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Regularized Least Squares

Add regularization to objective that prefers some solutions:

argmin
𝒘

𝒚 − 𝑿𝒘 2
2

LossBefore:

After: argmin
𝒘

𝒚 − 𝑿𝒘 2
2 + 𝜆 𝒘 2

2

Loss RegularizationTrade-off

Want model “smaller”: pay a penalty for w with big norm

Intuitive Objective: accurate model (low loss) but not too 

complex (low regularization). λ controls how much of each.



Nearest Neighbors

Known Images

Labels

…

𝒙1

𝒙𝑁

Test

Image

𝒙𝑇

𝐷(𝒙𝑁, 𝒙𝑇)

𝐷(𝒙1, 𝒙𝑇)

(1) Compute distance between 

feature vectors (2) find nearest 

(3) use label.

Cat

Dog

Cat!



Picking Parameters

What distance? What value for k / λ?

Training TestValidation

Use these data 

points for lookup

Evaluate on these 

points for different 

k, λ, distances



Linear Models

Example Setup: 3 classes

𝒘0, 𝒘1, 𝒘2Model – one weight per class:
big if cat𝒘0

𝑇𝒙

big if dog𝒘1
𝑇𝒙

big if hippo𝒘2
𝑇𝒙

𝑾𝟑𝒙𝑭Stack together: where x is in RF

Want: 



Linear Models

0.2 -0.5 0.1 2.0

1.5 1.3 2.1 0.0
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𝑾
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231
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1

𝒙𝒊

Cat weight vector

Dog weight vector

Hippo weight vector

𝑾𝒙𝒊

-96.8

437.9

61.95

Cat score

Dog score

Hippo score

Diagram by: Karpathy, Fei-Fei

Weight matrix a collection of 

scoring functions, one per class

Prediction is vector 

where jth component is 

“score” for jth class.



Objective 1: Multiclass SVM*

argmin
𝑾

𝝀 𝑾 𝟐
𝟐 + ෍

𝑖=1

𝑛

෍

𝑗 ≠𝑦𝑖

max 0, (𝑾𝒙𝑖 𝑗 − 𝑾𝒙𝒊 𝑦𝑖)

Training (xi,yi):

Regularization

Over all data 

points

For every class 

j that’s NOT the 

correct one (yi)

Pay no penalty if prediction 

for class yi is bigger than j. 

Otherwise, pay proportional 

to the score of the wrong 

class.

Inference (x,y): argmax
k

𝑾𝒙 𝑘

(Take the class whose 

weight vector gives the 

highest score)



Objective 1: Multiclass SVM

argmin
𝑾

𝝀 𝑾 𝟐
𝟐 + ෍

𝑖=1

𝑛

෍

𝑗 ≠𝑦𝑖

max 0, (𝑾𝒙𝑖 𝑗 − 𝑾𝒙𝒊 𝑦𝑖 +𝑚)

Training (xi,yi):

Regularization

Over all data 

points

For every class 

j that’s NOT the 

correct one (yi)

Pay no penalty if prediction 

for class yi is bigger than j 

by m (“margin”). Otherwise, 

pay proportional to the 

score of the wrong class.

Inference (x,y): argmax
k

𝑾𝒙 𝑘

(Take the class whose 

weight vector gives the 

highest score)



Objective 1: 

Called: Support Vector Machine

Lots of great theory as to why this is a 

sensible thing to do. See

Useful book (Free too!):

The Elements of Statistical Learning

Hastie, Tibshirani, Friedman 

https://web.stanford.edu/~hastie/ElemStatLearn/

https://web.stanford.edu/~hastie/ElemStatLearn/


Objective 2: Making Probabilities

-0.9

0.4

0.6

Cat score

Dog score

Hippo score

exp(x)

e-0.9

e0.4

e0.6

0.41

1.49

1.82

∑=3.72

Norm

0.11

0.40

0.49

P(cat)

P(dog)

P(hippo)

Converting Scores to “Probability Distribution”

exp (𝑊𝑥 𝑗)

σ𝑘 exp( 𝑊𝑥 𝑘)
Generally P(class j):

Inspired by: Karpathy, Fei-Fei

Called softmax function



Objective 2: Softmax

Inference (x): argmax
k

𝑾𝒙 𝑘

(Take the class whose 

weight vector gives the 

highest score)

exp (𝑊𝑥 𝑗)

σ𝑘 exp( 𝑊𝑥 𝑘)
P(class j):

Why can we skip the exp/sum exp 

thing to make a decision?



Objective 2: Softmax

Inference (x): argmax
k

𝑾𝒙 𝑘

(Take the class whose 

weight vector gives the 

highest score)

Training (xi,yi):

argmin
𝑾

𝝀 𝑾 𝟐
𝟐 + ෍

𝑖=1

𝑛

− log
exp( 𝑊𝑥 𝑦𝑖)

σ𝑘 exp( 𝑊𝑥 𝑘))

Regularization

Over all data 

points

P(correct class)

Pay penalty for not making 

correct class likely. 

“Negative log-likelihood”



Objective 2: Softmax

P(correct) = 1:

No penalty!

P(correct) = 0.9:

0.11 penalty

P(correct) = 0.5:

0.11 penalty

P(correct) = 0.05:

3.0 penalty



How Do We Optimize Things?

arg min
𝒘∈𝑅𝑁

𝐿(𝒘)Goal: find the w minimizing

some loss function L.

𝐿 𝑾 = 𝝀 𝑾 𝟐
𝟐 + ෍

𝑖=1

𝑛

− log
exp( 𝑊𝑥 𝑦𝑖)

σ𝑘 exp( 𝑊𝑥 𝑘))

𝐿(𝒘)= 𝜆 𝒘 2
2 + ෍

𝑖=1

𝑛

𝑦𝑖 −𝒘𝑻𝒙𝒊
2

𝐿 𝒘 =𝐶 𝒘 2
2 +෍

𝑖=1

𝑛

max 0,1 − 𝑦𝑖𝒘
𝑇𝒙𝒊

Works for lots of 

different Ls:



Sample Function to Optimize

Global minimum

f(x,y) = (x+2y-7)2 + (2x+y-5)2



Sample Function to Optimize

• I’ll switch back and forth between this 2D 
function (called the Booth Function) and other 
more-learning-focused functions

• Beauty of optimization is that it’s all the same in 
principle

• But don’t draw too many conclusions: 2D 
space has qualitative differences from 1000D 
space

See intro of: Dauphin et al. Identifying and attacking the saddle point problem in high-dimensional 

non-convex optimization NIPS 2014 

https://ganguli-gang.stanford.edu/pdf/14.SaddlePoint.NIPS.pdf

https://ganguli-gang.stanford.edu/pdf/14.SaddlePoint.NIPS.pdf


A Caveat

• Each point in the picture is a 

function evaluation

• Here it takes microseconds – so 

we can easily see the answer

• Functions we want to optimize 

may take hours to evaluate



A Caveat

20

-20
-20 20

Model in your head: moving around a 

landscape with a teleportation device

Landscape diagram: Karpathy and Fei-Fei



Option #1A – Grid Search

#systematically try things

best, bestScore = None, Inf

for dim1Value in dim1Values:

….

for dimNValue in dimNValues:

w = [dim1Value, …, dimNValue]

if L(w) < bestScore:

best, bestScore = w, L(w)

return best



Option #1A – Grid Search



Option #1A – Grid Search

Pros:

1. Super simple

2. Only requires being 

able to evaluate model

Cons:

1. Scales horribly to high 

dimensional spaces

Complexity: samplesPerDimnumberOfDims



Option #1B – Random Search

#Do random stuff RANSAC Style

best, bestScore = None, Inf

for iter in range(numIters):

w = random(N,1) #sample

score = 𝐿 𝒘 #evaluate

if score < bestScore:

best, bestScore = w, score

return best



Option #1B – Random Search



Option #1B – Random Search

Pros:

1. Super simple

2. Only requires being 

able to sample model 

and evaluate it

Cons:

1. Slow –throwing darts 

at high dimensional 

dart board

2. Might miss something

Good parameters

All parameters

0 1

ε

P(all correct) = 

εN



When Do You Use Options 1A/1B?

Use these when

• Number of dimensions small, space bounded

• Objective is impossible to analyze (e.g., test 
accuracy if we use this distance function)

Random search is arguably more effective; grid 
search makes it easy to systematically test 
something (people love certainty)



Option 2 – Use The Gradient

Arrows:

gradient



Option 2 – Use The Gradient

Arrows:

gradient

direction

(scaled to unit 

length)



Option 2 – Use The Gradient

argmin
𝒘

𝐿(𝒘)

∇𝒘𝐿 𝒘 =
𝜕𝐿/𝜕𝒙1

⋮
𝜕𝐿/𝜕𝒙𝑁

What’s the geometric 

interpretation of:

Want:

Which is bigger (for small α)?

𝐿 𝒘 𝐿 𝒘 + 𝛼∇𝒘𝐿(𝒘)
≤?

>?



Option 2 – Use The Gradient

Arrows:

gradient 

direction 

(scaled to unit 

length)

𝒙

𝒙 + 𝛼𝛁



Option 2 – Use The Gradient

w0 = initialize() #initialize

for iter in range(numIters):

g = ∇𝒘𝐿 𝒘 #eval gradient

w = w + -stepsize(iter)*g #update w

return w

Method: at each step, move in direction 

of negative gradient



Gradient Descent

Given starting point (blue)

wi+1 = wi + -9.8x10-2 x gradient



Computing the Gradient

How Do You Compute The Gradient?

Numerical Method:

∇𝒘𝐿 𝒘 =

𝜕𝐿(𝑤)

𝜕𝑥1
⋮

𝜕𝐿(𝑤)

𝜕𝑥𝑛

𝜕𝑓(𝑥)

𝜕𝑥
= lim

𝜖→0

𝑓 𝑥 + 𝜖 − 𝑓(𝑥)

𝜖

How do you compute this?

𝑓 𝑥 + 𝜖 − 𝑓 𝑥 − 𝜖

2𝜖

In practice, use:



Computing the Gradient

How Do You Compute The Gradient?

Numerical Method:

∇𝒘𝐿 𝒘 =

𝜕𝐿(𝑤)

𝜕𝑥1
⋮

𝜕𝐿(𝑤)

𝜕𝑥𝑛

How many function 

evaluations per dimension?

𝑓 𝑥 + 𝜖 − 𝑓 𝑥 − 𝜖

2𝜖
Use:



Computing the Gradient

How Do You Compute The Gradient?

∇𝒘𝐿 𝒘 =

𝜕𝐿(𝑤)

𝜕𝑥1
⋮

𝜕𝐿(𝑤)

𝜕𝑥𝑛

Use calculus!

Analytical Method:



Computing the Gradient

𝐿(𝒘)=𝜆 𝒘 2
2 + ෍

𝑖=1

𝑛

𝑦𝑖 −𝒘𝑻𝒙𝒊
2

∇𝒘𝐿(𝒘) = 2𝜆𝒘 +෍

𝑖=1

𝑛

− 2 𝑦𝑖 −𝒘𝑇𝒙𝒊 𝒙𝑖

𝜕

𝜕𝒘

Note: if you look at other derivations, things are written either (y-wTx) or (wTx – y); the 

gradients will differ by a minus.



Interpreting Gradients (1 Sample)
Recall:

w = w + -∇𝒘𝐿 𝒘 #update w

∇𝒘𝐿(𝒘) = 2𝜆𝒘 + − 2 𝑦 − 𝒘𝑇𝒙 𝒙

−∇𝒘𝐿 𝒘 = −2𝜆𝒘 + 2 𝑦 − 𝒘𝑇𝒙 𝒙

Push w towards 0 

If y > wTx (too low): then w = w + αx for some α

Before: wTx

After: (w+ αx)Tx = wTx + αxTx

α



Quick annoying detail: subgradients

What is the derivative of |x|?

𝜕

𝜕𝑥
𝑓 𝑥 = sign(𝑥) 𝑥 ≠ 0

Derivatives/Gradients

Defined everywhere but 0

𝑥 = 0undefined

Oh no! A discontinuity!

|x|



Quick annoying detail: subgradients

Subgradient: any underestimate of function

Subderivatives/subgradients

Defined everywhere

In practice: at discontinuity, pick value on either side. 

𝜕

𝜕𝑥
𝑓 𝑥 = sign(𝑥) 𝑥 ≠ 0

|x|

𝑥 = 0
𝜕

𝜕𝑥
𝑓 𝑥 ∈ [−1,1]



Computing The Gradient

• Numerical: foolproof but slow

• Analytical: can mess things up ☺

• In practice: do analytical, but check with 
numerical (called a gradient check)

Slide: Karpathy and Fei-Fei



Implementing Gradient Descent

Loss is a function that we can 

evaluate over data

−∇𝒘𝐿 𝒘 = −2𝜆𝒘 +෍

𝑖=1

𝑛

2 𝑦𝑖 −𝒘𝑇𝒙𝒊 𝒙𝑖
All 

Data

−∇𝒘𝐿𝐵 𝒘 = −2𝜆𝒘 +෍

𝑖∈𝐵

2 𝑦𝑖 −𝒘𝑇𝒙𝒊 𝒙𝑖
Subset 

B



Implementing Gradient Descent

for iter in range(numIters):

g = gradient(data,L)

w = w + -stepsize(iter)*g #update w

Option 1: Vanilla Gradient Descent

Compute gradient of L over all data points



Implementing Gradient Descent

for iter in range(numIters):

index = randint(0,#data)

g = gradient(data[index],L)

w = w + -stepsize(iter)*g #update w

Option 2: Stochastic Gradient Descent

Compute gradient of L over 1 random sample



Implementing Gradient Descent

for iter in range(numIters):

subset = choose_samples(#data,B)

g = gradient(data[subset],L)

w = w + -stepsize(iter)*g #update w

Option 3: Minibatch Gradient Descent

Compute gradient of L over subset of B samples

Typical batch sizes: ~100 



Gradient Descent Details

Step size (also called learning rate / lr)

critical parameter

10x10-2

converges

12x10-2

diverges

1x10-2

falls short



Gradient Descent Details

11x10-2 :oscillates

(Raw gradients)



Gradient Descent Details

One solution: start with initial rate lr, 

multiply by f every N interations

init_lr = 10-1

f = 0.1

N = 10K



11x10-2 :oscillates

(Raw gradients)

Gradient Descent Details

Solution: 

Average gradients

With exponentially decaying 

weights, called “momentum”



11x10-2

(0.25 momentum)

11x10-2 :oscillates

(Raw gradients)

Gradient Descent Details



Gradient Descent Details

Multiple Minima

→

Gradient Descent

Finds local

minimum



Gradient Descent Details

1

2 3

4

Guess the 

minimum!

start



Gradient Descent Details



Gradient Descent Details

1

2 3

4
start

Guess the 

minimum!



Gradient Descent Details

Dynamics are 

fairly complex

Many important 

functions are 

convex: any 

local minimum is 

a global minimum

Many important 

functions are not.



In practice

• Conventional wisdom: minibatch stochastic 
gradient descent (SGD) + momentum 
(package implements it for you) + some 
sensibly changing learning rate

• The above is typically what is meant by “SGD”

• Other update rules exist; benefits in general 
not clear (sometimes better, sometimes worse) 



Optimizing Everything

• Optimize w on training set with SGD to 
maximize training accuracy

• Optimize λ with random/grid search to 
maximize validation accuracy

• Note: Optimizing λ on training sets it to 0

𝐿 𝑾 = 𝝀 𝑾 𝟐
𝟐 + ෍

𝑖=1

𝑛

− log
exp( 𝑊𝑥 𝑦𝑖)

σ𝑘 exp( 𝑊𝑥 𝑘))

𝐿(𝒘)=𝜆 𝒘 2
2 + ෍

𝑖=1

𝑛

𝑦𝑖 −𝒘𝑻𝒙𝒊
2



(Over/Under)fitting and Complexity

Let’s fit a polynomial: given x, predict y

Note: can do non-linear regression with copies of x

𝑦1
⋮
𝑦𝑁

=
𝑥1
𝐹

⋮
𝑥𝑁
𝐹

⋯
⋱
⋯

𝑥1
2

⋮
𝑥𝑁
2

𝑥1
⋮
𝑥𝑁

1
⋮
1

𝑤𝐹

⋮
𝑤2

𝑤1
𝑤0

Weights: one per polynomial degree

Matrix of all polynomial degrees



(Over/Under)fitting and Complexity

Model: 1.5x2 + 2.3x+2 + N(0,0.5)



Underfitting

Model: 1.5x2 + 2.3x+2 + N(0,0.5)



Underfitting

Model doesn’t have 

the parameters to fit 

the data. 

Bias (statistics): Error 

intrinsic to the model. 



Overfitting

Model: 1.5x2 + 2.3x+2 + N(0,0.5)



Overfitting

Model has high variance: remove one point, and 

model changes dramatically



(Continuous) Model Complexity

argmin
𝑾

𝝀 𝑾 𝟐
𝟐 + ෍

𝑖=1

𝑛

− log
exp( 𝑊𝑥 𝑦𝑖)

σ𝑘 exp( 𝑊𝑥 𝑘))

Regularization: penalty 

for complex model 

Pay penalty for negative log-

likelihood of correct class

Intuitively: big weights = more complex model 

Model 1: 0.01*x1 + 1.3*x2 + -0.02*x3 + -2.1x4 + 10

Model 2: 37.2*x1 + 13.4*x2 + 5.6*x3 + -6.1x4 + 30



Fitting Model

Again, fitting polynomial, but with regularization

argmin
w

𝒚 − 𝑿𝒘 + 𝜆 𝒘

𝑥1
𝐹

⋮
𝑥𝑁
𝐹

⋯
⋱
⋯

𝑥1
2

⋮
𝑥𝑁
2

𝑥1
⋮
𝑥𝑁

1
⋮
1

𝑤𝐹

⋮
𝑤0



Adding Regularization

No regularization: 

fits all data points

Regularization: 

can’t fit all data points



In General

Error on new data comes from combination of:

1. Bias: model is oversimplified and can’t fit the 
underlying data

2. Variance: you don’t have the ability to 
estimate your model from limited data

3. Inherent: the data is intrinsically difficult

Bias and variance trade-off. Fixing one hurts the 
other.



Underfitting and Overfitting

Low Bias

High Variance

High Bias

Low Variance

Diagram adapted from: D. Hoiem

Test 

Error

Training 

Error

Complexity

Error

Underfitting!



Underfitting and Overfitting

Low Bias

High Variance

High Bias

Low Variance

Diagram adapted from: D. Hoiem

Complexity

Test

Error

Small data

Overfits w/small model

Big data

Overfits w/bigger model



Underfitting

Do poorly on both training and 
validation data due to bias.

Solution:

1. More features

2. More powerful model

3. Reduce regularization



Overfitting

Do well on training data, but poorly 
on validation data due to variance

Solution:

1. More data

2. Less powerful model

3. Regularize your model more

Cris Dima rule: first make sure you 
can overfit, then stop overfitting.



Next Class

• Non-linear models (neural nets)





Let’s Compute Another Gradient

• Below is another derivation that’s worth looking 
at on your own time if you’re curious



Computing The Gradient

argmin
𝑾

𝝀 𝑾 𝟐
𝟐 + ෍

𝑖=1

𝑛

෍

𝑗 ≠𝑦𝑖

max 0, (𝑾𝒙𝑖 𝑗 − 𝑾𝒙𝒊 𝑦𝑖 +𝑚)

Notation: 

W → rows wi (i.e., per-class scorer) 

(Wxi)j → wj
Txi

argmin
𝑾

𝝀෍

𝒋=𝟏

𝑲

𝒘𝒋 𝟐

𝟐
+ ෍

𝑖=1

𝑛

෍

𝑗 ≠𝑦𝑖

max(0,𝒘𝑗
𝑇𝒙𝑖 −𝒘𝑦𝑖

𝑇 𝒙𝑖 +𝑚)

Derivation setup: Karpathy and Fei-Fei

Multiclass Support Vector Machine



Computing The Gradient

𝜕

𝜕𝑤𝑗
:

argmin
𝑾

𝝀෍

𝒋=𝟏

𝑲

𝒘𝒋 𝟐

𝟐
+ ෍

𝑖=1

𝑛

෍

𝑗 ≠𝑦𝑖

max(0,𝒘𝑗
𝑇𝒙𝑖 −𝒘𝑦𝑖

𝑇 𝒙𝑖 +𝑚)

𝑤𝑗
𝑇𝑥𝑖 −𝑤𝑦𝑖

𝑇 𝑥𝑖 +𝑚 ≤ 0: 0

𝑤𝑗
𝑇𝑥𝑖 −𝑤𝑦𝑖

𝑇 𝑥𝑖 +𝑚 > 0: 𝑥𝑖

→ 1(𝑤𝑗
𝑇 𝑥𝑖 − 𝑤𝑦𝑖

𝑇 𝑥𝑖 +𝑚 > 0)𝑥𝑖

Derivation setup: Karpathy and Fei-Fei



Computing The Gradient

argmin
𝑾

𝝀෍

𝒋=𝟏

𝑲

𝒘𝒋 𝟐

𝟐
+ ෍

𝑖=1

𝑛

෍

𝑗 ≠𝑦𝑖

max(0,𝒘𝑗
𝑇𝒙𝑖 −𝒘𝑦𝑖

𝑇 𝒙𝑖 +𝑚)

Derivation setup: Karpathy and Fei-Fei

𝜕

𝜕𝑤𝑦𝑖
: ෍

𝑗≠𝑦𝑖

1 𝑤𝑗
𝑇𝑥𝑖 −𝑤𝑦𝑖

𝑇 𝑥𝑖 +𝑚 > 0 −𝑥𝑖



Interpreting The Gradient

If we do not predict the 

correct class by at least a 

score difference of m …  

Want incorrect class’s 

scoring vector to score 

that point lower.

Recall: 

Before: wTx; 

After: (w-αx)Tx = wTx - axTx

Derivation setup: Karpathy and Fei-Fei

−
𝜕

𝜕𝑤𝑗
: 1(𝑤𝑗

𝑇𝑥𝑖 −𝑤𝑦𝑖
𝑇 𝑥𝑖 +𝑚 > 0) −𝑥𝑖


