Transformations and Fitting

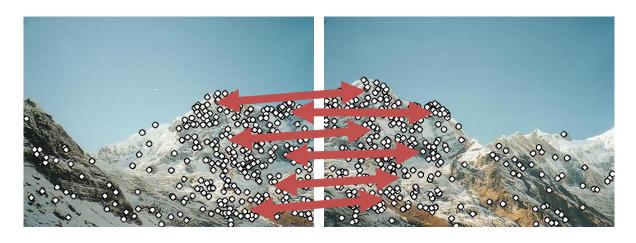
EECS 442 – David Fouhey Fall 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Administrivia

- HW1 partially done
 - Overall the class did looks like it did well
- Copying:
 - Please don't do it; it's usually obvious
 - I don't have easy/great options
 - Please read the syllabus for what's allowed
- HW2 now due Fri Oct 18 11:59.99PM
 - You can use the study break however you want
 - I wouldn't encourage you to leave HW2 until the week that overlaps with HW3

So Far



- 1. How do we find distinctive / easy to locate features? (Harris/Laplacian of Gaussian)
- 2. How do we describe the regions around them? (histogram of gradients)
- 3. How do we match features? (L2 distance)
- 4. How do we handle outliers? (RANSAC)

Today

As promised: warping one image to another

Why Mosaic?

Compact Camera FOV = 50 x 35°

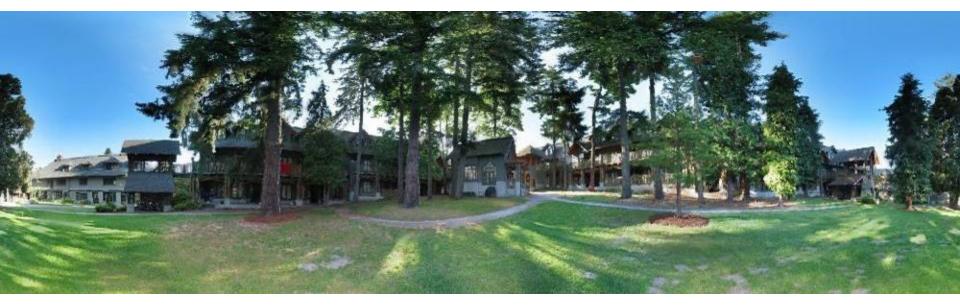
Slide credit: Brown & Lowe

Why Mosaic?

- Compact Camera FOV = 50 x 35°
- Human FOV = $200 \times 135^{\circ}$

Why Mosaic?

- Compact Camera FOV = 50 x 35°
- Human FOV = $200 \times 135^{\circ}$
- Panoramic Mosaic = $360 \times 180^{\circ}$



Why Bother With This Math?

Homework 1 Style

Translation only via alignment

Result

Image Transformations

Image filtering: change range of image

$$g(x) = T(f(x))$$

$$f | \bigwedge_{X} \longrightarrow_{T} g | \bigwedge_{X}$$

Image warping: change domain of image

$$g(x) = f(T(x))$$

$$f | \bigwedge_{X} \longrightarrow_{T} g | \bigwedge_{X}$$

Image Transformations

Image filtering: change range of image

$$g(x) = T(f(x))$$

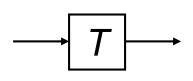
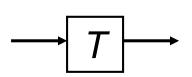


Image warping: change domain of image

$$g(x) = f(T(x))$$



Parametric (Global) warping

Examples of parametric warps

translation

affine

rotation

perspective

aspect

cylindrical

Parametric (Global) Warping

T is a coordinate changing machine

$$p' = T(p)$$

Note: T is the same for all points, has relatively few parameters, and does **not** depend on image content

$$\mathbf{p} = (x,y)$$

$$p' = (x',y')$$

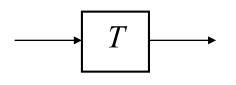
Parametric (Global) Warping

Today we'll deal with linear warps

$$p' \equiv Tp$$

T: matrix; p, p': 2D points. Start with normal points and =, then do homogeneous cords and ≡

$$\mathbf{p} = (x,y)$$

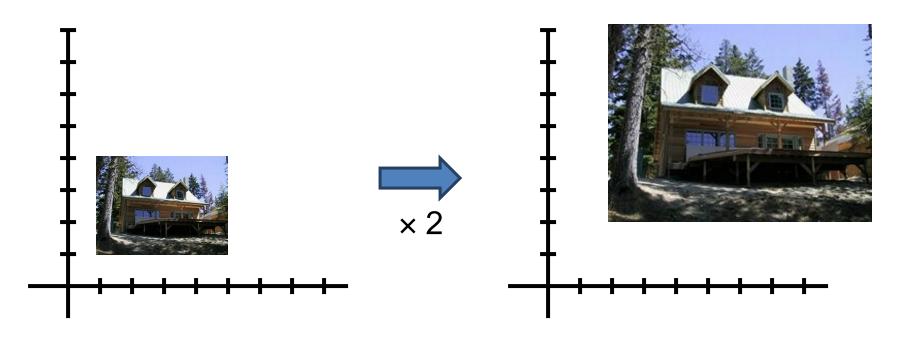


$$p' = (x', y')$$

Scaling

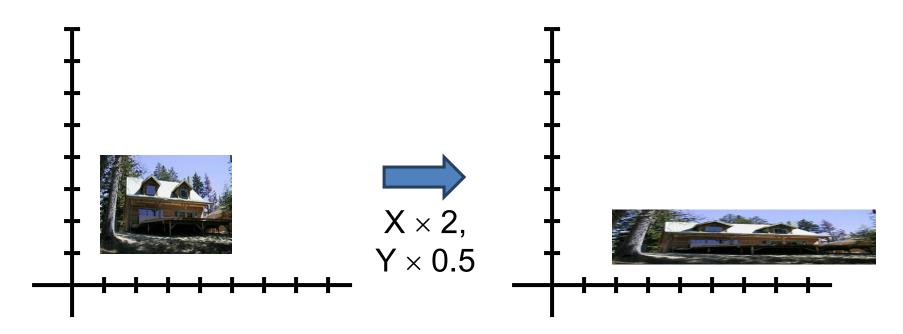
Scaling multiplies each component (x,y) by a scalar. **Uniform** scaling is the same for all components.

Note the corner goes from (1,1) to (2,2)



Scaling

Non-uniform scaling multiplies each component by a different scalar.



Scaling

What does T look like?

$$x' = ax$$
$$y' = by$$

Let's convert to a matrix:

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

scaling matrix S

What's the inverse of S?

2D Rotation

Rotation Matrix

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

But wait! Aren't sin/cos non-linear?

x' <u>is</u> a linear combination/function of x, y x' <u>is not</u> a linear function of θ

What's the inverse of R_{θ} ? $I = R_{\theta}^T R_{\theta}$

Things You Can Do With 2x2

Identity / No Transformation

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

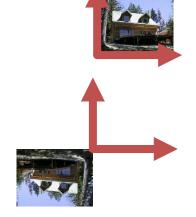
Shear

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x \\ sh_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Things You Can Do With 2x2

After

Before



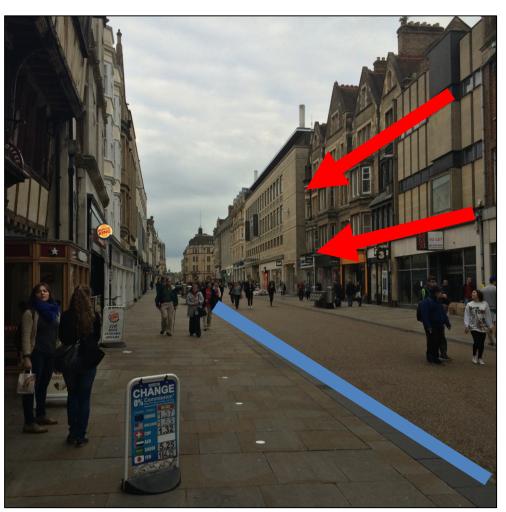
2D Mirror About Y-Axis

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Mirror About X,Y

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

What's Preserved?



3D lines project to 2D lines so lines are preserved

Projections of parallel 3D lines are not necessarily parallel, so not parallelism

Distant objects are smaller so size is not preserved

What's Preserved With a 2x2

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = T \begin{bmatrix} x \\ y \end{bmatrix}$$

After multiplication by T (irrespective of T)

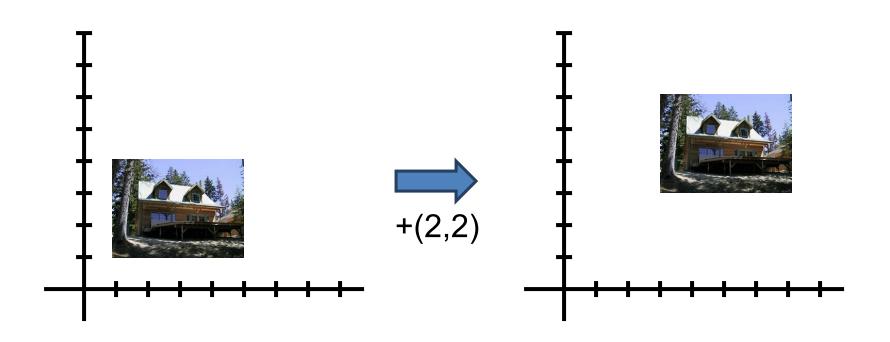
- Origin is origin: 0 = T0
 - Lines are lines
- Parallel lines are parallel

Things You Can't Do With 2x2

What about translation?

$$x' = x + t_x$$
, $y' = y + t_y$

How do we fix it?

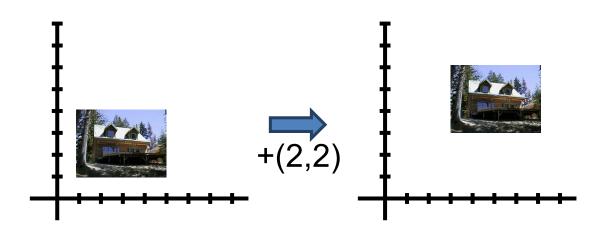


Homogeneous Coordinates Again

What about translation?

$$x' = x + t_x$$
, $y' = y + t_y$

$$\begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} \equiv \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$



Representing 2D Transformations

How do we represent a 2D transformation? Let's pick scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \equiv \begin{bmatrix} s_{x} & 0 & a \\ 0 & s_{y} & b \\ d & e & f \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

What's a b d e f

0 0 0 0 1

Affine Transformations

Affine: linear transformation plus translation

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Will the last coordinate always be 1?

In general (without homogeneous coordinates)

$$x' = Ax + b$$

Matrix Composition

We can combine transformations via matrix multiplication.

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$T(t_{x}, t_{y}) \qquad R(\theta) \qquad S(s_{x}, s_{y})$$

Does order matter?

What's Preserved With Affine

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \equiv \boldsymbol{T} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

After multiplication by T (irrespective of T)

- Origin is origin: 0 = T0
 - Lines are lines
- Parallel lines are parallel

Perspective Transformations

Set bottom row to not [0,0,1]
Called a perspective/projective transformation or a

homography

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

How many degrees of freedom?

How Many Degrees of Freedom?

Recall: can always scale by non-zero value

Perspective
$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \frac{1}{i} \begin{bmatrix} x' \\ y' \\ w' \end{bmatrix} \equiv \frac{1}{i} \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix} \equiv \begin{bmatrix} a/i & b/i & c/i \\ d/i & e/i & f/i \\ g/i & h/i & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ w \end{bmatrix}$$

Homography can always be re-scaled by λ≠0

What's Preserved With Perspective

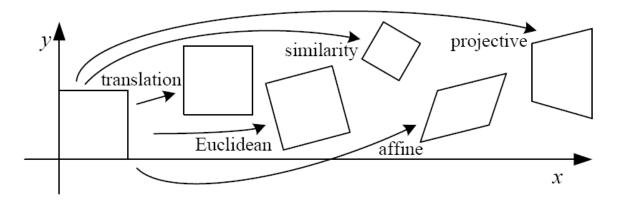
$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} \equiv \mathbf{T} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

After multiplication by T (irrespective of T)

- Origin is origin: 0 = T0
 - Lines are lines
- Parallel lines are parallel
- Ratios between distances

Transformation Families

In general: transformations are a nested set of groups



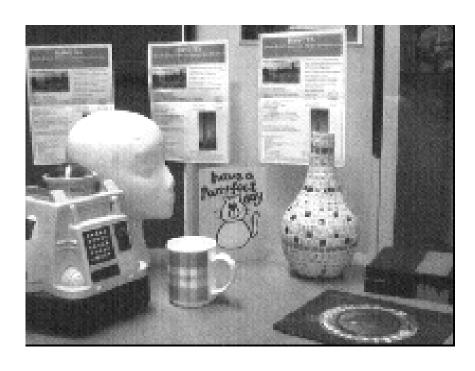
Name	Matrix	# D.O.F.	Preserves:	Icon
translation	$egin{bmatrix} oxed{\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} & oldsymbol{1} \\ \hline \end{array} brace}_{2 ime3}$	2	orientation $+\cdots$	
rigid (Euclidean)	$\left[egin{array}{c c} R & t\end{array} ight]_{2 imes 3}$	3	lengths +···	\Diamond
similarity	$\left[\begin{array}{c c} sR & t\end{array}\right]_{2 imes 3}$	4	$angles + \cdots$	\Diamond
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism $+\cdots$	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

What Can Homographies Do?

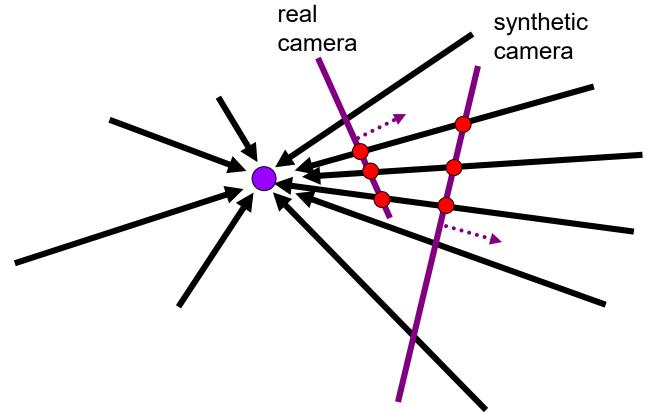
Homography example 1: any two views of a *planar* surface

What Can Homographies Do?

Homography example 2: any images from two cameras sharing a camera center



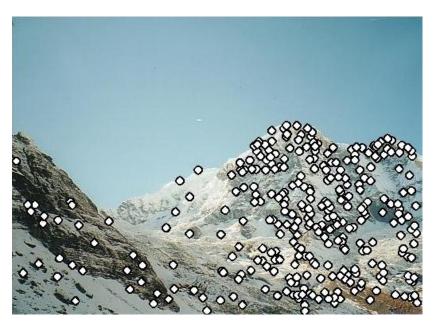
A pencil of rays contains all views

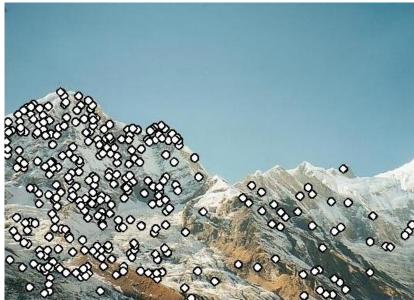


Can generate any synthetic camera view as long as it has the same center of projection!

What Can Homographies Do?

Homography sort of example "3": far away scene that can be approximated by a plane





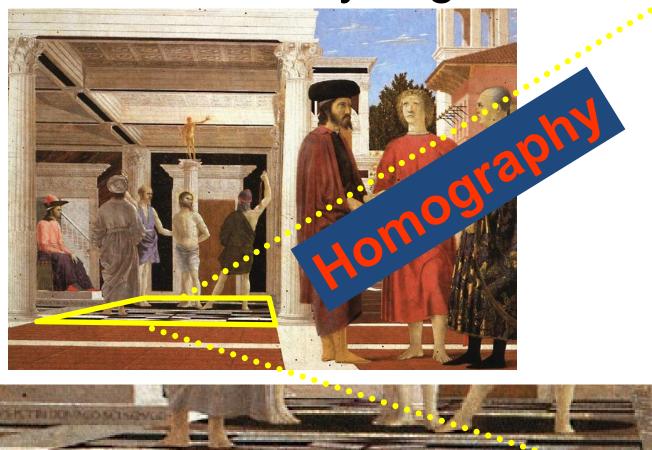
Fun With Homographies

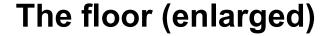
Original image

St. Petersburg photo by A. Tikhonov

Virtual camera rotations

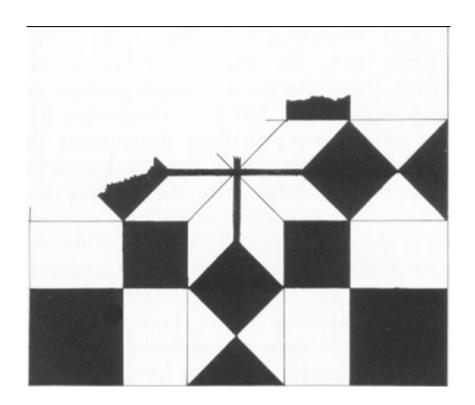
Slide Credit: A. Efros





Slide from A. Criminisi

Automatically rectified floor



From Martin Kemp The Science of Art (manual reconstruction)

Slide from A. Criminisi

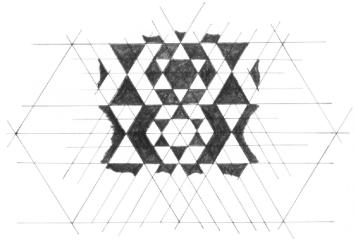
What is the (complicated) shape of the floor pattern?

Automatically rectified floor

St. Lucy Altarpiece, D. Veneziano

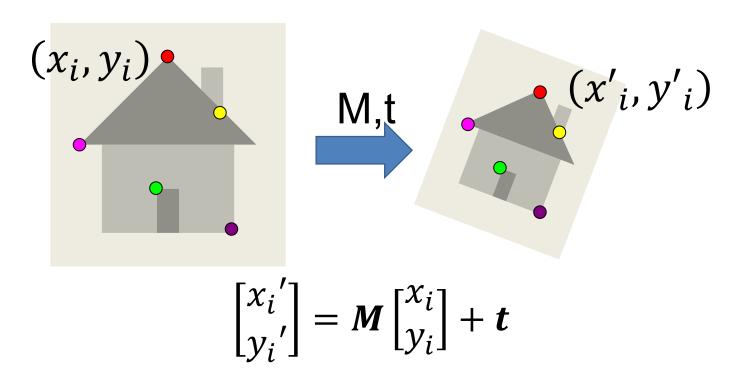
Slide from A. Criminisi

Automatic rectification



From Martin Kemp, The Science of Art (manual reconstruction)

Setup: have pairs of correspondences



Affine Transformation: M,t

Data: (x_i, y_i, x_i', y_i') for

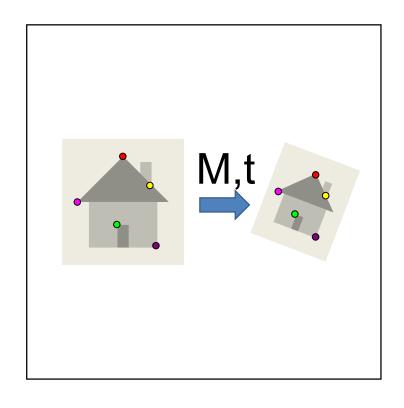
i=1,...,k

Model:

$$[\mathbf{x'}_{i},\mathbf{y'}_{i}] = \mathbf{M}[\mathbf{x}_{i},\mathbf{y}_{i}] + \mathbf{t}$$

Objective function:

$$||[x'_i,y'_i] - M[x_i,y_i] + t||^2$$



Given correspondences: $\mathbf{p}' = [x'_i, y'_i], \mathbf{p} = [x_i, y_i]$

$$\begin{bmatrix} x_i' \\ {y_i'} \end{bmatrix} = \begin{bmatrix} m_1 & m_2 \\ m_3 & m_4 \end{bmatrix} \begin{bmatrix} x_i \\ y_i \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Set up two equations per point

$$\begin{bmatrix} \vdots \\ x_i' \\ y_i' \\ \vdots \end{bmatrix} = \begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ & & & & & \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_x \\ t_y \end{bmatrix}$$

$$\begin{bmatrix} \vdots \\ x'_i \\ y'_i \\ \vdots \end{bmatrix} = \begin{bmatrix} x_i & y_i & 0 & 0 & 1 & 0 \\ 0 & 0 & x_i & y_i & 0 & 1 \\ & & & & & \end{bmatrix} \begin{bmatrix} m_1 \\ m_2 \\ m_3 \\ m_4 \\ t_x \\ t_y \end{bmatrix}$$

2 equations per point, 6 unknowns How many points do we need?

Homography: H

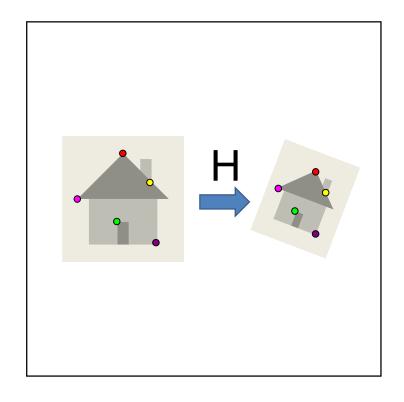
Data: (x_i, y_i, x_i', y_i') for

i=1,...,k

Model:

$$[x'_{i},y'_{i},1] \equiv \mathbf{H}[x_{i},y_{i},1]$$

Objective function: It's complicated



Want:
$$\begin{bmatrix} x_i' \\ y_i' \\ w_i' \end{bmatrix} \equiv \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ w_i \end{bmatrix}$$

$$\begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x_i \\ y_i \\ w_i \end{bmatrix} \equiv Hx_i \equiv \begin{bmatrix} h_1^T \\ h_2^T \\ h_3^T \end{bmatrix} x_i \equiv \begin{bmatrix} h_1^T x_i \\ h_2^T x_i \\ h_3^T x_i \end{bmatrix}$$

 $a \equiv b \rightarrow a = \lambda b \rightarrow a \times b = 0$ Recall:

$$\begin{bmatrix} x_i' \\ y_i' \\ w_i' \end{bmatrix} \times \begin{bmatrix} \boldsymbol{h}_1^T \boldsymbol{x}_i \\ \boldsymbol{h}_2^T \boldsymbol{x}_i \\ \boldsymbol{h}_3^T \boldsymbol{x}_i \end{bmatrix} = \mathbf{0}$$

Crossproduct

$$\begin{bmatrix} y_i' \boldsymbol{h}_3^T \boldsymbol{x}_i - w_i' \boldsymbol{h}_2^T \boldsymbol{x}_i \\ w_i' \boldsymbol{h}_1^T \boldsymbol{x}_i - x_i' \boldsymbol{h}_3^T \boldsymbol{x}_i \\ x_i' \boldsymbol{h}_2^T \boldsymbol{x}_i - y_i' \boldsymbol{h}_1^T \boldsymbol{x}_i \end{bmatrix} = \mathbf{0}$$

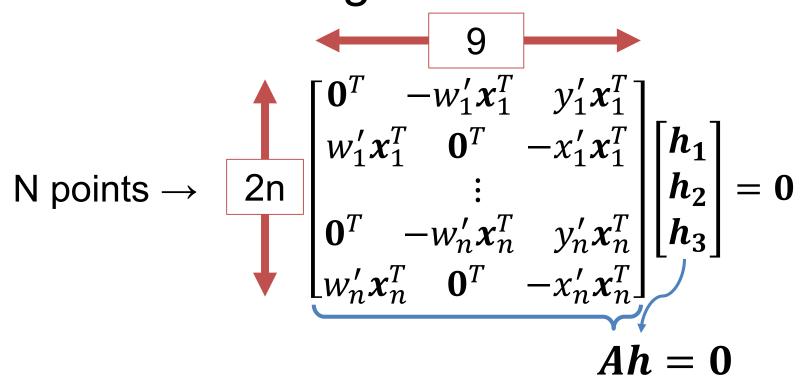
Re-arrange and put 0s in

$$\begin{bmatrix} h_1^T \mathbf{0} - w_i' h_2^T x_i + y_i' h_3^T x_i \\ w_i' h_1^T x_i + h_2^T \mathbf{0} - x_i' h_3^T x_i \\ -y_i' h_1^T x_i + x_i' h_2^T x_i + h_3^T \mathbf{0} \end{bmatrix} = \mathbf{0}$$

Equation
$$\begin{bmatrix} h_1^T \mathbf{0} - w_i' h_2^T x_i + y_i' h_3^T x_i \\ w_i' h_1^T x_i + h_2^T \mathbf{0} - x_i' h_3^T x_i \\ -y_i' h_1^T x_i + x_i' h_2^T x_i + h_3^T \mathbf{0} \end{bmatrix} = \mathbf{0}$$

Pull out h
$$\begin{bmatrix} \mathbf{0}^T & -w'_i \mathbf{x}_i^T & y'_i \mathbf{x}_i^T \\ w'_i \mathbf{x}_i^T & \mathbf{0}^T & -x'_i \mathbf{x}_i^T \\ -y'_i \mathbf{x}_i^T & x'_i \mathbf{x}_i^T & \mathbf{0}^T \end{bmatrix} \begin{bmatrix} \mathbf{h}_1 \\ \mathbf{h}_2 \\ \mathbf{h}_3 \end{bmatrix} = \mathbf{0}$$

Only two linearly independent equations



If h is up to scale, what do we use from last time?

$$h^* = \arg\min_{\|h\|=1} \|Ah\|^2$$
 Eigenvector of A^TA with smallest eigenvalue

Small Nagging Detail

||Ah||² doesn't measure model fit (it's called an *algebraic* error that's mainly just convenient to minimize)

Really want geometric error:

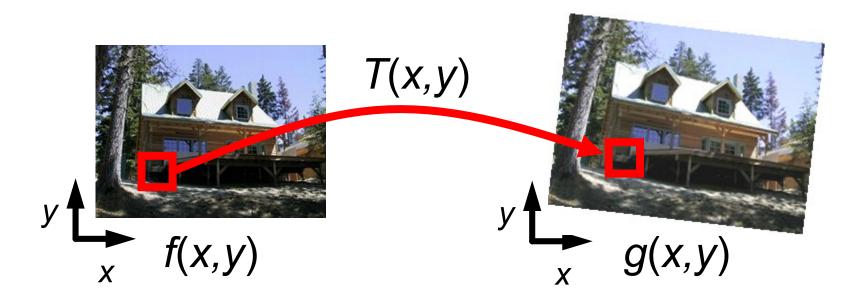
$$\sum_{i=1}^{k} \|[x_i', y_i'] - T([x_i, y_i])\|^2 + \|[x_i, y_i] - T^{-1}([x_i', y_i'])\|^2$$

Small Nagging Detail

Solution: initialize with algebraic (min ||Ah||), optimize with geometric using standard non-linear optimizer

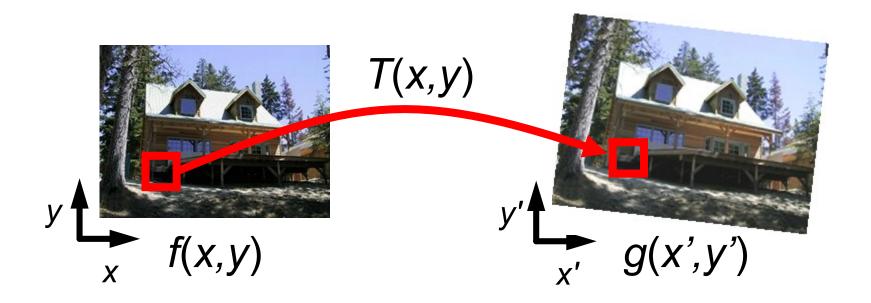
In RANSAC, we always take just enough points to fit. Why might this not make a big difference when fitting a model with RANSAC?

Image Warping



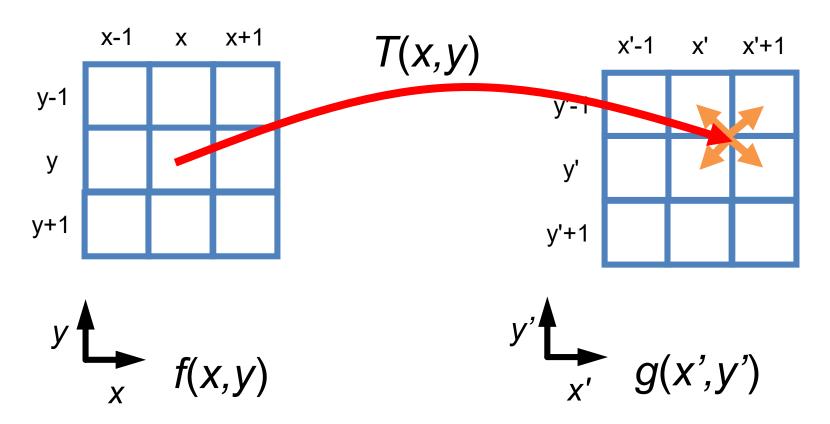
Given a coordinate transform (x',y') = T(x,y) and a source image f(x,y), how do we compute a transformed image g(x',y') = f(T(x,y))?

Forward Warping



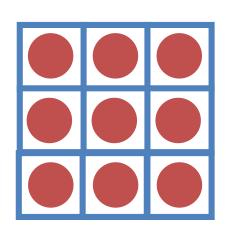
Send the value at each pixel (x,y) to the new pixel (x',y') = T([x,y])

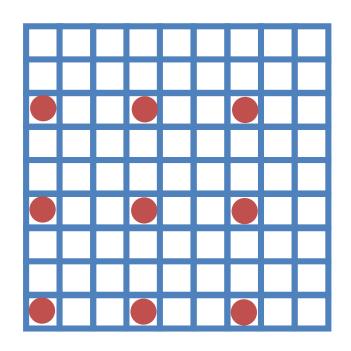
Forward Warping



If you don't hit an exact pixel, give the value to each of the neighboring pixels ("splatting").

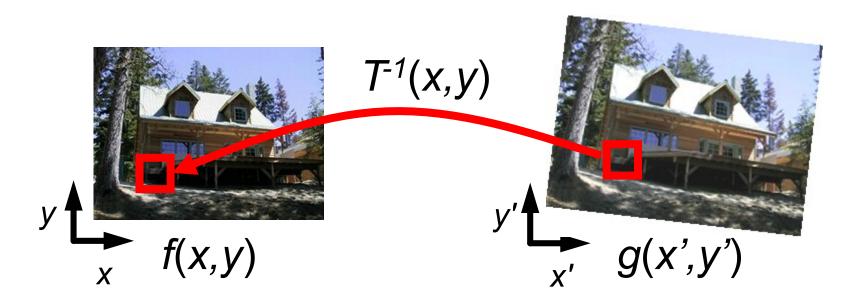
Forward Warping





Suppose T(x,y) scales by a factor of 3. Hmmmm.

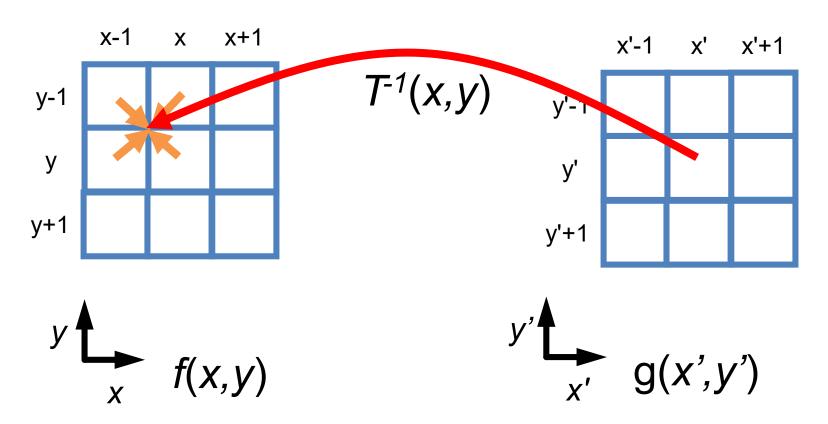
Inverse Warping



Find out where each pixel g(x',y') should get its value from, and steal it.

Note: requires ability to invert T

Inverse Warping



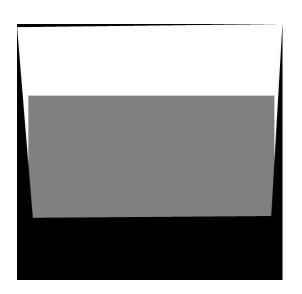
If you don't hit an exact pixel, figure out how to take it from the neighbors.

Mosaicing

Warped Input 1 I₁

Warped Input 2 I₂

α



 $\alpha I_1 + (1-\alpha)I_2$

Slide Credit: A. Efros

Simplification: Two-band Blending

- Brown & Lowe, 2003
 - Only use two bands: high freq. and low freq.
 - Blend low freq. smoothly
 - Blend high freq. with no smoothing: binary alpha

Figure Credit: Brown & Lowe

2-band "Laplacian Stack" Blending

Low frequency ($\lambda > 2$ pixels)

High frequency (λ < 2 pixels)

How do you make a panorama?

Step 1: Find "features" to match

Step 2: Describe Features

Step 3: Match by Nearest Neighbor

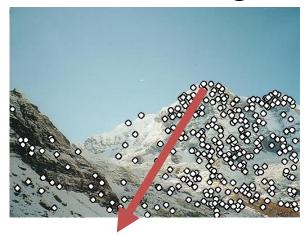
Step 4: Fit H via RANSAC

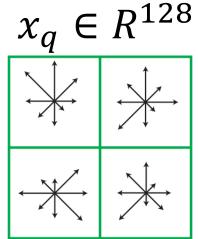
Step 5: Blend Images

Find corners/blobs

- (Multi-scale) Harris; or
- Laplacian of Gaussian

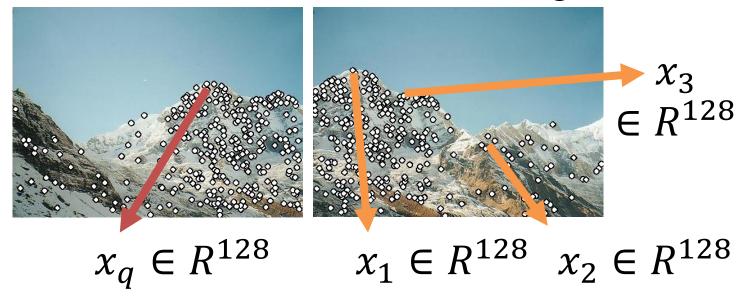
Describe Regions Near Features





Build histogram of gradient orientations (SIFT)

Match Features Based On Region

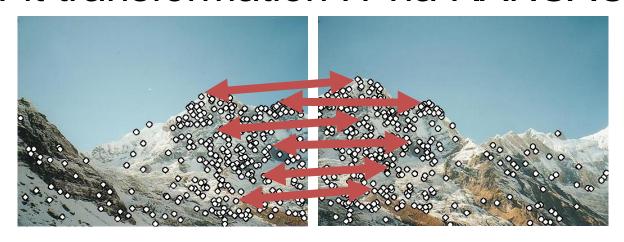


Sort by distance to: $x_q \|x_q - x_1\| < \|x_q - x_2\| < \|x_q - x_3\|$

Accept match if: $||x_q - x_1|| / ||x_q - x_2||$

Nearest neighbor is far closer than 2nd nearest neighbor

Fit transformation H via RANSAC



for trial in range(Ntrials):

Pick sample

Fit model

Check if more inliers

Re-fit model with most inliers

$$\arg\min_{\|\boldsymbol{h}\|=1}\|\boldsymbol{A}\boldsymbol{h}\|^2$$

Warp images together

Resample images with inverse warping and blend