: Transfer Learning

• Rather than initialize from random weights,
initialize from some “pre-trained” model that
does something else.

• Most common model is trained on ImageNet.

• Other pretraining tasks exist but are less
popular.

Fine-Tuning: Transfer Learning

Bau and Zhou et al. Network Dissection: Quantifying Interpretability of Deep Visual Representations. CVPR 2017.

Why should this work?

Transferring from objects (dog) to scenes (waterfall)

Recommendations

• <10K images: features

• Always try fine-tuning

• >100K images: consider trying from scratch

Summary

• We learned about converting an image into a
vector output (e.g., which of K classes is this
image, or predict K continuous outputs)

• We learned about some building blocks for
doing this

