Optimization and
(Under/over)fitting

EECS 442 — David Fouhey
Fall 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442 F19/

Regularized Least Squares

Add regularization to objective that prefers some solutions:

Before: arg muilnlly — Xw||5 = Loss
After: argmui]nlly—XwH% + 1
Loss Trade-off

Want model “smaller”: pay a penalty for w with big norm

Intuitive Objective: accurate model (low loss) but not too
complex (low regularization). A controls how much of each.

Nearest Neighbors

Known Images Test
Labels Image

h x1AD(x1»xT) %’ XT

Cat / g)at!

D(xNJ xT)

(1) Compute distance between
feature vectors (2) find nearest
(3) use label.

Picking Parameters

What distance? What value for k / A?

Training Validation Test
Use these data Evaluate on these
points for lookup points for different

K, A, distances

Linear Models

Example Setup: 3 classes

Model — one weight per class: vao; Wi, W

w{x big if cat
Want: v/ x bigif dog
wlx big if hippo

Stack together: W3, where xis in RF

Linear Models

Cat weight vector | 0.2 | -0.5 -96.8 | Cat score

Dog weight vector | 1.5 | 1.3 | 21 | 0.0 | 3.2 | | 231 | ==p | 437.9 | Dog score

Hippo weight vector | 0.0 | 0.3 | 0.2 [-0.3|-1.2 || 24 61.95 | Hippo score

w Wx;

Prediction is vector
where jth component is
“score” for jth class.

Weight matrix a collection of
scoring functions, one per class X
l

Diagram by: Karpathy, Fei-Fei

Objective 1: Multiclass SVM*

(Take the class whose

Inference (X y) argmax (Wx)y weight vector gives the
) k i
ighest score)

Training (X, Y;):)
arg min + Z Z max(0, (Wx;); — (Wx;),,)

w

i=1j #y;
Pay no penalty if prediction

Over glltdata for class y; is bigger than j.
points Otherwise, pay proportional
For every class to the score of the wrong
j that's NOT the class.

correct one (y;)

Objective 1: Multiclass SVM

(Take the class whose

Inference (X y) argmax (Wx)y weight vector gives the
) k i
ighest score)

Training (X, Y;):

n

arg min + Z Z max (0, (le)] — (Wx;)y, + m)

7%
1=1j #y;
Pay no penalty if prediction
Over ?” data for class y; is bigger than |
points by m ("margin”). Otherwise,
For every class pay proportional to the
j that's NOT the score of the wrong class.

correct one (y;)

Objective 1:
Called: Support Vector Machine

Lots of great theory as to why this is a
sensible thing to do. See

Useful book (Free too!):

The Elements of Statistical Learning

Hastie, Tibshirani, Friedman
https://web.stanford.edu/~hastie/ElemStatLearn/

https://web.stanford.edu/~hastie/ElemStatLearn/

Objective 2: Making Probabilities

Converting Scores to “Probability Distribution”

Cat score | -0.9 e09 || 0.41 0.11 | P(cat)
Dogscore | 0.4 |4exp(x) | e%4 1.49 |1 Norm = | 0.40 | P(dog)
Hippo score | 0.6 06 1.82 0.49 | P(hippo)

$=3.72
exp((Wx);)

Generally P(class j): S exp((Wx)1)
k k

Called softmax function

Inspired by: Karpathy, Fei-Fei

Objective 2: Softmax

(Take the class whose
Inference (X): arg mliiX (Wx), weight vector gives the

highest score)

exp((Wx);)
2 exp((Wx)y)

Why can we skip the exp/sum exp
thing to make a decision?

P(class j):

Objective 2: Softmax

(Take the class whose
Inference (X): arg mliiX (Wx), weight vector gives the

highest score)

Training (X, Y;):) P(correct class)
: exp((Wx)yi) /
TS ¥ ; ~log (Zk GXP((WX)R))>

Over all data /p ;

. ay penalty for not making
points correct class likely.
“Negative log-likelihood”

Objective 2: Softmax

6 — Negative Log Likelihood P(COI'I‘eCt) = 0.05:
3.0 penalty

5

4 P(correct) = 0.5:
? 0.11 penalty
A3

2

1

O S P(correct) = 1:

00 02 o4 o6 o8 10 NoO penalty!

P(correct)

How Do We Optimize Things?

Goal: find the w minimizing arg min L(w)
some loss function L. weRN

exp((Wx),,))
2 exp((Wx)y))

Low) = AWIE+) —1og<
Works for lots of i=1

different Ls: ;) = aiwiz +) (3 - wx)°
=1

n
Lw) = ClIwll3 +) max(0,1 - y,w"x)
i=1

Sample Function to Optimize

15

f(x,y) = (x+2y-7)? + (2x+y-5)?

8000

7000

4000

3000
15 20

2000
1000

Sample Function to Optimize

* I'll switch back and forth between this 2D
function (called the Booth Function) and other
more-learning-focused functions

» Beauty of optimization is that it's all the same in
principle
« But don’t draw too many conclusions: 2D

space has qualitative differences from 1000D
space

See intro of: Dauphin et al. Identifying and attacking the saddle point problem in high-dimensional

non-convex optimization NIPS 2014
https://ganquli-gang.stanford.edu/pdf/14.SaddlePoint.NIPS.pdf

https://ganguli-gang.stanford.edu/pdf/14.SaddlePoint.NIPS.pdf

A Caveat

« Each point in the picture is a
function evaluation

 Here it takes microseconds — so
we can easily see the answer

* Functions we want to optimize
may take hours to evaluate

A Caveat

Model in your head: moving around a
landscape with a teleportation device

20

-20

-20 20

Landscape diagram: Karpathy and Fei-Fei

Option #1A — Grid Search

#systematically try things
best, bestScore = None, Inf
for dim1Value in dim1Values:

for dimNValue in dimNValues:
w = [dim1Value, ..., dimNValue]
If L(w) < bestScore:

best, bestScore = w, L(w)
return best

Optlon #1A — Grid Search

10
B “I.-'-
_2920 -15 -10 -5 0 5 10 15 20

Option #1A — Grid Search

Pros: Cons:
1. Super simple 1. Scales horribly to high
2. Only requires being dimensional spaces

able to evaluate model

Complexity: samplesPerDimnumberOfbims

Option #1B — Random Search

#Do random stuff RANSAC Style
best, bestScore = None, Inf
for iter in range(numlters):
w = random(N, 1) #sample
score = L(w) #evaluate
if score < bestScore:

best, bestScore = w, score
return best

Optlon #1B — Random Search

10
B “-.'..
20, _-15 -10 -5 0

Option #1B — Random Search

Pros: Cons:
1. Super simple 1. Slow —throwing darts
2. Only requires being at high dimensional
able to sample model dart board
and evaluate it 2. Might miss something

P(all correct) =

€ eN
Good parameters &=———o

All parameters —rr———0H———o———m—9

0 1

When Do You Use Options 1A/1B?

Use these when
* Number of dimensions small, space bounded

» Objective is impossible to analyze (e.g., test
accuracy if we use this distance function)

Random search is arguably more effective; grid
search makes it easy to systematically test
something (people love certainty)

Option 2 — Use The Gradient

v | SRR

gradient

/7000

6000

5000

4000

3000

2000

1000

Option 2 — Use The Gradient

wrows: | SRR -
aradient " SSSMEEMPAILY | -
direction |

|| AN A%
(scaled to unit ;;;;
N~

6000

5000

4000

K ¥ ¥ X\ |
ARG
e ¥ ¥ \¥ ¥ |
NS
-10
- AR
-15
e
0 4 Y A XA

—-20 - 20

3000

2000

1000

Option 2 — Use The Gradient

Want: arg min L(w)
w

What’s the geometric
interpretation of:

V,L(w) =

dL/0x;"

dL/0xy.

Which is bigger (for small a)?

<?

L(w) , Lw+ aV,L(w))

>

Option 2 — Use The Gradient

wrows: | SRR -
gradient | SnNIEEVIIIEIY] -
direction |

- HI HHH
(scaled to unit A A

length)

6000

5000

4000

3000

2000

1000

Option 2 — Use The Gradient

Method: at each step, move in direction
of negative gradient

w0 = jnitialize() #initialize
for iter in range(numlters):

g =V, L(w) #eval gradient

w = w + -stepsize(iter)*g #update w
return w

Gradient Descent

Given starting point (blue)
Wi, =W, + -9.8x10-? x gradient

20

| | .
TEEER.
R | | |
o===l!!ll

L 7
L 7

Computing the Gradient

How Do You Compute The Gradient?
Numerical Method:

How do you compute this?

OL(w)
3 f(x) = flx+e)—f(x)
1 = lim
Volw) = : 0x €0 €
dL(w) In practice, use:
- 0x, | fix+e)—f(x—¢€)

2€

Computing the Gradient

How Do You Compute The Gradient?
Numerical Method:

Use: [T —FG—©

AL (w) —
0x4
Vwl(w) =| How many function
ag(w) evaluations per dimension?
| Ox,, |

Computing the Gradient

How Do You Compute The Gradient?
Analytical Method:

[dL(w)T
0x4

VoLw) =| Use calculus!
dL(w)

- 0x,

Computing the Gradient
Lw) = 2Alwl +) (v —wTx)’
| & |
ow
VWL(W) = 2Aw + —(2(% — wa,-)xl-)
2

Note: if you look at other derivations, things are written either (y-w™x) or (w'x — y); the
gradients will differ by a minus.

Interpreting Gradients (1 Sample)

Recall:
w=w + -V, L(w) #update w

Vo L(w) = 22w + —2(y —wlx)x)

Push w towards 0O a
—~ ——
—V,L(w) = =2Aw + (2(y — wix)x)
A\ J
Y
If y>w'x (too low): then w = w + ax for some a
Before: w'x

After: (w+ ax)™x = w'x + ax'x

Quick annoying detail: subgradients

What is the derivative of [x|?
X

af(x) =sign(x) x #0

undefined x=0 /

Derivatives/Gradients
Defined everywhere but O /
0

Oh no! A discontinuity!

Quick annoying detail: subgradients

Subgradient: any underestimate of function
X

o f(x) =sign(x) x #0

Subderivatives/subgradients
Defined everywhere \\ /
0

0
af(X) (S [—1,1] x=0

In practice: at discontinuity, pick value on either side.

Computing The Gradient

* Numerical: foolproof but slow
 Analytical: can mess things up ©

* In practice: do analytical, but check with
numerical (called a gradient check)

Slide: Karpathy and Fei-Fei

Implementing Gradient Descent

Loss is a function that we can
evaluate over data

n

All
ota Wl W) = —23w +) 20 — wTx)x)

=1

Sutéset —V,,Lg(w) = 2w + Z(Z(yi — wal-)xi)
LEB

Implementing Gradient Descent

Option 1: Vanilla Gradient Descent
Compute gradient of L over all data points

for iter in range(numlters):
g = gradient(data,L)
w = w + -stepsize(iter)*g #update w

Implementing Gradient Descent

Option 2: Stochastic Gradient Descent
Compute gradient of L over 1 random sample

for iter in range(numlters):
index = randint(0,#data)
g = gradient(data[index],L)
w = w + -stepsize(iter)*g #update w

Implementing Gradient Descent

Option 3: Minibatch Gradient Descent
Compute gradient of L over subset of B samples

for iter in range(numlters):
subset = choose samples(#data,B)
g = gradient(data[subset],L)
w = w + -stepsize(iter)*g #update w

Typical batch sizes: ~100

Gradient Descent Details

Step size (also called learning rate / Ir)

critical parameter
1x10-2 10x10-2 12x10-2
falls short converges diverges

1: II'//// :
A

Gradient Descent Details

11x10-2 :oscillates
(Raw gradients)

Gradient Descent Details

One solution: start with initial rate Ir,
multiply by f every N interations

init_Ir = 10"
f=0.1
N = 10K

Learning Rate
=

5000 10000 150(_) 0000000000000000
[terations

Gradient Descent Details

11x10-2 :0scillates Solution:
(Raw gradients) Average gradients

j: _!.... With exponentially decaying
10 ".... weights, called “momentum”

‘fﬂ

10
B “.....
200 15 -10 -5 0

Gradient Descent Details

11x10-2 :oscillates 11x10-2
(Raw gradients) (0.25 momentum)
BE!IIII 15E!IIII
- Ly | | HEL
T SIII‘HIII
E‘I TRAR.

10 10
B “..... B “.....
200 15 -10 -5 0 5 10 15 20 %y -15 -10 -5 0

Gradient Descent Details
Multiple Minima

Minima Illll
Gradient Descent i ..
Finds local 2

minimum

Gradient Descent Details

sl , o
minimum!

Gradient Descent Details

4

Gradient Descent Details

sl , o
minimum!

Gradient Descent Details

T O .
fairly complex

. W s
uncionsore |
convex: any

ocal minimuris |
Zlﬂl\lll
e U
functions are not.

In practice

» Conventional wisdom: minibatch stochastic
gradient descent (SGD) + momentum
(package implements it for you) + some
sensibly changing learning rate

* The above is typically what is meant by “SGD”

» Other update rules exist; benefits in general
not clear (sometimes better, sometimes worse)

Optimizing Everything

exp((Wx)y,))
Y exp(Wx))

n
Lw) = W3+) —1og<
=1

n
2
Low) =AIWl3 +) (v —w'x)
i=1

» Optimize w on training set with SGD to
maximize training accuracy

* Optimize A with random/grid search to
maximize validation accuracy

* Note: Optimizing A on training sets itto 0

(Over/Under)fitting and Complexity

Let’s fit a polynomial: given x, predict y

Note: can do non-linear regression with copies of x

WF
Vi1 |xf o xf X1 1|
: — ° ® ° : : Wz
F oo 2 X
yN xN XN N 1 W1
. . t Wo.-
Matrix of all polynomial degrees 1

Weights: one per polynomial degree

(Over/Under)fitting and Complexity

Model: 1.5x2 + 2.3x+2 + N(0,0.5)

12 —— Ground-truth

10

Underfitting

Model: 1.5x2 + 2.3x+2 + N(0,0.5)

12 —— Ground-truth 12 —— Ground-truth
—— (0 dimensional —— 1 dimensional
10 10
8 8
6 6
4
4
2
2
0

Underfitting

12 —— Ground-truth Model doesn’t have
" TS the parameters to fit
the data.

Bias (statistics): Error
intrinsic to the model.

12

10

Overfitting

Model: 1.5x2 + 2.3x+2 + N(0,0.5)

—— Ground-truth —— Ground-truth

. . 20 . .
—— 8 dimensional — 9 dimensional

Overfitting

Model has high variance: remove one point, and
model changes dramatically

—— Ground-truth 120 —— Ground-truth r
—— 8 dimensional —— 8 dimensional

12

(Continuous) Model Complexity

n
exp((Wx),,.
arg min + Z—log< PIW)y))
i=1

w Zk exp((Wx)g))

J

Y

|
Pay penalty for negative log-

likelihood of correct class

Intuitively: big weights = more complex model
Model 1: 0.01*x, + 1.3™x, + -0.02*x5 + -2.1x, + 10

Model 2: 37.2"x, + 13.4*X, + 5.6™x5 + -6.1x, + 30

Fitting Model

Again, fitting polynomial, but with regularization

AL

xF o w2 o 1]

xy toxm Xn 1| Lwo.

Adding Regularization

No regularization: Regularization:
fits all data points can't fit all data points
14
—— Ground-truth — Ground-truth

20

—— 9 dimensional 12 —— 9 dimensional

In General

Error on new data comes from combination of:

1. Bias: model is oversimplified and can't fit the
underlying data

2. Variance: you don't have the ability to
estimate your model from limited data

3. Inherent: the data is intrinsically difficult

Bias and variance trade-off. Fixing one hurts the
other.

Underfitting and Overfitting

Underfitting!

Test

Error
Error
Training
Error
High Bias Complexity Low Bias

Low Variance High Variance

Diagram adapted from: D. Hoiem

Underfitting and Overfitting

—
Small data

Overfits w/small model

High Bias Combplexit Low Bias
Low Variance P y High Variance

Diagram adapted from: D. Hoiem

Underfitting

12 s L Do poorly on both training and
validation data due to bias.

Solution:

‘2‘ \/ 1. More features

. 2. More powerful model
" N A / 3. Reduce regularization

8
6 ‘
4
2 \ =
0 1<
-2 -1 0 1

Overfitting

g oo / Do well on training data, but poorly
on validation data due to variance

// Solution:
| 1. More data
. 2. Less powerful model
o dimensions 3. Regularize your model more

10

o N N o] (e¢]
|

. %
;. _/// Cris Dima rule: first make sure you
o\ [T can overfit, then stop overtfitting.

Next Class

* Non-linear models (neural nets)

Let’'s Compute Another Gradient

* Below is another derivation that’'s worth looking
at on your own time if you're curious

Computing The Gradient

Multiclass Support Vector Machine

w

n
arg min + Z Z max(0, Wx;); — (Wx;),. + m)

i=1j #Yy;

Notation:
W — rows w, (i.e., per-class scorer)
(Wx;);, — WX

n
. T T
arg min + Z Z max(0, w; x; — wy, x; + m)

i=1j #y;

Derivation setup: Karpathy and Fei-Fei

Computlng The Gradient

argmmlzn || + z z max(0, w! x; — wy X; +m)

= 1L¢3’l
Y
0 WjTXl' — W;l.xi +m < 0: 0
ow; wix; —wyx; +m>0: x;

- 1w/ x; —wy.x; + m > 0)x;

Derivation setup: Karpathy and Fei-Fei

Computlng The Gradient

argmmlzn || + z Z max (0, w X; — wy X; +m)

=1 L;tyl

Y

z 1(W xl—wyxl+m>0)(X;)

yi J#Yi

Derivation setup: Karpathy and Fei-Fei

Interpreting The Gradient
0

E : 1(W]Txl — W;l.xi +m > 0) —Xj
] N J W
If we do not predictthe \want incorrect class’s

correct cl_ass by at least a scoring vector to score
score difference of m ... that point lower.

Recall:
Before: w'x;
After: (w-ax)™x = w'x - ax'x

Derivation setup: Karpathy and Fei-Fei

