Backpropagation and Neural Nets

EECS 442 – David Fouhey Fall 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Mid-Semester Check-in

- Things are busy and stressful
- Take care of yourselves and remember that grades are important but the objective function of life really isn't sum-of-squared-grades
- Advice about grade-optimization:
 - Turn something in for everything, even if it's partial, doesn't work, or a sketch.
 - The first points are the easiest to give
 - Blanks are hard to give credit for
- If you're struggling, let us know

So Far: Linear Models
$$L(w) = \lambda ||w||_2^2 + \sum_{i=1}^n (y_i - w^T x_i))^2$$

- Example: find w minimizing squared error over data
 - Each datapoint represented by some vector **x**
 - Can find optimal **w** with ~10 line derivation

Last Class
$$L(\boldsymbol{w}) = \lambda \|\boldsymbol{w}\|_2^2 + \sum_{i=1}^n L(y_i, f(\boldsymbol{x}; \boldsymbol{x}))$$

- What about an arbitrary loss function L?
- What about an arbitrary parametric function f?
- Solution: take the gradient, do gradient descent

$$\boldsymbol{w}_{i+1} = \boldsymbol{w}_i - \alpha \nabla_w L(f(\boldsymbol{w}_i))$$

What if L(f(w)) is complicated? **Today!**

Taking the Gradient – Review $f(x) = (-x+3)^2$ $f = q^2$ q = r + 3 r = -x $\frac{\partial f}{\partial q} = 2q$ $\frac{\partial q}{\partial r} = 1$ $\frac{\partial r}{\partial x} = -1$ $\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial r} \frac{\partial r}{\partial x} = 2q * 1 * -1$ Chain rule = -2(-x + 3)= 2x - 6

Supplemental Reading

- Lectures can only introduce you to a topic
- You will solidify your knowledge by **doing**
- I highly recommend working through everything in the Stanford CS213N resources
 - <u>http://cs231n.github.io/optimization-2/</u>
- These slides follow the general examples with a few modifications. The primary difference is that I define local variables n, m per-block.

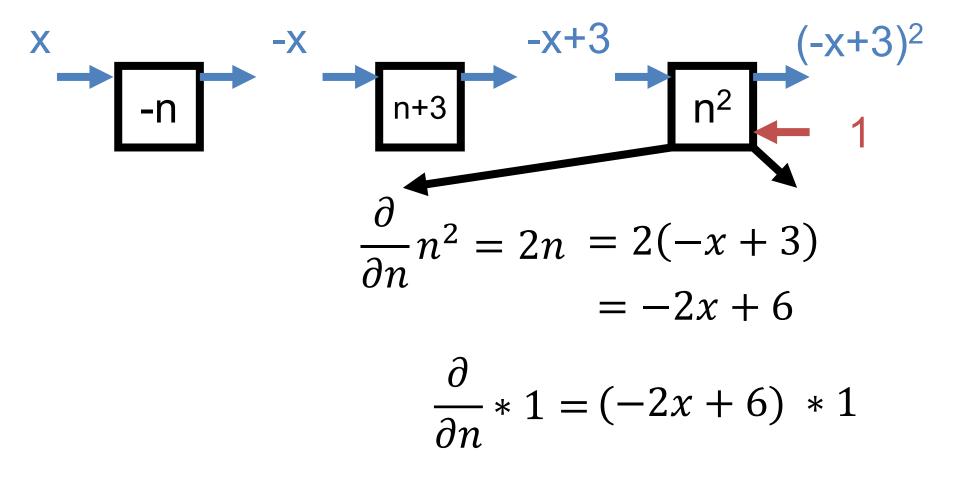
Let's Do This Another Way

Suppose we have a box representing a function f.

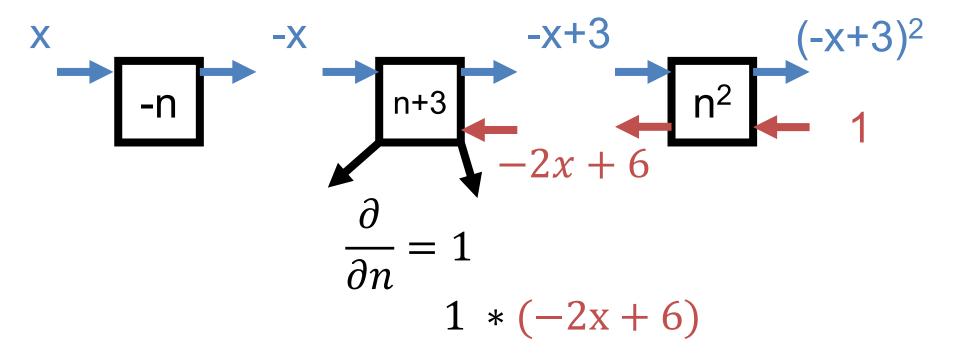
This box does two things: **Forward:** Given forward input **n**, compute **f(n) Backwards:** Given backwards input **g**, return **g*df/dn**

$$n \rightarrow \mathbf{f}(n)$$
$$\mathbf{f}(n) \leftarrow g$$

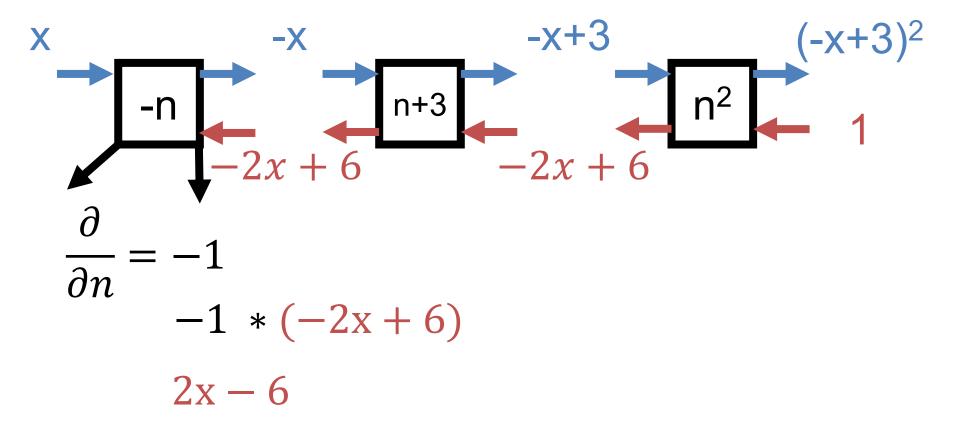
Let's Do This Another Way $f(x) = (-x + 3)^2$



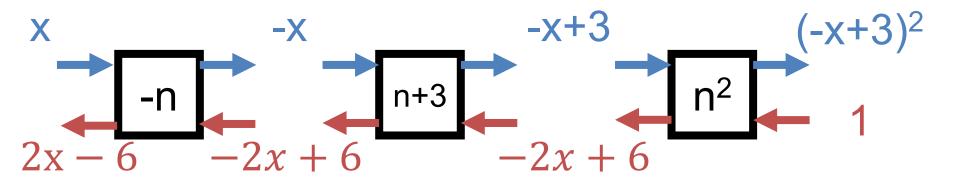
Let's Do This Another Way $f(x) = (-x + 3)^2$



Let's Do This Another Way $f(x) = (-x + 3)^2$

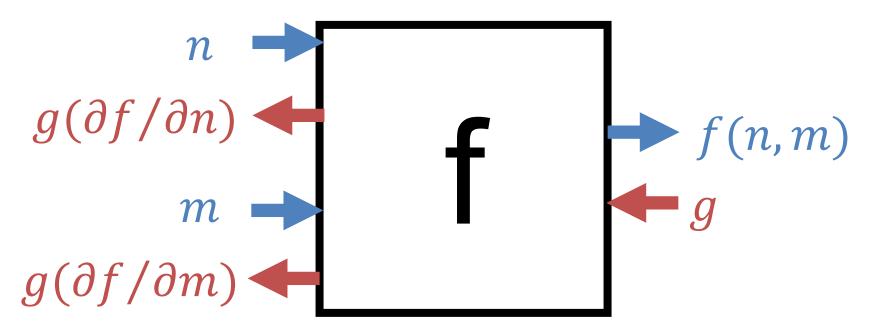


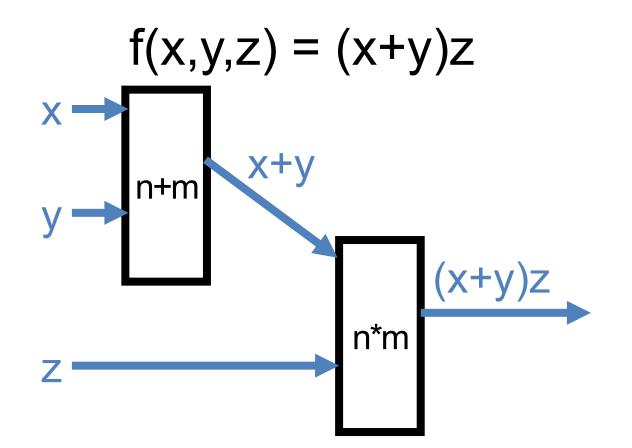
Let's Do This Another Way $f(x) = (-x + 3)^2$

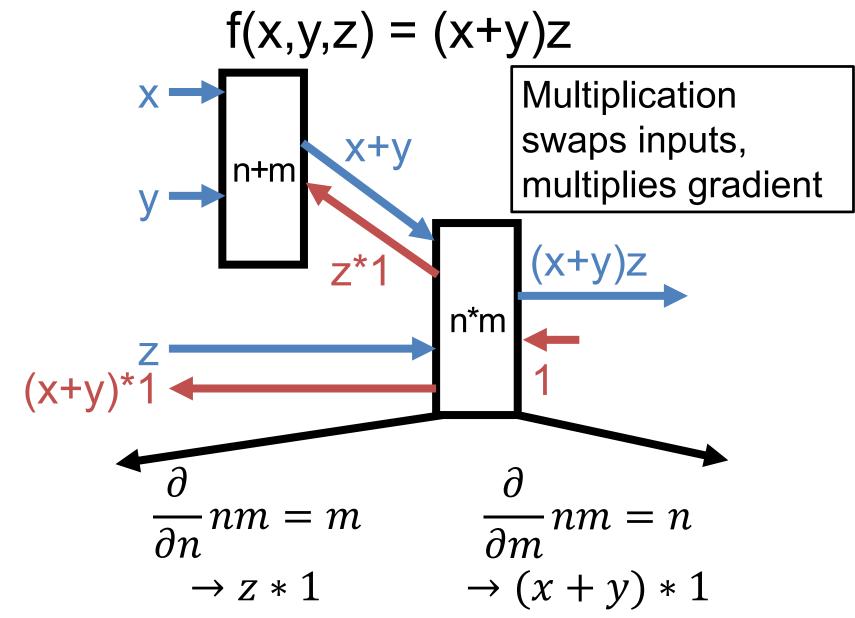


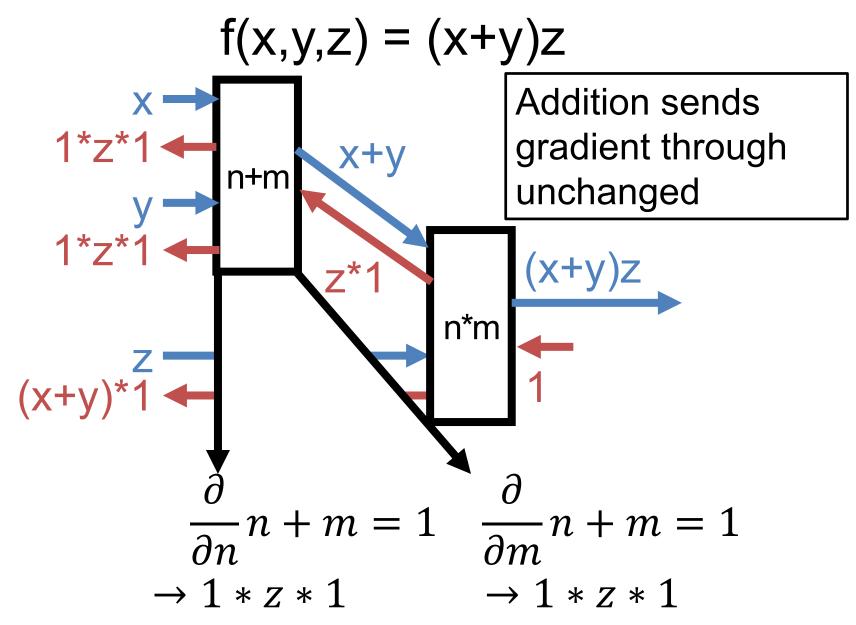
Two Inputs

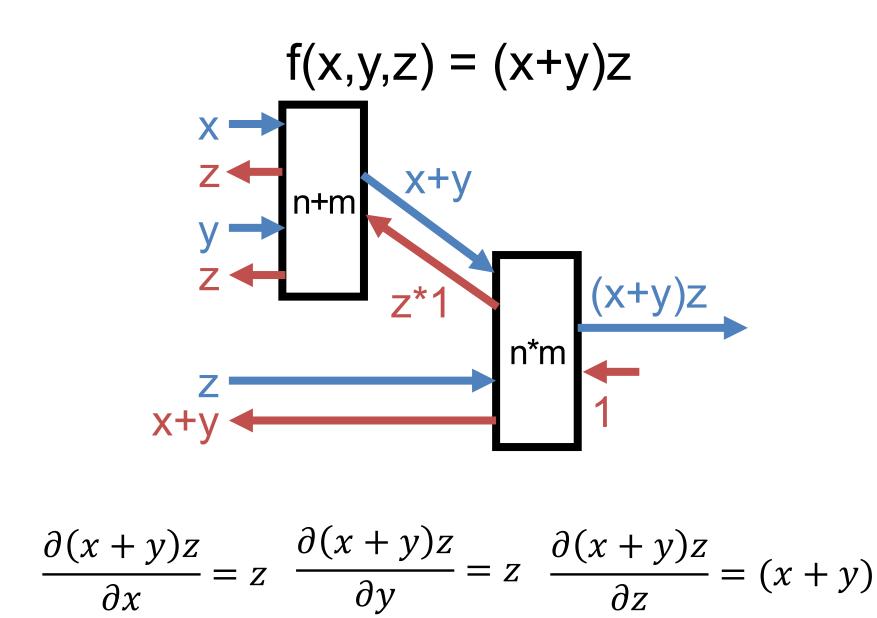
Given two inputs, just have two input/output wires **Forward:** the same **Backward:** the same – send gradients with respect to each variable





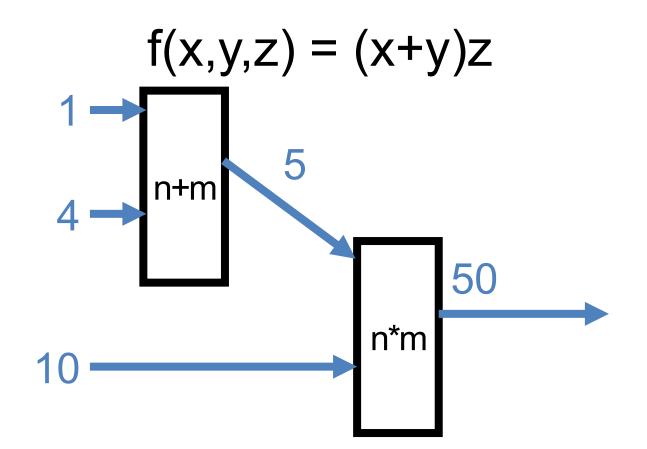


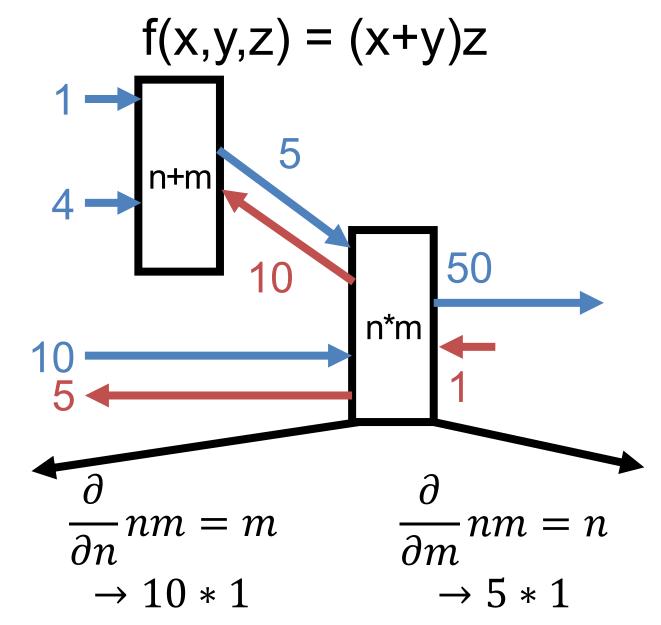


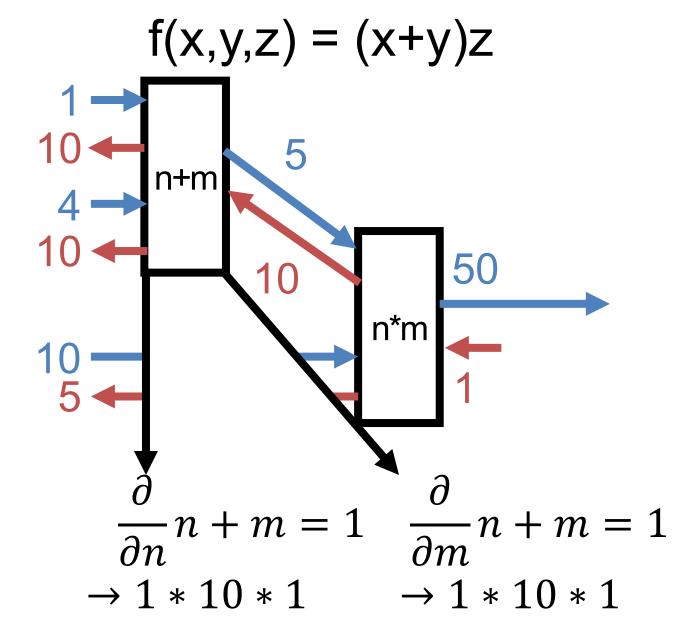


Example Credit: Karpathy and Fei-Fei

Once More, With Numbers!







Think You've Got It? $L(x) = (w - 6)^2$

- We want to fit a model w that just will equal 6.
- World's most basic linear model / neural net: no inputs, just constant output.

I'll Need a Few Volunteers

$$L(x) = (w - 6)^{2}$$

$$\int_{a}^{b} n - 6 \qquad n \qquad n^{2} \qquad n^{2}$$

Job #1 (n-6): **Forward:** Compute n-6

Backwards: Multiply by 1 Job #2 (n²):

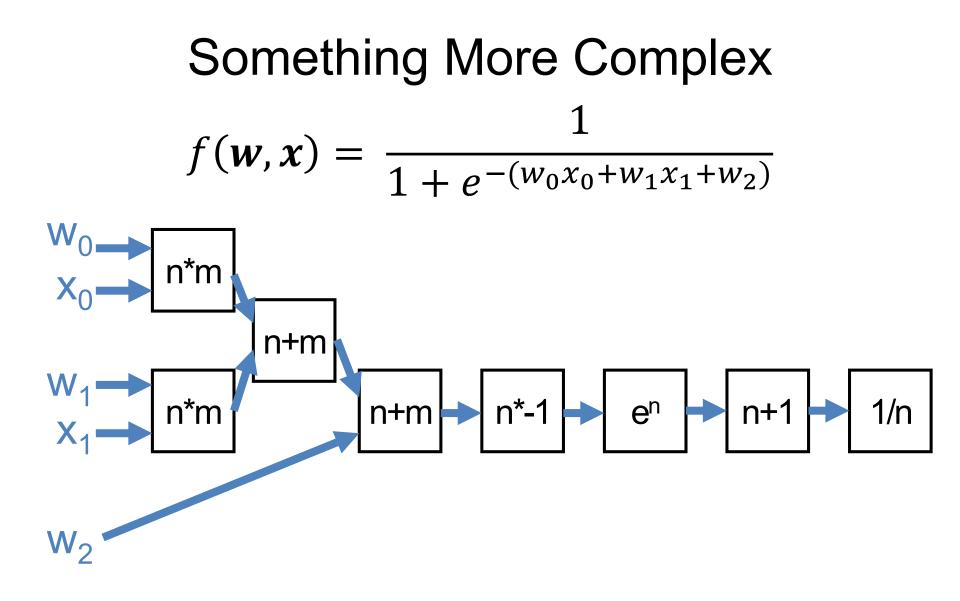
Forward: Compute n²

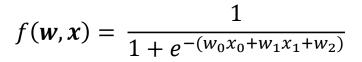
Backwards: Multiply by 2n Job #3:

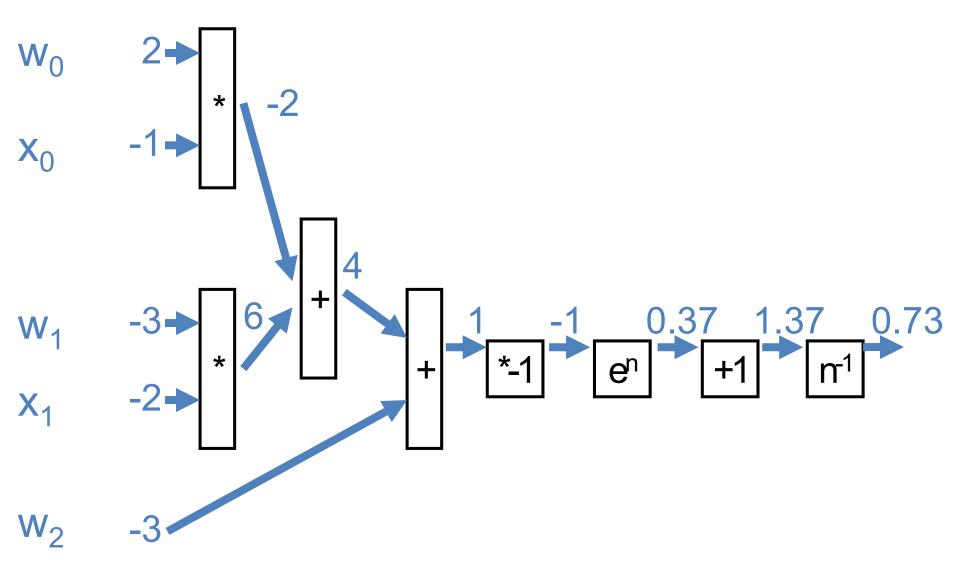
Backwards: Write down 1

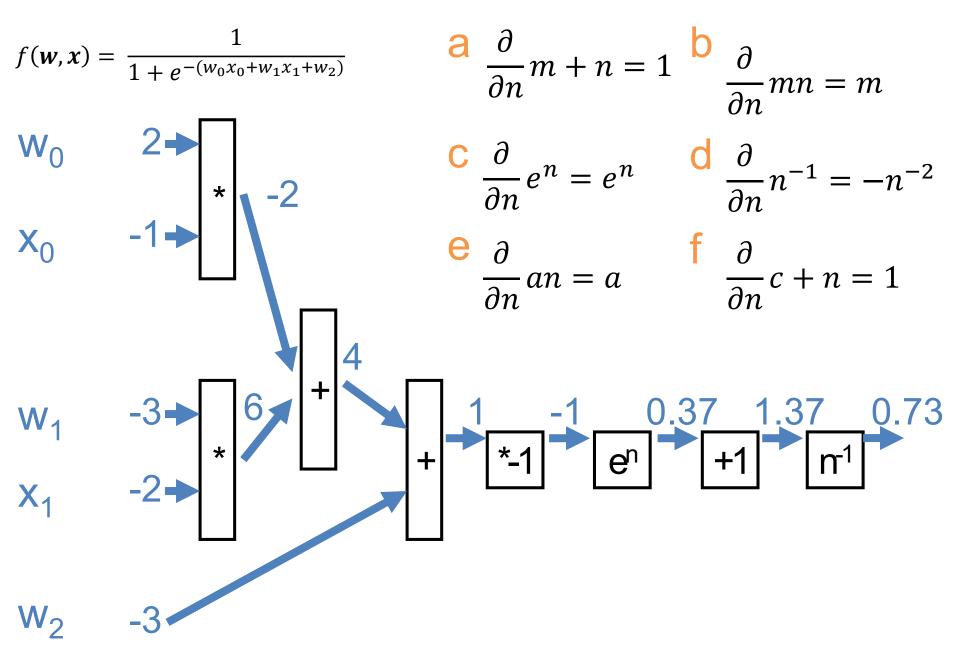
Preemptively

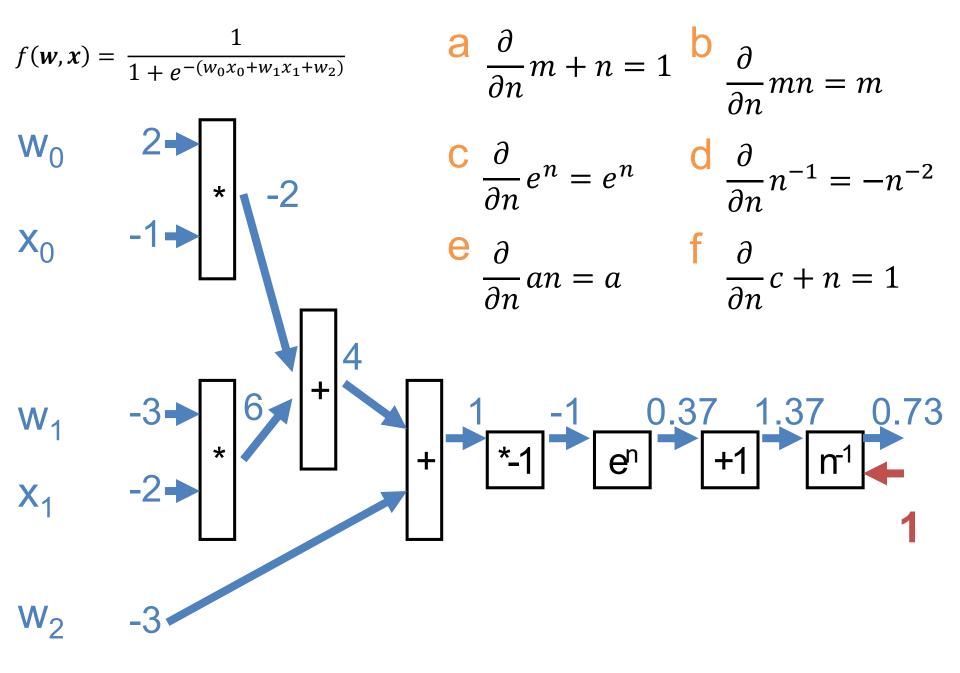
• The diagrams look complex but that's since we're covering the details together

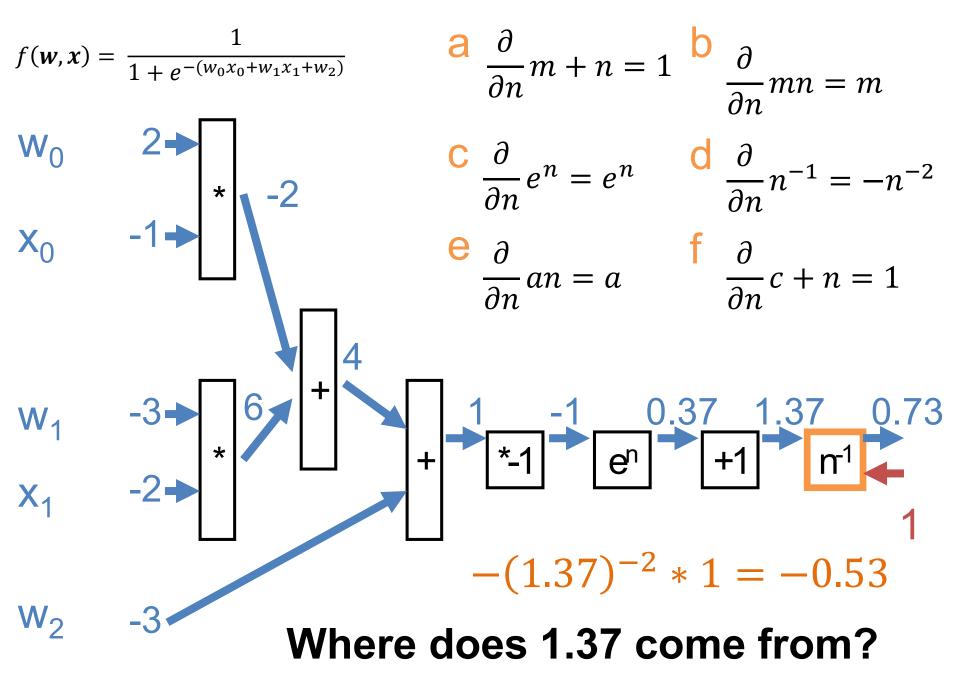


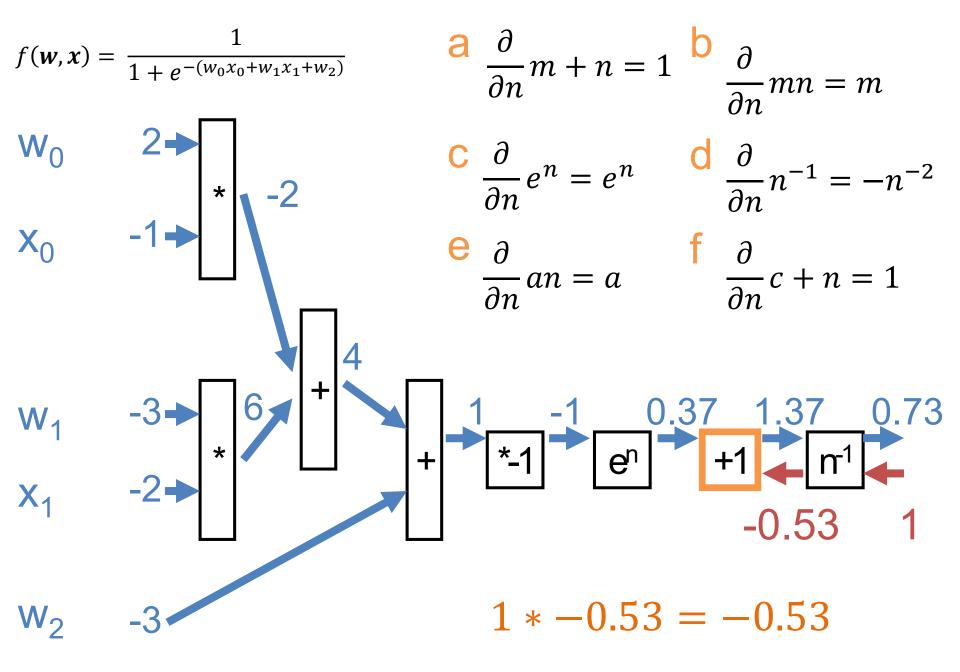


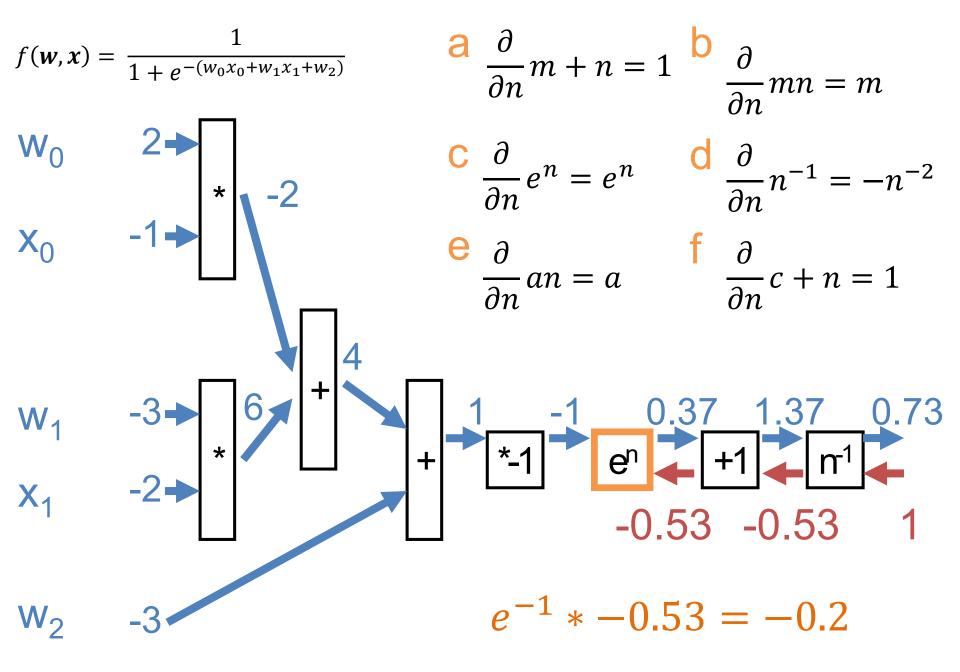


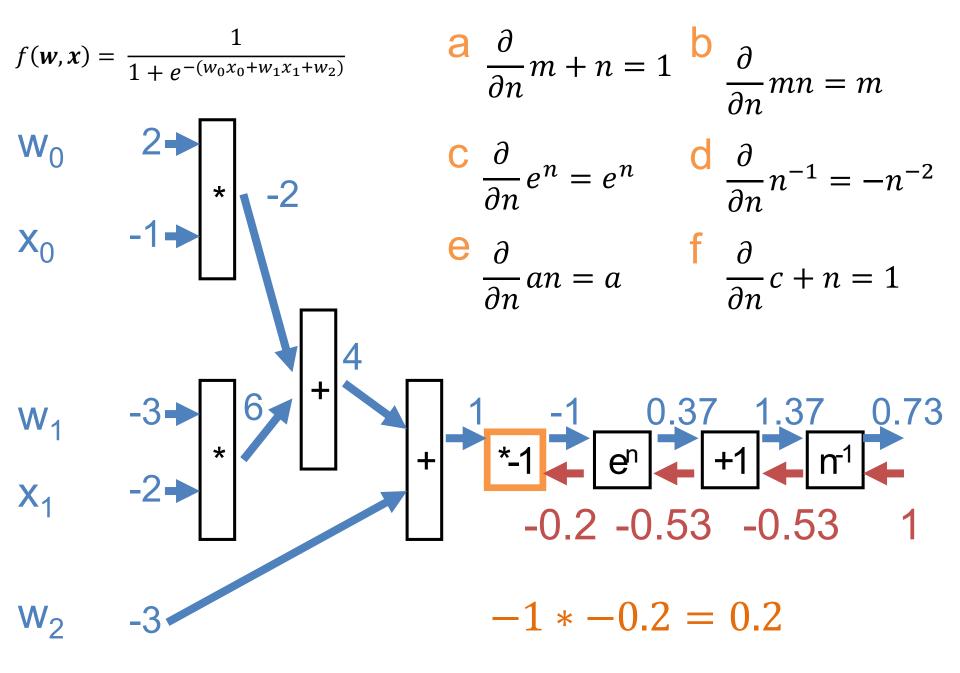


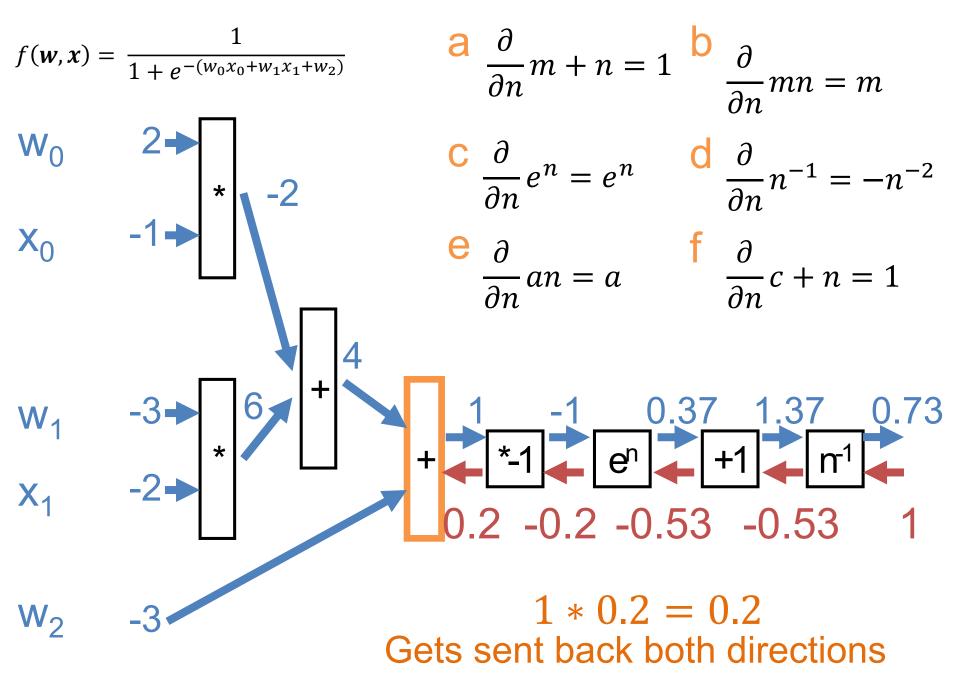


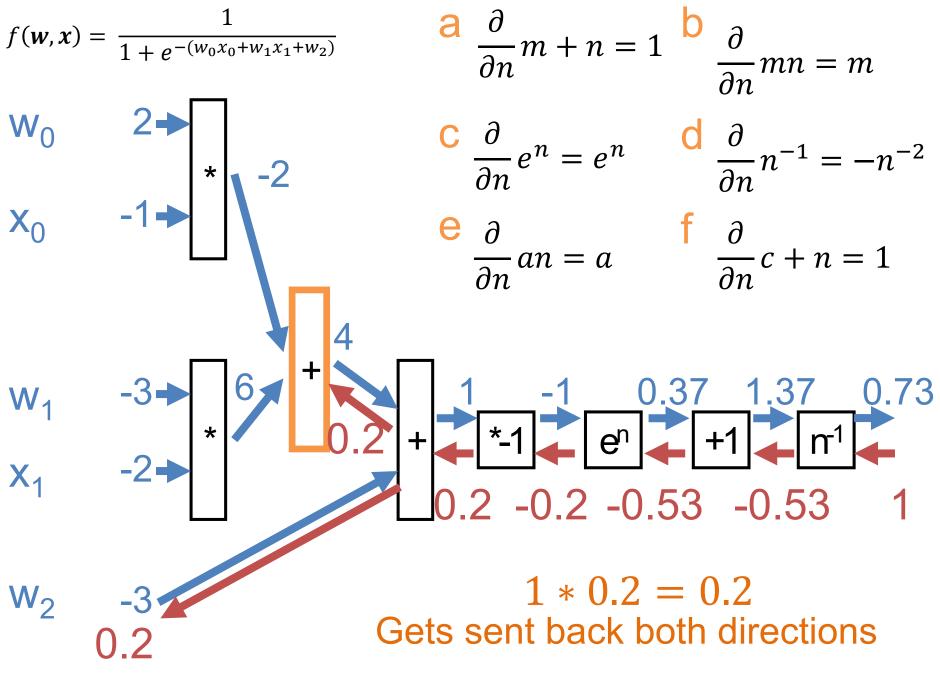


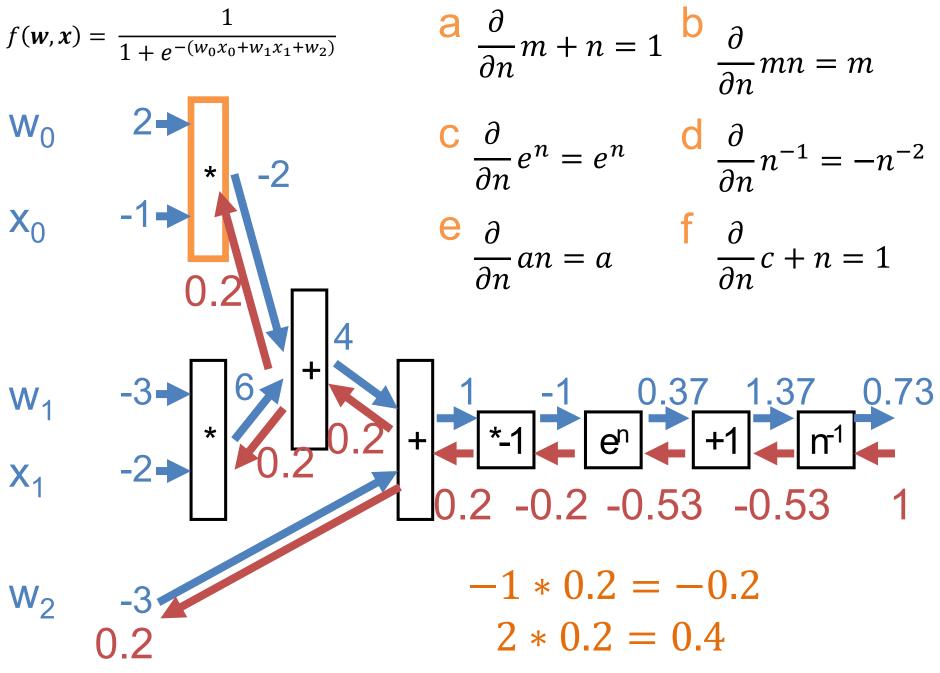


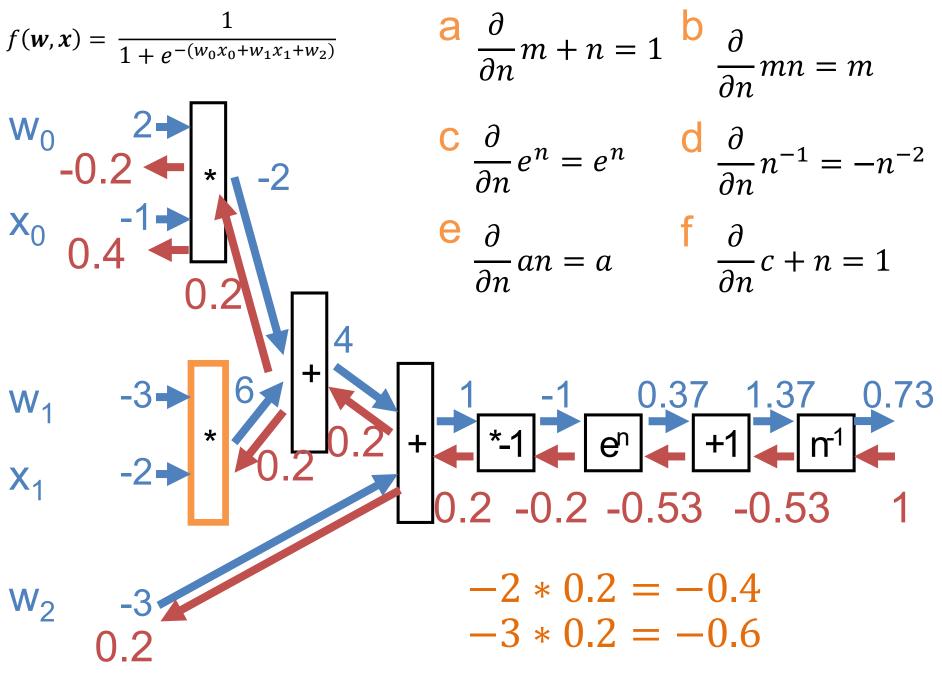


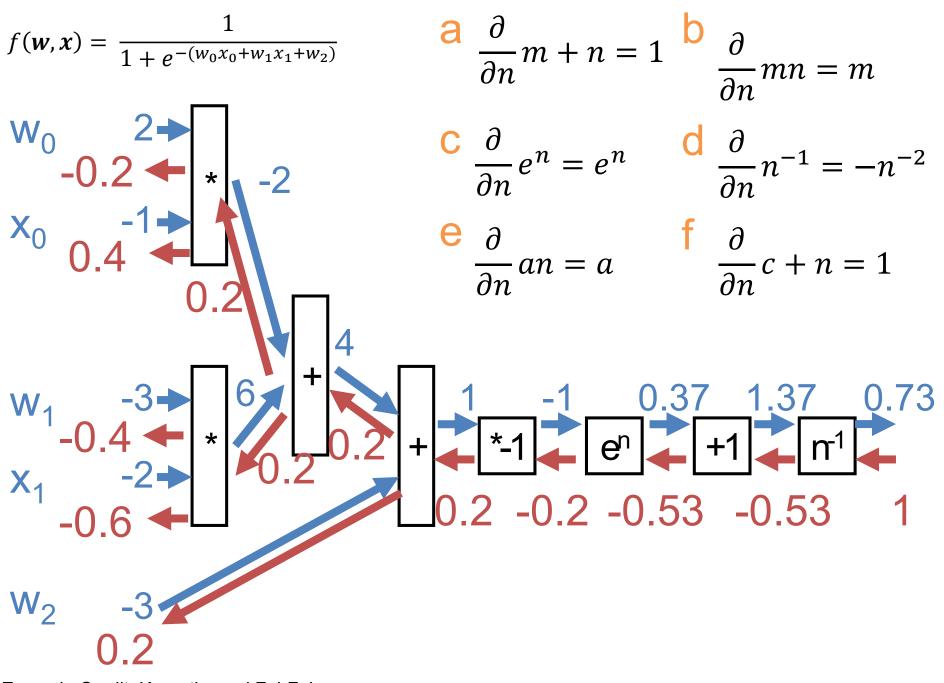


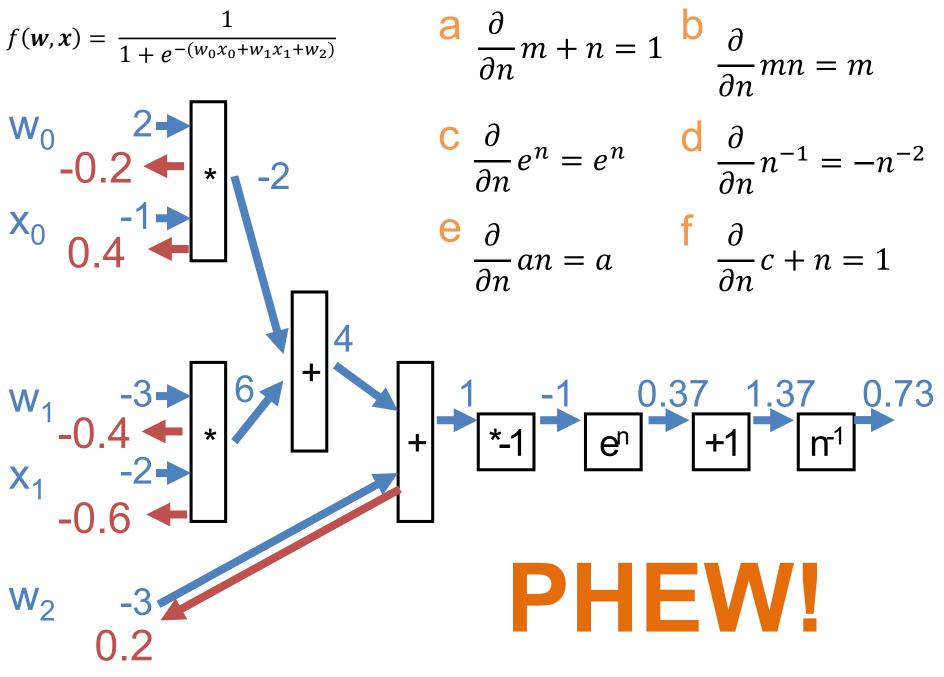








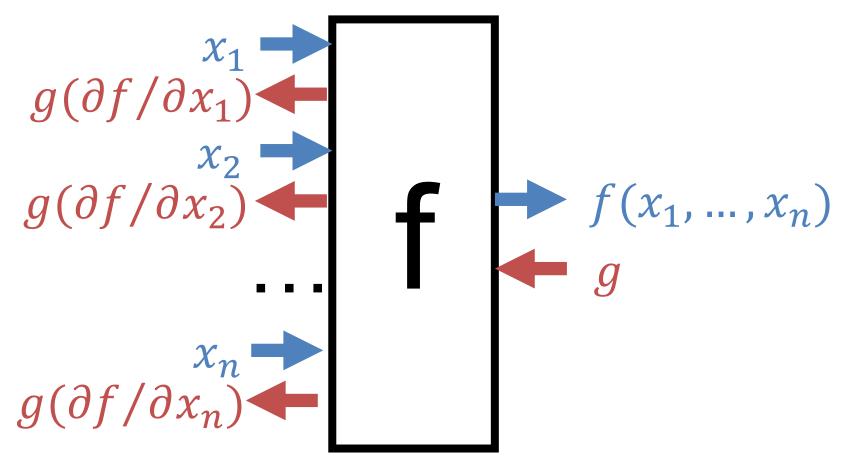




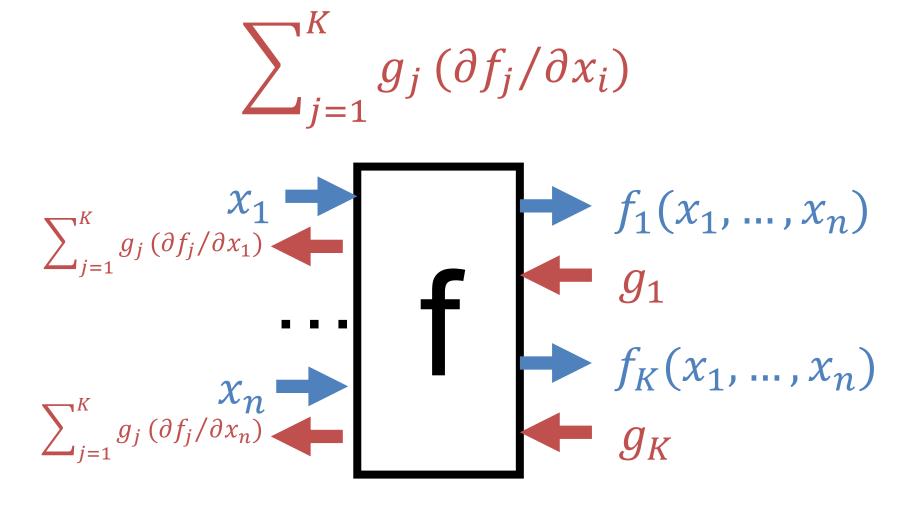
Example Credit: Karpathy and Fei-Fei

Summary

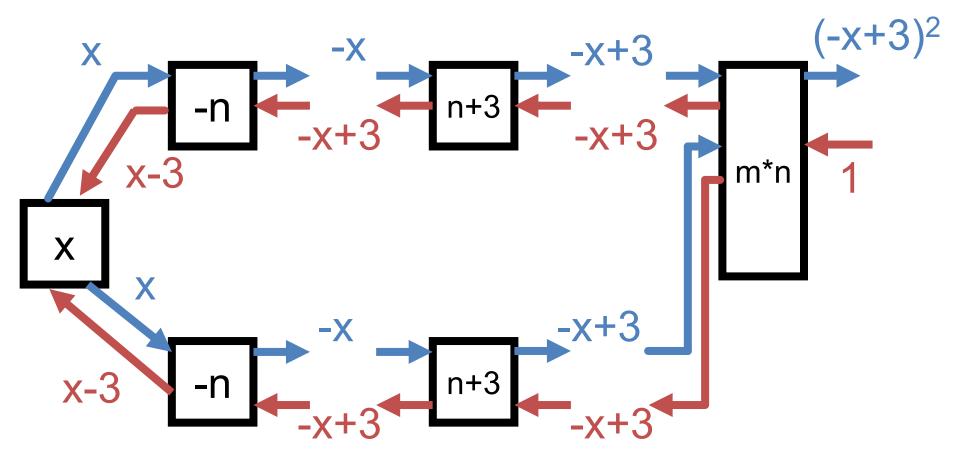
Each block computes backwards (g) * local gradient (df/dx_i) at the evaluation point



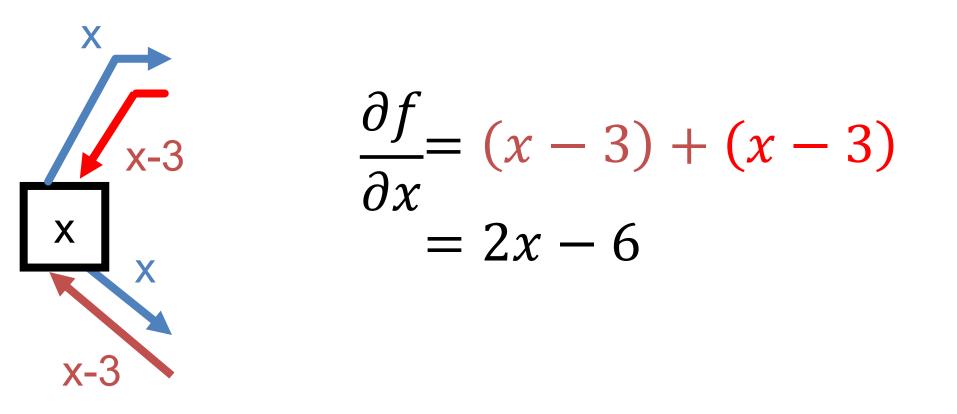
Multiple Outputs Flowing Back Gradients from different backwards sum up

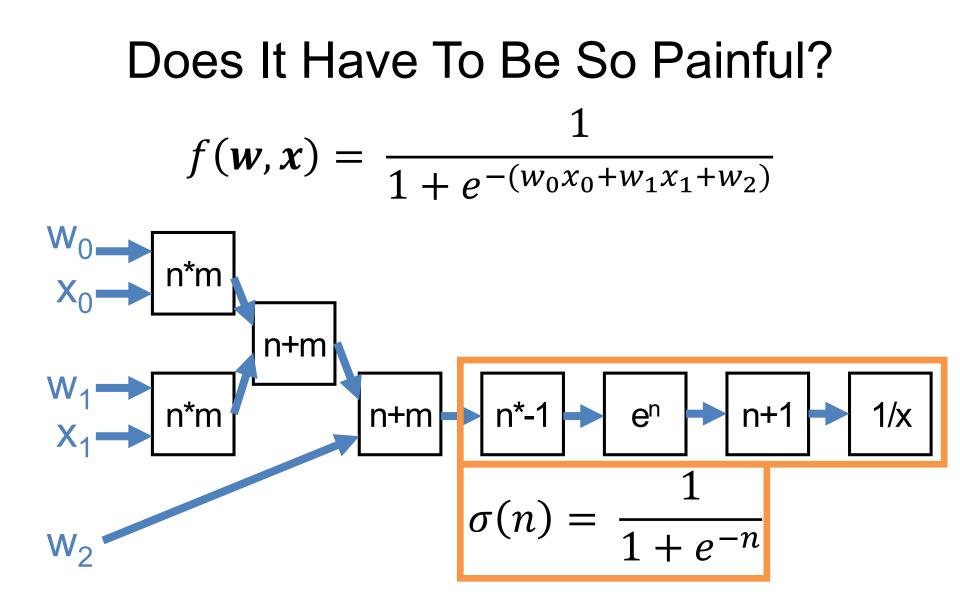


Multiple Outputs Flowing Back $f(x) = (-x + 3)^2$



Multiple Outputs Flowing Back $f(x) = (-x + 3)^2$





Example Credit: Karpathy and Fei-Fei

Does It Have To Be So Painful? $\sigma(n) = \frac{1}{1 + e^{-n}}$ $\frac{\partial}{\partial n}\sigma(n) = \frac{e^{-n}}{(1+e^{-n})^2} = \begin{pmatrix} 1+e^{-n}-1\\ 1+e^{-n} \end{pmatrix} \begin{pmatrix} 1\\ 1+e^{-n}\\ 1+e^{-n} \end{pmatrix}$ $\frac{1+e^{-n}}{1+e^{-n}} - \frac{1}{1+e^{-n}} = 1 - \sigma(n) \quad \sigma(n)$ $= (1 - \sigma(n))\sigma(n)$

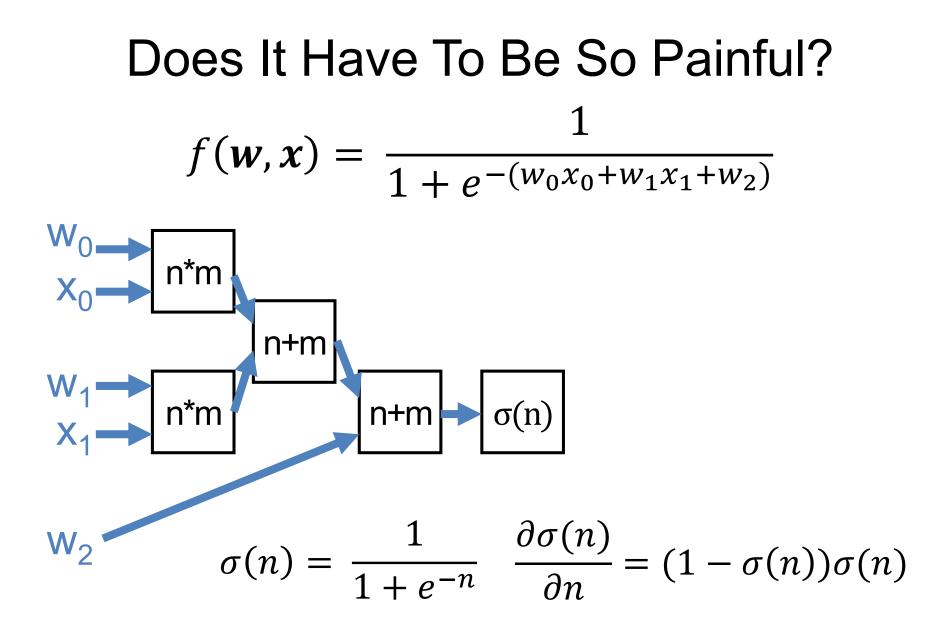
For the curious

Line
$$\frac{\partial}{\partial n}\sigma(n) = \left(\frac{-1}{(1+e^{-n})^2}\right) * 1 * e^{-n} * -1$$

1 to 2: $\frac{\partial}{\partial n}\sigma(n) = \left(\frac{-1}{(1+e^{-n})^2}\right) * 1 * e^{-n} * -1$

Example Credit: Karpathy and Fei-Fei

Chain rule: d/dx (1/x)*d/dx (1+x)* d/dx (e*x)*d/dx (-x)

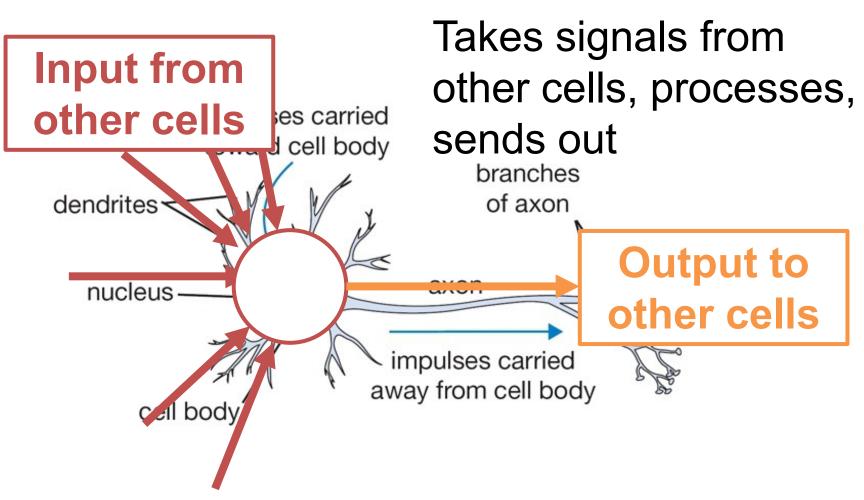


Example Credit: Karpathy and Fei-Fei

Does It Have To Be So Painful?

- Can compute for any function
- Pick your functions carefully: existing code is usually structured into sensible blocks

Building Blocks



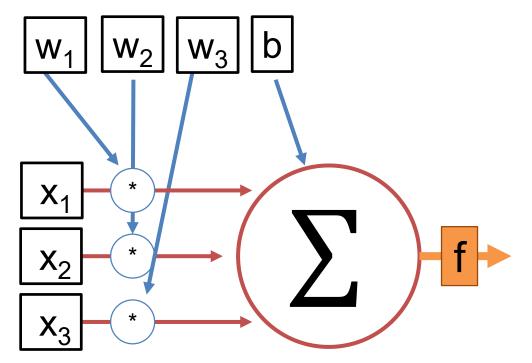
Neuron diagram credit: Karpathy and Fei-Fei

Artificial Neuron Weighted average of other neuron outputs passed through an activation function **Activation** $f\left(\sum w_i x_i + b\right)$ $w_i x_i + b$

Artificial Neuron

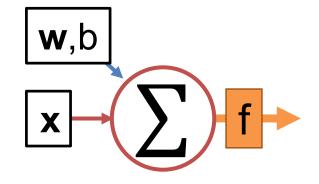
Can differentiate whole thing e.g., $dNeuron/dx_1$.

What can we now do?

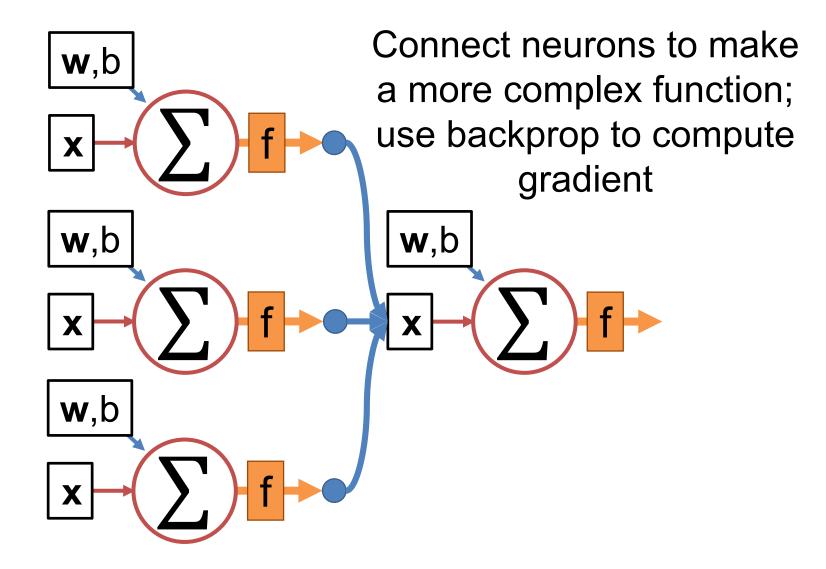


Artificial Neuron

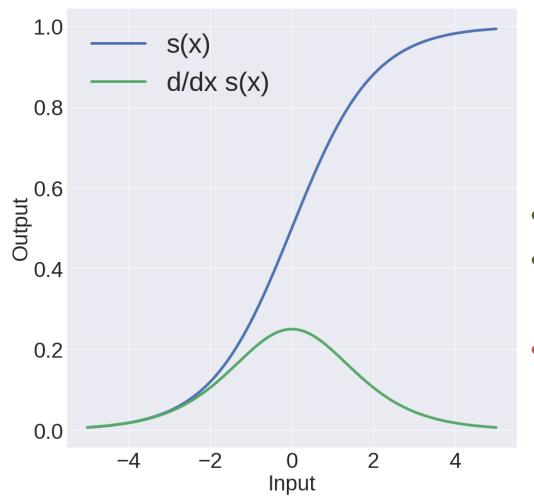
Each artificial neuron is a linear model + an **activation function** f Can find **w**, b that minimizes a loss function with gradient descent



Artificial Neurons



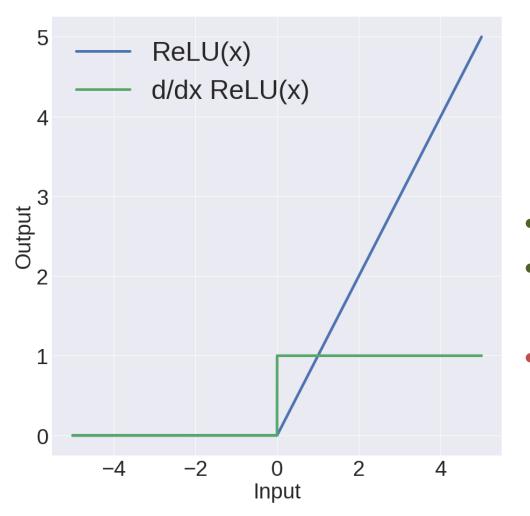
What's The Activation Function



Sigmoid $s(x) = \frac{1}{1 + e^{-x}}$

- Nice interpretation
- Squashes things to (0,1)
- Gradients are near zero if neuron is high/low

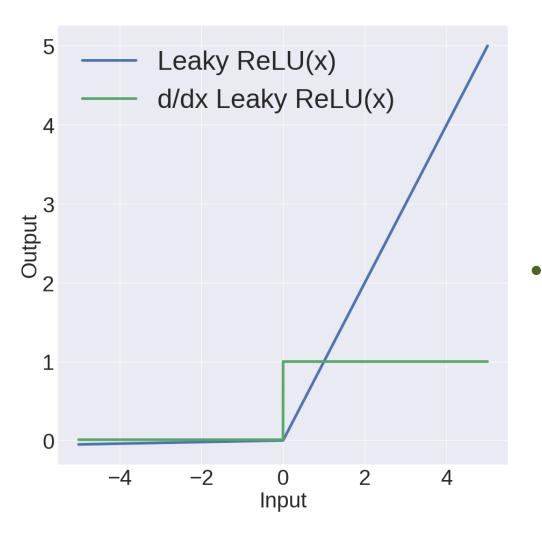
What's The Activation Function



ReLU (<u>Re</u>ctifying <u>L</u>inear <u>U</u>nit) max(0, x)

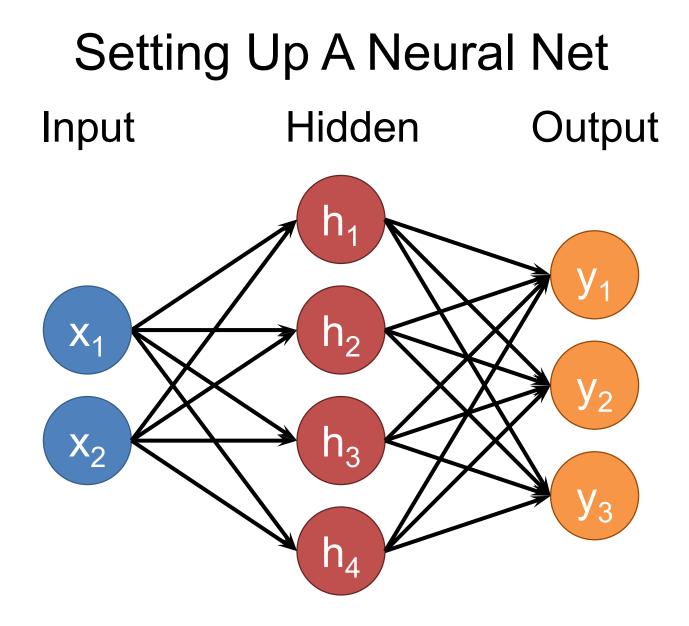
- Constant gradient
- Converges ~6x
 faster
- If neuron negative, zero gradient. Be careful!

What's The Activation Function

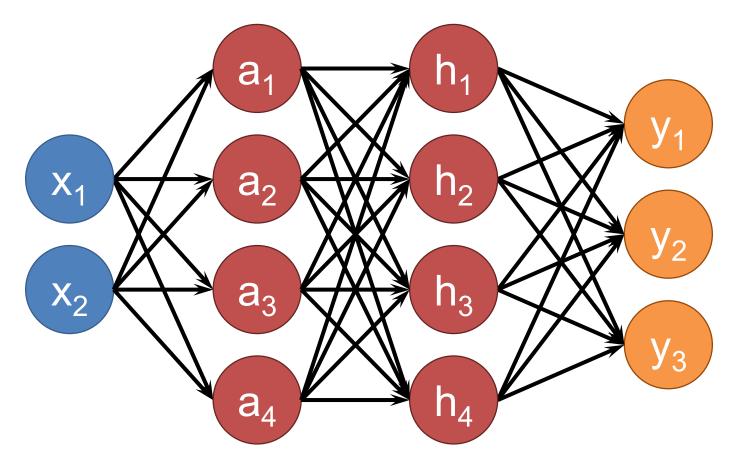


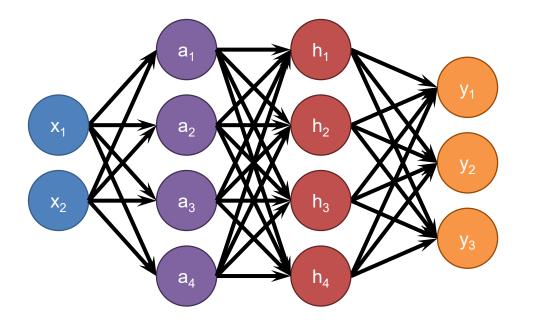
Leaky ReLU (<u>Rectifying Linear Unit</u>) $x : x \ge 0$ 0.01x : x < 0ReLU, but allows

some small gradient for negative vales

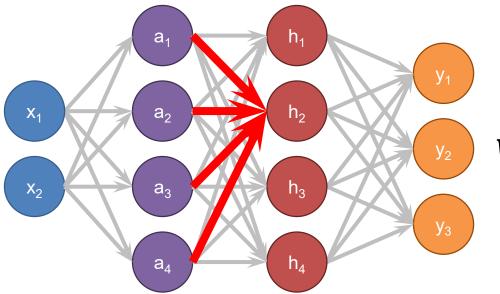


Setting Up A Neural Net Input Hidden 1 Hidden 2 Output





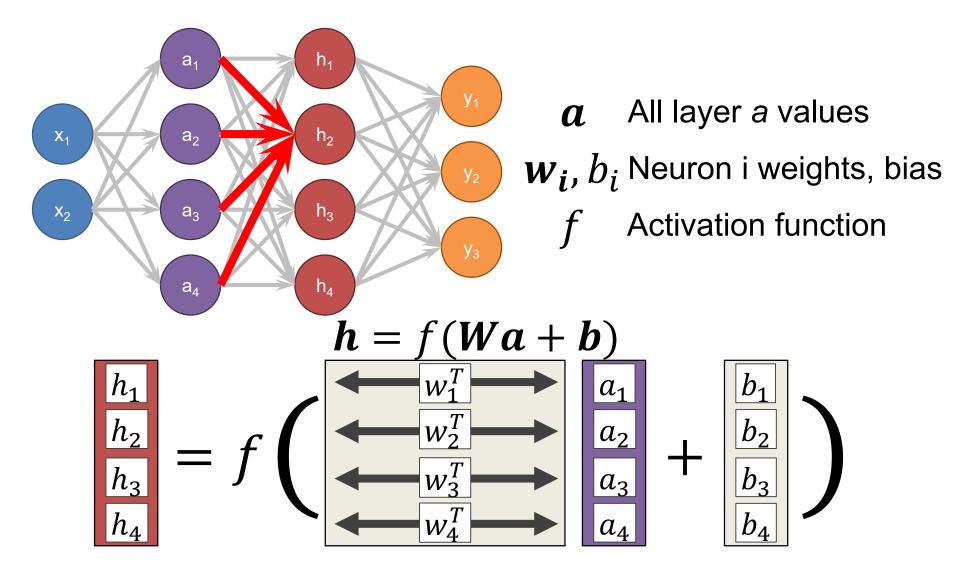
Each neuron connects to each neuron in the previous layer



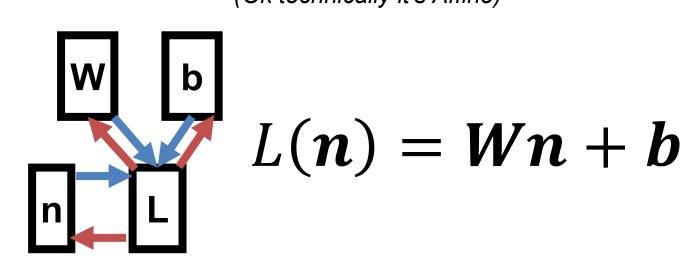
a All layer a values w_i, b_i Neuron i weights, bias f Activation function

$h_i = f(\boldsymbol{w}_i^T \boldsymbol{a} + b_i)$

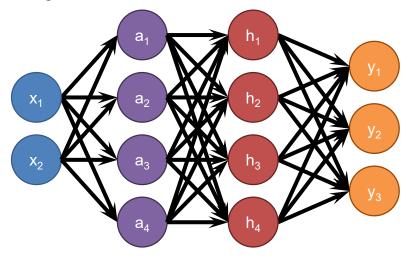
How do we do all the neurons all at once?

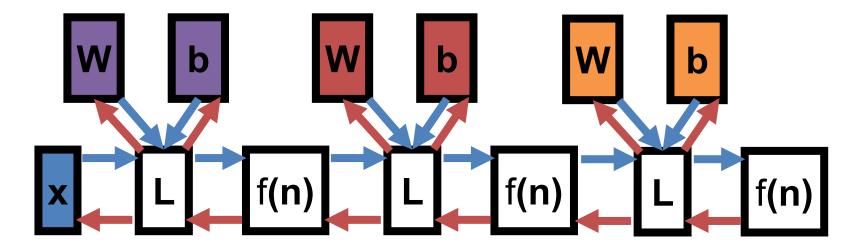


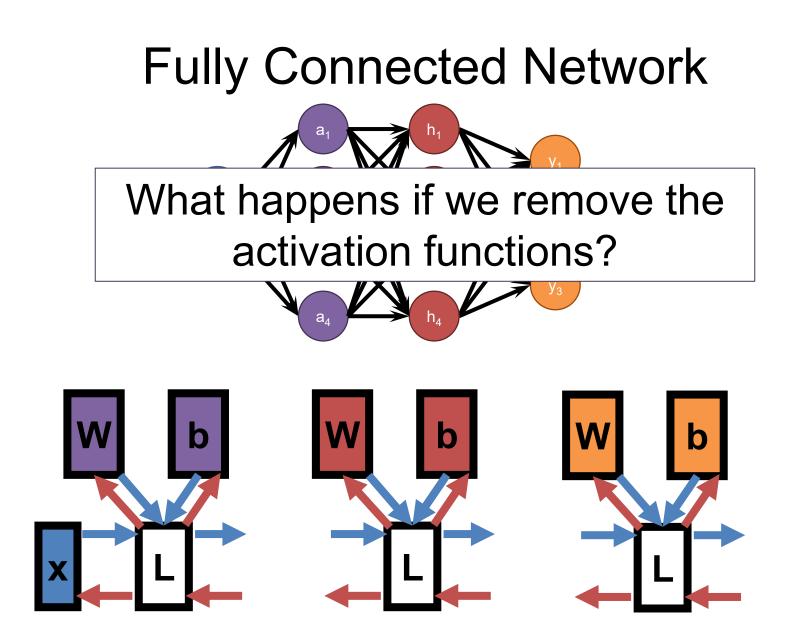
Define New Block: "Linear Layer" (Ok technically it's Affine)



Can get gradient with respect to all the inputs (do on your own; useful trick: have to be able to do matrix multiply)







Demo Time

https://cs.stanford.edu/people/karpathy/con vnetjs/demo/classify2d.html