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Mid-Semester Check-in

* Things are busy and stressful

 Take care of yourselves and remember that
grades are important but the objective function
of life really isn't sum-of-squared-grades

* Advice about grade-optimization:

» Turn something in for everything, even if it's partial,
doesn’t work, or a sketch.

* The first points are the easiest to give
 Blanks are hard to give credit for

* If you're struggling, let us know



So Far: Linear Models

Lw) =23 + ) (= w'x)))’
=1

« Example: find w minimizing squared error over data
« Each datapoint represented by some vector x
e (Can find optimal w with ~10 line derivation



Last Class

Lw) =2l + ) LG f(x0)
=1

 What about an arbitrary loss function L?
« What about an arbitrary parametric function {?
« Solution: take the gradient, do gradient descent

Wis1 = w; —aVy, L(f(wy))
|

What if L(f(w)) is complicated?
Today!



Taking the Gradient — Review
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Supplemental Reading

 Lectures can only introduce you to a topic
* You will solidify your knowledge by doing

* | highly recommend working through
everything in the Stanford CS213N resources

e hitp://cs231n.qithub.io/optimization-2/

* These slides follow the general examples with
a few modifications. The primary difference is
that | define local variables n, m per-block.



http://cs231n.github.io/optimization-2/

Let's Do This Another Way

Suppose we have a box representing a function f.

This box does two things:
Forward: Given forward input n, compute f(n)
Backwards: Given backwards input g, return g*df/dn

n f f(n)
g(af /on) g



Let's Do This Another Way
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Let's Do This Another Way
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Let's Do This Another Way
f(x) = (—x +3)?
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Let's Do This Another Way
f(x) = (—x +3)?
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Two Inputs

Given two inputs, just have two input/output wires
Forward: the same
Backward: the same — send gradients with respect
to each variable

n
m g

g(of/om)



Example Credit: Karpathy and Fei-Fei



f(x,y,z) = (x+y)z

Multiplication
swaps inputs,
multiplies gradient

(X+y)Z

(X+y)*
0 0
5, im =m 5onm=n
- z*1 > (x+y)*1

Example Credit: Karpathy and Fei-Fei



f(X,,2) = (X+y)Z

Addition sends
gradient through
unchanged

(X+y)Z
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Example Credit: Karpathy and Fei-Fei
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Example Credit: Karpathy and Fei-Fei




Once More, With Numbers!



f(X,,2) = (x+y)z
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Example Credit: Karpathy and Fei-Fei
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Example Credit: Karpathy and Fei-Fei
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Example Credit: Karpathy and Fei-Fei



Think You've Got It?
L(x) = (w— 6)°

« We want to fit a model w that just will equal ©.
« World's most basic linear model / neural net: no
iInputs, just constant output.



I’ll Need a Few Volunteers

L(x) = (w— 6)3

N n-6 n ) n?
3 n-6 9 ong N g

Job #1 (n-6): Job #2 (n?): Job #3:

Forward: Forward:

Compute n-6 Compute n?

Backwards: Backwards: Backwards:
Multiply by 1 Multiply by 2n Write down 1




Preemptively

* The diagrams look complex but that’'s since
we're covering the details together
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Something More Complex
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Example Credit: Karpathy and Fei-Fei
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Summary

Each block computes backwards (g) * local
gradient (df/dx;) at the evaluation point

g(0f /0xy) <=




Multiple Outputs Flowing Back

Gradients from different backwards sum up
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Multiple Outputs Flowing Back
f(x) = (—x + 3)?
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Multiple Outputs Flowing Back
f(x) = (—x + 3)?
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Does It Have To Be So Painful?
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Example Credit: Karpathy and Fei-Fei
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Does It Have To Be So Painful?
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Example Credit: Karpathy and Fei-Fei




Does It Have To Be So Painful?
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Does It Have To Be So Painful?

« Can compute for any function

* Pick your functions carefully: existing code is
usually structured into sensible blocks



Building Blocks

— Takes signals from

TI:U rol'I“ _ other cells, processes,
es carrie

Otner cells | abosy sends out

) p branches
dendrites N\ of axon

s

\ impulses carried W
away from cell body

Neuron diagram credit: Karpathy and Fei-Fei



Artificial Neuron

Weighted average of other
neuron outputs passed

L through an activation
function

Activation f (2 wix; + b)

"4




Artificial Neuron

Can differentiate whole thing e.g., dNeuron/dx,.
What can we now do?

W b
X

\%\
X, f

X3




Artificial Neuron

Each artificial neuron is a linear model +
an activation function f
Can find w, b that minimizes a loss
function with gradient descent

w.b

D)




Artificial Neurons

Connect neurons to make

w.b

a more complex function;

use backprop to compute

X
@
—h

gradient

w.b w.b

N

=

RN

w.b




What's The Activation Function

Y — s Sigmoid
. — d/dx s(x) 1
s(x) = 1+e*
30'6 » Nice interpretation
50_4 « Squashes things to
(0,1)
0.2  (Gradients are near
zero if neuron is
0.0
-4 -2

y high/low
Input



What's The Activation Function

—— RelLU(X) RelLU
—— d/dx ReLU(x) (Rectifying Linear Unit)
max(0, x)

« Constant gradient

 Converges ~6x
faster

* If neuron negative,
zero gradient. Be

careful!



What's The Activation Function

—— Leaky ReLU(x) Leaky RelLU
—— d/dx Leaky ReLU(x) (Rectifying Linear Unit)

x:x =0

0.01x:x <0

« RelLU, but allows
some small

gradient for
/ negative vales




Setting Up A Neural Net
Input Hidden Output




Setting Up A Neural Net
Input Hidden 1 Hidden 2  Output
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dy




Fully Connected Network

Each neuron connects
to each neuron in the
previous layer




Fully Connected Network

a All layer a values
Q W;, b; Neuron i weights, bias

Q f Activation function

hi = f(wia+ b;)

How do we do all the neurons all at once?



Fully Connected Network

a All layer a values




Fully Connected Network

Define New Block: “Linear Layer”

(Ok technically it’s Affine)

2w/ L(n)=Wn+D»b

P

Can get gradient with respect to all the inputs
(do on your own; useful trick: have to be able
to do matrix multiply)




Fully Connected Network

h

) \\'// ‘l
X4 v a, Q\v \ ? h2 “ /

% H&’z’ww»
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Fully Connected Network

Y e N

What happens if we remove the
activation functions?




Demo Time

https://cs.stanford.edu/people/karpathy/con
vnetjs/demo/classify2d.html



https://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html




