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Next Few Classes

• Machine Learning (ML) Crash Course

• I can’t cover everything

• If you can, take a ML course or learn online

• ML really won’t solve all problems and is 
incredibly dangerous if misused

• But ML is a powerful tool and not going away



Terminology

• ML is incredibly messy terminology-wise. 

• Most things have at lots of names. 

• I will try to write down multiple of them so if you 
see it later you’ll know what it is.



Pointers

Useful book (Free too!):

The Elements of Statistical Learning

Hastie, Tibshirani, Friedman 

https://web.stanford.edu/~hastie/ElemStatLearn/

Useful set of data:

UCI ML Repository

https://archive.ics.uci.edu/ml/datasets.html

A lot of important and hard lessons summarized:

https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf

https://web.stanford.edu/~hastie/ElemStatLearn/
https://archive.ics.uci.edu/ml/datasets.html
https://homes.cs.washington.edu/~pedrod/papers/cacm12.pdf


Machine Learning (ML)

• Goal: make “sense” of data

• Overly simplified version: transform vector x
into vector y=T(x) that’s somehow better

• Potentially you fit T using pairs of datapoints 
and desired outputs (xi,yi), or just using a set of 
datapoints (xi)

• Always are trying to find some transformation 
that minimizes or maximizes some objective 
function or goal.



Machine Learning

Input: x

Feature vector/Data point:

Vector representation of 

datapoint. Each dimension or 

“feature” represents some 

aspect of the data.

Output: y

Label / target:

Fixed length vector of desired 

output. Each dimension 

represents some aspect of the 

output data

Supervised: we are given y.

Unsupervised: we are not, and make our own ys.



Example – Health

Input: x in RN Output: y

Blood pressure

Heart Rate

Glucose Level

P(Has Diabetes)

P(No Diabetes)f(Wx)

50

60

…
0.2

Intuitive objective function: Want correct 

category to be likely with our model. 



Example – Health

Input: x in RN Output: y

Blood pressure

Heart Rate

Glucose Level

AgeWx

50

60

…
0.2

Intuitive objective function: Want our 

prediction of age to be “close” to true age.



Example – Health

Output: discrete y

(unsupervised)

Blood pressure

Heart Rate

Glucose Level

0/1

0/1

User group 1

User group 2

…
0/1 User group K

Input: x in RN

f(x)

50

60

…
0.2

Intuitive objective function: Want to find K 

groups that explain the data we see.



Example – Health

Output: continuous y 

(discovered)

50

60

…
0.2

Blood pressure

Heart Rate

Glucose Level

0.2

1.3

User dimension 1

User dimension 2

…
0.7 User dimension K

Input: x in RN

Wx

Intuitive objective function: Want to K dimensions 

(often two) that are easier to understand but 

capture the variance of the data.



Example – Credit Card Fraud

Output: y

0

$12

…
1

Bought before

Amount

Near Billing 

Address

P(Fraud)

P(No Fraud)

Input: x in RN

f(Wx)

Intuitive objective function: Want correct 

category to be likely with our model. 



Example – Computer Vision

Output: y

…

Pixel at (0,0)

Pixel at (0,1)

Pixel at (H-1,W-1)

P(Cat)

P(Dog)

P(Bird)

…

Input: x in RN

f(Wx)

Intuitive objective function: Want correct 

category to be likely with our model. 



Example – Computer Vision

Output: y

…

Count of 

visual cluster 1

Count of 

visual cluster 2

Count of 

visual cluster K

Input: x in RN

P(Cat)

P(Dog)

P(Bird)

…

f(Wx)

Intuitive objective function: Want correct 

category to be likely with our model. 



Example – Computer Vision

Output: y

…

f1(Image)

f2(Image)

fN(Image)

Input: x in RN

P(Cat)

P(Dog)

P(Bird)

…

f(Wx)

Intuitive objective function: Want correct 

category to be likely with our model. 



Abstractions

• Throughout, assume we’ve converted data into 
a fixed-length feature vector. There are well-
designed ways for doing this.

• But remember it could be big!
• Image (e.g., 224x224x3): 151K dimensions

• Patch (e.g., 32x32x3) in image: 3072 dimensions



ML Problems in Vision

Image credit: Wikipedia



ML Problem Examples in Vision

Slide adapted from J. Hays

Supervised

(Data+Labels)

Unsupervised

(Just Data)

Discrete

Output

Continuous

Output

Classification/

Categorization



ML Problem Examples in Vision

Categorization/Classification

Binning into K mutually-exclusive categories 

P(Cat)

P(Dog)

P(Bird)

0.9

0.1

…
0.0

Image credit: Wikipedia



ML Problem Examples in Vision

Slide adapted from J. Hays

Supervised

(Data+Labels)

Unsupervised

(Just Data)

Discrete

Output

Continuous

Output
Regression

Classification/

Categorization



ML Problem Examples in Vision

Cat weight 3.6

kg

Regression

Estimating continuous variable(s)

Image credit: Wikipedia



ML Problem Examples in Vision

Slide adapted from J. Hays

Supervised

(Data+Labels)

Unsupervised

(Just Data)

Discrete

Output

Continuous

Output

Classification/

Categorization

Regression

Clustering



ML Problem Examples in Vision

Clustering

Given a set of cats, automatically discover 

clusters or categories.

Image credit: Wikipedia, cattime.com

1 2 3

4 5 6



ML Problem Examples in Vision

Slide adapted from J. Hays

Supervised

(Data+Labels)

Unsupervised

(Just Data)

Discrete

Output

Continuous

Output

Classification/

Categorization

Regression

Clustering

Dimensionality

Reduction



ML Problem Examples in Vision

Dimensionality Reduction

Find dimensions that best explain

the whole image/input 

Cat size in 

image

Location of 

cat in image

Image credit: Wikipedia

For ordinary images, this is currently a totally hopeless task. For 

certain images (e.g., faces, this works reasonably well) 



Practical Example

• ML has a tendency to be mysterious

• Let’s start with:
• A model you learned in middle/high school (a line)

• Least-squares

• One thing to remember:
• N eqns, <N vars = overdetermined (will have errors)

• N eqns, N vars = exact solution 

• N eqns, >N vars = underdetermined (infinite solns)



Example – Least Squares

Let’s make the world’s worst weather model

Data: (x1,y1), (x2,y2), 

…, (xk,yk)

Model: (m,b) yi=mxi+b

Or (w) yi = wTxi

Objective function:

(yi - wTxi)
2



World’s Worst Weather Model

Given latitude (distance above 

equator), predict temperature 

by fitting a line 

Mexico City

Austin, TX

Ann Arbor

Washington, DC

Panama City

City

67

62

33

38

83

Temp (F) 

19

30

42

39

9

Latitude (°)

Latitude

T
e
m

p



Example – Least Squares

෍

𝑖=1

𝑘

𝑦𝑖 −𝒘𝑇𝒙𝒊
2 𝒚 − 𝑿𝒘 2

2

𝒚 =

𝑦1
⋮
𝑦𝑘

Output:

Temperature

𝑿 =
𝑥1 1
⋮ ⋮
𝑥𝑘 1

Inputs:

Latitude, 1

𝒘 =
𝑚
𝑏

Model/Weights:

Latitude, “Bias”



Example – Least Squares

෍

𝑖=1

𝑘

𝑦𝑖 −𝒘𝑇𝒙𝒊
2 𝒚 − 𝑿𝒘 2

2

Output:

Temperature

Inputs:

Latitude, 1

𝒘 =
𝑚
𝑏

Model/Weights:

Latitude, “Bias”

𝑿 =
42 1
⋮ ⋮
9 1

𝒚 =
33
⋮
83

Intuitively why do we add 

a one to the inputs? 



Example – Least Squares

Loss function/objective: evaluates correctness.

Here: Squared L2 norm / Sum of Squared Errors

Training/Learning/Fitting: try to find model that 

optimizes/minimizes an objective / loss function

argmin
𝒘

෍

𝑖=1

𝑛

𝒘𝑇𝒙𝒊 − 𝑦𝑖
2

argmin
𝒘

𝒚 − 𝑿𝒘 2
2 or

Training (xi,yi):

Optimal w* is 𝒘∗ = 𝑿𝑇𝑿 −1𝑿𝑇𝒚



Example – Least Squares

𝒘𝑇𝒙 = 𝑤1𝑥1 +⋯+𝑤𝐹𝑥𝐹Inference (x):

argmin
𝒘

෍

𝑖=1

𝑛

𝒘𝑇𝒙𝒊 − 𝑦𝑖
2

argmin
𝒘

𝒚 − 𝑿𝒘 2
2 or

Training (xi,yi):

Testing/Inference: Given a new output, 

what’s the prediction?



Least Squares: Learning

Temp = 

-1.47*Lat + 97Mexico City

Austin, TX

Ann Arbor

Washington, DC

Panama City

City

67

62

33

38

83

Temp

19

30

42

39

9

Latitude

ModelData

𝑿5𝑥2 =

42
39
30
19
9

1
1
1
1
1

𝒚5𝑥1 =

33
38
62
67
83

𝑿𝑇𝑿 −1𝑿𝑇𝒚

𝑤2𝑥1 =
−1.47
97



Let’s Predict The Weather

EECS 442

Mexico City

Austin, TX

Ann Arbor

Washington, DC

Panama City

City

67

62

33

38

83

Temp

19

30

42

39

9

Latitude

69.1

52.9

35.3

39.7

83.8

Temp

2.1

10.9

2.3

1.7

0.8

Error



Is This a Minimum Viable Product?

Won’t do so well in the Australian market…

Pittsburgh: 

Temp = -1.47*40 + 97 = 38 

Berkeley: 

Temp = -1.47*38 + 97 = 41 

Sydney: 

Temp = -1.47*-33 + 97 = 146

EECS 442

Actual Pittsburgh: 

45 

Actual Berkeley: 

53

Actual Sydney: 

74



Where Can This Go Wrong?



Where Can This Go Wrong?

ModelData

Ann Arbor

Washington, DC

City

33

38

Temp

42

39

Latitude

How well can we predict Ann Arbor and DC 

and why?

Temp = 

-1.66*Lat + 103



Always Need Separated Testing

Sydney: 

Temp = -1.47*-33 + 97 = 146

Model may only work under some conditions (e.g., 

trained on northern hemisphere).  

Model might be fit data too precisely “overfitting”

Remember: #datapoints = #params = perfect fit



Training and Testing

“It’s tough to make predictions, especially about the future”

-Yogi Berra

Nearly any model can predict data it’s seen. If your model 

can’t accurately interpret “unseen” data, it’s probably 

useless. We have no clue whether it has just memorized.

Training Test

Fit model parameters on training set; 

evaluate on entirely unseen test set. 



Let’s Improve Things

Mexico City

Austin, TX

Ann Arbor

Washington, DC

Panama City

City

Name

19

30

42

39

9

Latitude

(deg) 

74

95

83

88

93

Avg July 

High (F)

0

0.6

58

15

0

Avg 

Snowfall 

If one feature does ok, what about more features!?

67

62

33

38

83

Temp

(F)

𝑿5𝑥4 𝒚5𝑥14 features + a feature 

of 1s for intercept/bias



Let’s Improve Things

All the math works out!

In general called linear regression

New EECS 442 Weather Rule:

w1*latitude + w2*(avg July high) + 

w3*(avg snowfall) + w4*1

𝒘∗ = 𝑿𝑇𝑿 −1𝑿𝑇𝒚

𝒘4𝑥1

Model

𝑿5𝑥4 𝒚5𝑥1

Data



Let’s Improve Things More

Mexico City

Austin, TX

Ann Arbor

Washington, DC

Panama City

City

Name

67

62

33

38

83

Temp

(F)

19

30

42

39

9

Latitude

(deg) 

4

2

100

3

1

% Letter 

M

7200

489

840

409

7

Elevation 

(ft)

74

95

83

88

93

Avg July 

High (F)

45

45

45

45

45

Day of 

Year

0

0.6

58

15

0

Avg 

Snowfall 

If one feature does ok, what about LOTS of features!?

𝒚5𝑥16 features + a feature 

of 1s for intercept/bias
𝑿5𝑥7



Let’s Improve Things More

𝑿5𝑥7 𝒚5𝑥1

Data

𝒘7𝑥1

Model𝒘∗ = 𝑿𝑇𝑿 −1𝑿𝑇𝒚

𝒘∗ = 𝑿𝑻𝑿
−1
𝑿𝑇𝒚

XTX is a 7x7 matrix but is rank deficient (rank 5) and has 

no inverse. There are an infinite number of solutions. 

Exercise for the mathematically-inclined folks: derive what the space of solutions looks like.

Have to express some preference for which of the 

infinite solutions we want.



The Fix – Regularized Least Squares

Add regularization to objective that prefers some solutions:

argmin
𝒘

𝒚 − 𝑿𝒘 2
2

LossBefore:

After: argmin
𝒘

𝒚 − 𝑿𝒘 2
2 + 𝜆 𝒘 2

2

Loss RegularizationTrade-off

Want model “smaller”: pay a penalty for w with big norm

Intuitive Objective: accurate model (low loss) but not too 

complex (low regularization). λ controls how much of each.



The Fix – Regularized Least Squares

Take 
𝜕

𝜕𝒘
, set to 0, solve 

𝒘∗ = 𝑿𝑻𝑿 + 𝝀𝑰
−1
𝑿𝑇𝒚

XTX+λI is full-rank (and thus invertible) for λ>0

Called lots of things: regularized least-squares, Tikhonov regularization (after 

Andrey Tikhonov), ridge regression, Bayesian linear regression with a multivariate 

normal prior.

argmin
𝒘

𝒚 − 𝑿𝒘 2
2 + 𝜆 𝒘 2

2

Loss RegularizationTrade-off

Objective:



The Fix – Regularized Least Squares

argmin
𝒘

𝒚 − 𝑿𝒘 2
2 + 𝜆 𝒘 2

2

Loss RegularizationTrade-off

What happens (and why) if:

• λ=0

• λ=∞

∞0

Least-squares w=0Something sensible?

?

Objective:



Training and Testing

Fit model parameters on training set; 

evaluate on entirely unseen test set. 

Training Test

How do we pick λ?



Training and Testing

Training TestValidation

Fit model parameters on training set; 

find hyperparameters by testing on validation set;

evaluate on entirely unseen test set.

Use these data 

points to fit 

w*=(XTX+ λI )-1XTy

Evaluate on these 

points for different 

λ, pick the best



Classification

Start with simplest example: binary classification

Cat or not cat?

Actually: a feature vector 

representing the image

x1

x2

…
xN



Classification by Least-Squares

Rifkin, Yeo, Poggio. Regularized Least Squares Classification 

(http://cbcl.mit.edu/publications/ps/rlsc.pdf). 2003

Redmon, Divvala, Girshick, Farhadi. You Only Look Once: Unified, Real-Time Object Detection. 

CVPR 2016. 

Treat as regression: xi is image feature; yi is 1 if it’s a 

cat, 0 if it’s not a cat. Minimize least-squares loss.

argmin
𝒘

෍

𝑖=1

𝑛

𝒘𝑇𝒙𝒊 − 𝑦𝑖
2Training (xi,yi):

Inference (x): 𝒘𝑇𝒙 > 𝑡

Unprincipled in theory, but often effective in practice

The reverse (regression via discrete bins) is also common

http://cbcl.mit.edu/publications/ps/rlsc.pdf


Easiest Form of Classification

Just memorize (as in a Python dictionary)

Consider cat/dog/hippo classification.

If this:

cat.

If this:

dog.

If this:

hippo.



Easiest Form of Classification

Hmmm. Not quite the 

same.

Rule: if this, 

then cat

Where does this go wrong?



Easiest Form of Classification

Known Images

Labels

…

𝒙1

𝒙𝑁

Test

Image

𝒙𝑇

𝐷(𝒙𝑁, 𝒙𝑇)

𝐷(𝒙1, 𝒙𝑇)

(1) Compute distance between 

feature vectors (2) find nearest 

(3) use label.

Cat

Dog

Cat!



Nearest Neighbor

“Algorithm”

Training (xi,yi): Memorize training set

Inference (x): bestDist, prediction = Inf, None

for i in range(N):

if dist(xi,x) < bestDist:

bestDist = dist(xi,x)

prediction = yi



Nearest Neighbor

Diagram Credit: Wikipedia

2D Datapoints 

(colors = labels)

2D Predictions 

(colors = labels)



K-Nearest Neighbors

2D Datapoints 

(colors = labels)

2D Predictions 

(colors = labels)

Take top K-closest points, vote

Diagram Credit: Wikipedia



K-Nearest Neighbors

What distance? What value for K?

Training TestValidation

Use these data 

points for lookup

Evaluate on these 

points for different 

k, distances



K-Nearest Neighbors

• No learning going on but usually effective

• Same algorithm for every task

• As number of datapoints → ∞, error rate is 
guaranteed to be at most 2x worse than 
optimal you could do on data



Linear Models

Example Setup: 3 classes

𝒘0, 𝒘1, 𝒘2Model – one weight per class:
big if cat𝒘0

𝑇𝒙

big if dog𝒘1
𝑇𝒙

big if hippo𝒘2
𝑇𝒙

𝑾𝟑𝒙𝑭Stack together: where x is in RF



Linear Models

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0

0.0 0.3 0.2 -0.3

1.1

3.2

-1.2

𝑾

56

231

24

2

1

𝒙𝒊

Cat weight vector

Dog weight vector

Hippo weight vector

𝑾𝒙𝒊

-96.8

437.9

61.95

Cat score

Dog score

Hippo score

Diagram by: Karpathy, Fei-Fei

Weight matrix a collection of 

scoring functions, one per class

Prediction is vector 

where jth component is 

“score” for jth class.



Geometric Intuition*

What does a linear classifier look like* in 2D?

Diagram credit: Karpathy & Fei-Fei. 12-point font mini-rant: me

*2D is good for vague intuitions, but ML typically deals with at least dozens if not thousands of dimensions. Your intuitions about 

space and geometry from living in 3D are completely wrong in high dimensions. Never trust people who show you 2D 

diagrams and write “Intuition” in the slide title. See: On the Surprising Behavior of Distance Metrics in High Dimensional Space. 

Charu, Hinneburg, Keim. ICDT 2001



Visual Intuition

Slide credit: Karpathy & Fei-Fei

• Turn each image 

into feature by 

unrolling all pixels

• Fit 10 linear 

models

CIFAR 10: 

32x32x3 Images, 10 Classes



Guess The Classifier

Decision rule is wTx. If wi is big, then big 

values of xi are indicative of the class. 

Deer or Plane?

Diagram credit: Karpathy & Fei-Fei



Guess The Classifier

Decision rule is wTx. If wi is big, then big 

values of xi are indicative of the class. 

Ship or Dog?

Diagram credit: Karpathy & Fei-Fei



Interpreting a Linear Classifier

Decision rule is wTx. If wi is big, then big 

values of xi are indicative of the class. 

Diagram credit: Karpathy & Fei-Fei



Objective 1: Multiclass SVM

Inference (x): argmax
k

𝑾𝒙 𝑘

(Take the class whose 

weight vector gives the 

highest score)



Objective 1: Multiclass SVM

argmin
𝑾

𝝀 𝑾 𝟐
𝟐 + ෍

𝑖

𝑛

෍

𝑗 ≠𝑦𝑖

max 0, (𝑾𝒙𝑖 𝑗 − 𝑾𝒙𝒊 𝑦𝑖 +𝑚)

Training (xi,yi):

Regularization

Over all data 

points

For every class 

j that’s NOT the 

correct one (yi)

Pay no penalty if prediction 

for class yi is bigger than j 

by m (“margin”). Otherwise, 

pay proportional to the 

score of the wrong class.

Inference (x,y): argmax
k

𝑾𝒙 𝑘

(Take the class whose 

weight vector gives the 

highest score)



Objective: Multiclass SVM

argmin
𝑾

𝝀 𝑾 𝟐
𝟐 + ෍

𝑖

𝑛

෍

𝑗 ≠𝑦𝑖

max 0, (𝑾𝒙𝑖 𝑗 − 𝑾𝒙𝒊 𝑦𝑖 +𝑚)

How on earth do we optimize:

Hold that thought!



Preliminaries

-0.9

0.4

0.6

Cat score

Dog score

Hippo score

exp(x)

e-0.9

e0.4

e0.6

0.41

1.49

1.82

∑=3.72

Norm

0.11

0.40

0.49

P(cat)

P(dog)

P(hippo)

Converting Scores to “Probability Distribution”

exp (𝑊𝑥 𝑗)

σ𝑘 exp( 𝑊𝑥 𝑘)
Generally P(class j):



Objective 2: Softmax

Inference (x): argmax
k

𝑾𝒙 𝑘

(Take the class whose 

weight vector gives the 

highest score)

exp (𝑊𝑥 𝑗)

σ𝑘 exp( 𝑊𝑥 𝑘)
P(class j):

Why can we skip the exp/sum exp 

thing to make a decision?



Objective 2: Softmax

Inference (x): argmax
k

𝑾𝒙 𝑘

(Take the class whose 

weight vector gives the 

highest score)

Training (xi,yi):

argmin
𝑾

𝝀 𝑾 𝟐
𝟐 + ෍

𝑖

𝑛

− log
exp( 𝑊𝑥 𝑦𝑖)

σ𝑘 exp( 𝑊𝑥 𝑘))

Regularization

Over all data 

points

P(correct class)

Pay penalty for negative log-

likelihood of correct class



Objective 2: Softmax

P(correct) = 1:

No penalty!

P(correct) = 0.9:

0.11 penalty

P(correct) = 0.5:

0.11 penalty

P(correct) = 0.05:

3.0 penalty



Next Class

• How do we optimize more complex stuff?

• A bit more ML


