
Detectors and
Descriptors
EECS 442 – David Fouhey

Fall 2019, University of Michigan
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Goal

How big is this image as a vector?

389x600 = 233,400 dimensions (big)

Applications To Have In Mind

Part of the

same

photo?

Same

computer

from another

angle?

Applications To Have In Mind

Building a 3D Reconstruction Out Of Images

Slide Credit: N. Seitz

Applications To Have In Mind

Stitching photos taken at different angles

One Familiar Example

Given two images: how do you align them?

One (Hopefully Familiar) Solution

for y in range(-ySearch,ySearch+1):

for x in range(-xSearch,xSearch+1):

#Touches all HxW pixels!

check_alignment_with_images()

One Motivating Example

Given these images: how do you align them?

Photo credit: M. Brown, D. Lowe

These aren’t off by a small 2D translation but instead by

a 3D rotation + translation of the camera.

One (Hopefully Familiar) Solution

for y in yRange:

for x in xRange:

for z in zRange:

for xRot in xRotVals:

for yRot in yRotVals:

for zRot in zRotVals:

#touches all HxW pixels!

check_alignment_with_images()

This code should make you really unhappy
Note: this actually isn’t even the full number of parameters; it’s actually 8 for loops.

An Alternate Approach

Given these images: how would you align them?

A mountain peak!
A mountain peak!

This dark spot This dark spot

An Alternate Approach

1: find corners+features

2: match based on local image data

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe

Finding and Matching

What Now?

Given pairs

p1,p2 of

correspondence,

how do I align?

Consider translation-

only case from HW1.

An Alternate Approach

3: Solve for transformation T (e.g. such that

p1 ≡ T p2) that fits the matches well

Solving for a Transformation

T

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe

Note the homogeneous coordinates, you’ll see them again.

An Alternate Approach

Blend Them Together

Photo Credit: M. Brown, D. Lowe

Key insight: we don’t work with full image. We

work with only parts of the image.

Today

Corner of

the glasses

Edge next to

panel

Finding edges (part 1) and corners

(part 2) in images.

Where do Edges Come From?

Where do Edges Come From?

Depth / Distance

Discontinuity

Why?

Where do Edges Come From?

Surface Normal / Orientation

Discontinuity

Why?

Where do Edges Come From?

Surface Color / Reflectance

Properties Discontinuity

Where do Edges Come From?

Illumination

Discontinuity

Last Time

-1 0 1

Ix Iy

-1 0 1
T

Derivatives

Remember derivatives?

Derivative: rate at which a function f(x) changes
at a point as well as the direction that increases
the function

Given quadratic function f(x)

𝑓 𝑥 is function

𝑔 𝑥 = 𝑓′ 𝑥

aka

𝑔 𝑥 =
𝑑

𝑑𝑥
𝑓(𝑥)

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5

Given quadratic function f(x)

What’s special

about x=2?

𝑓 𝑥 minim. at 2

𝑔 𝑥 = 0 at 2

a = minimum of f →

𝑔 𝑎 = 0

Reverse is not true

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5

Rates of change

Suppose I want to

increase f(x) by

changing x:

Blue area: move left

Red area: move right

Derivative tells you

direction of ascent

and rate

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5

What Calculus Should I Know

• Really need intuition

• Need chain rule

• Rest you should look up / use a computer
algebra system / use a cookbook

• Partial derivatives (and that’s it from
multivariable calculus)

Partial Derivatives

• Pretend other variables are constant, take a
derivative. That’s it.

• Make our function a function of two variables

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

𝑓 𝑥 = 𝑥 − 2 2 + 5
𝜕

𝜕𝑥
𝑓 𝑥 = 2 𝑥 − 2 ∗ 1 = 2(𝑥 − 2)

𝜕

𝜕𝑥
𝑓2 𝑥 = 2(𝑥 − 2)

Pretend it’s

constant →

derivative = 0

Zooming Out

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Dark = f(x,y) low

Bright = f(x,y) high

Taking a slice of

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Slice of y=0 is the

function from before:

𝑓 𝑥 = 𝑥 − 2 2 + 5
𝑓′ 𝑥 = 2(𝑥 − 2)

Taking a slice of

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

𝜕

𝜕𝑥
𝑓2 𝑥, 𝑦 is rate of

change & direction in

x dimension

Zooming Out

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

𝜕

𝜕𝑦
𝑓2 𝑥, 𝑦 is

2(𝑦 + 1)
and is the rate of

change & direction in

y dimension

Zooming Out

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Gradient/Jacobian:

Making a vector of

∇𝑓=
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦

gives rate and

direction of change.

Arrows point OUT of

minimum / basin.

What Should I Know?

• Gradients are simply partial derivatives per-
dimension: if 𝒙 in 𝑓(𝒙) has n dimensions, ∇𝑓(𝑥)
has n dimensions

• Gradients point in direction of ascent and tell
the rate of ascent

• If a is minimum of 𝑓(𝒙) → ∇f a = 𝟎

• Reverse is not true, especially in high-
dimensional spaces

Last Time

(Ix2 + Iy2)1/2

Why Does This Work?

𝜕 𝑓(𝑥, 𝑦)

𝜕𝑥
= lim

𝜖→0

𝑓 𝑥 + 𝜖, 𝑦 − 𝑓(𝑥, 𝑦)

𝜖
Remember:

Image is function f(x,y)

Approximate:
𝜕 𝑓(𝑥, 𝑦)

𝜕𝑥
≈
𝑓 𝑥 + 1, 𝑦 − 𝑓(𝑥, 𝑦)

1

Another one:
𝜕 𝑓(𝑥, 𝑦)

𝜕𝑥
≈
𝑓 𝑥 + 1, 𝑦 − 𝑓(𝑥 − 1, 𝑦)

2

-1 1

-1 0 1

Other Differentiation Operations

−1 0 1
−1 0 1
−1 0 1

1 1 1
0 0 0
−1 −1 −1

Prewitt

−1 0 1
−2 0 2
−1 0 1

1 2 1
0 0 0
−1 −2 −1

Sobel

Horizontal Vertical

Why might people use these compared

to [-1,0,1]?

Images as Functions or Points

Key idea: can treat image as a point in R(HxW)

or as a function of x,y.

∇𝐼(𝑥, 𝑦) =

𝜕𝐼

𝜕𝑥
(𝑥, 𝑦)

𝜕𝐼

𝜕𝑦
(𝑥, 𝑦)

How much the intensity

of the image changes

as you go horizontally

at (x,y)

(Often called Ix)

Image Gradient Direction

∇𝑓 =
𝜕𝑓

𝜕𝑥
, 0 ∇𝑓 = 0,

𝜕𝑓

𝜕𝑦
∇𝑓 =

𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦

Some gradients

Figure Credit: S. Seitz

Image Gradient

Gradient: direction of maximum change.

What’s the relationship to edge direction?

Ix Iy

Image Gradient

(Ix2 + Iy2)1/2 : magnitude

Image Gradient

atan2(Iy,Ix): orientation

I’m making the lightness equal to gradient magnitude

Image Gradient

atan2(Iy,Ix): orientation

Now I’m showing all the gradients

Image Gradient

atan2(Iy,Ix): orientation

Why is there structure at 1 and not at 2?

1
2

Noise

Consider a row of f(x,y) (i.e., fix y)

Slide Credit: S. Seitz

Noise

-1 0 1Conv. image + per-pixel noise with

𝐷𝑖,𝑗 = (𝐼𝑖,𝑗+1+𝜖𝑖,𝑗+1) − (𝐼𝑖,𝑗−1+𝜖𝑖,𝑗−1)

𝐼𝑖,𝑗 = True image 𝜖𝑖,𝑗 ∼ 𝑁(0, 𝜎2)

𝐷𝑖,𝑗 = (𝐼𝑖,𝑗+1−𝐼𝑖,𝑗−1) + 𝜖𝑖,𝑗+1 − 𝜖𝑖,𝑗−1

True

difference

Sum of 2

Gaussians

𝜖𝑖,𝑗 − 𝜖𝑘,𝑙 ∼ 𝑁 0, 2𝜎2 → Variance doubles!

Noise
Consider a row of f(x,y) (i.e., make y constant)

Slide Credit: S. Seitz

How can we use the last class to fix this?

Handling Noise

f

g

f * g

)(gf
dx

d


Slide Credit: S. Seitz

Noise in 2D

Noisy Input Ix via [-1,01] Zoom

Noise + Smoothing

Smoothed Input Ix via [-1,01] Zoom

Let’s Make It One Pass (1D)

g
dx

d
f 

f

g
dx

d

Slide Credit: S. Seitz

𝑑

𝑑𝑥
𝑓 ∗ 𝑔 = 𝑓 ∗

𝑑

𝑑𝑥
𝑔

Let’s Make It One Pass (2D)

Which one finds the X direction?
Slide Credit: L. Lazebnik

Gaussian Derivative Filter

Applying the Gaussian Derivative

1 pixel 3 pixels 7 pixels

Removes noise, but blurs edge

Slide Credit: D. Forsyth

Compared with the Past

Why would anybody use the bottom filter?

Gaussian

Derivative

1 0 −1
2 0 −2
1 0 −1

1 2 1
0 0 0
−1 −2 −1

Sobel

Filter

Filters We’ve Seen

Smoothing

Slide Credit: J. Deng

Derivative

Example Gaussian Deriv. of gauss

Only +? Yes No

Goal Remove noise Find edges

Sums to 1 0

Why sum to 1 or 0, intuitively?

Problems

Image human segmentation gradient magnitude

Still an active area of research

Corners
9300 Harris Corners Pkwy, Charlotte, NC

Slide Credit: S. Lazebnik

Desirables

• Repeatable: should find same things even with
distortion

• Saliency: each feature should be distinctive

• Compactness: shouldn’t just be all the pixels

• Locality: should only depend on local image
data

Property list: S. Lazebnik

Example

Slide credit: N. Snavely

Can you find the correspondences?

Example Matches

Slide credit: N. Snavely

Look for the colored squares

Basic Idea

“edge”:

no change

along the edge

direction

“corner”:

significant

change in all

directions

“flat” region:

no change in

all directions

Slide Credit: S. Lazebnik

Should see where we are based on small

window, or any shift → big intensity change.

Formalizing Corner Detection

Sum of squared differences between image

and image shifted u,v pixels over.

Plot of E(u,v)

E(3,2)

Image I(x,y)

Slide Credit: S. Lazebnik

𝐸 𝑢, 𝑣 = ෍

𝑥,𝑦 ∈𝑊

𝐼[𝑥 + 𝑢, 𝑦 + 𝑣] − 𝐼[𝑥, 𝑦] 2

Formalizing Corner Detection

𝐸 𝑢, 𝑣 = ෍

𝑥,𝑦 ∈𝑊

𝐼[𝑥 + 𝑢, 𝑦 + 𝑣] − 𝐼[𝑥, 𝑦] 2

Sum of squared differences between image

and image shifted u,v pixels over.

Plot of E(u,v)

E(0,0)

Image I(x,y)

Slide Credit: S. Lazebnik

What’s the

value of E(0,0)?

Formalizing Corner Detection

Can compute E[u,v] for any window and u,v.

But we’d like an simpler function of u,v.

Slide Credit: S. Lazebnik

Aside: Taylor Series for Images

Recall Taylor Series:

𝑓 𝑥 + 𝑑 ≈ 𝑓 𝑥 +
𝜕𝑓

𝜕𝑥
𝑑

𝐼 𝑥 + 𝑢, 𝑦 + 𝑣 ≈ 𝐼 𝑥, 𝑦 + 𝐼𝑥𝑢 + 𝐼𝑦𝑣

Do the same with images, treating them as

function of x, y

Formalizing Corner Detection

𝐸 𝑢, 𝑣 = ෍

𝑥,𝑦 ∈𝑊

𝐼[𝑥 + 𝑢, 𝑦 + 𝑣] − 𝐼[𝑥, 𝑦] 2

≈ ෍

𝑥,𝑦 ∈𝑊

𝐼 𝑥, 𝑦 + 𝐼𝑥[𝑥, 𝑦]𝑢 + 𝐼𝑦[𝑥, 𝑦]𝑣 − 𝐼[𝑥, 𝑦]
2

Taylor series

expansion for I

at every single

point in window

= ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥[𝑥, 𝑦]𝑢 + 𝐼𝑦[𝑥, 𝑦]𝑣
2

Cancel

= ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥𝑢
2 + 2𝐼𝑥𝐼𝑦𝑢𝑣 + 𝐼𝑦

2𝑣2Expand

For brevity: Ix = Ix at point (x,y), Iy = Iy at point (x,y)

Formalizing corner Detection

𝐸 𝑢, 𝑣 ≈ ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥
2𝑢2 + 2𝐼𝑥𝐼𝑦𝑢𝑣 + 𝐼𝑦

2𝑣2

= 𝑢, 𝑣 𝑴 𝑢, 𝑣 𝑇

By linearizing image, we can approximate E(u,v)

with quadratic function of u and v

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

M is called the second moment matrix

Intuitively what is M?

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

=
𝑎 0
0 𝑏

Pretend for now gradients are either vertical or

horizontal at a pixel (so Ix Iy = 0)Obviously

Wrong!

If a,b are both small: flat

If one is big, one is small: edge

If a,b both big: corner

Review: Quadratic Forms

Diagram credit: S. Lazebnik

𝐸 [𝑢, 𝑣] = 𝑢, 𝑣 𝑴 𝑢, 𝑣 𝑇

Suppose have symmetric matrix M, scalar a,

vector [u,v]:

𝐸 [𝑢, 𝑣] = 𝑎

Then the isocontour / slice-through of F, i.e.

is an ellipse.

Review: Quadratic Forms

direction of the

slowest change

direction of the

fastest change

(1)
-1/2

(2)
-1/2

Slide credit: S. Lazebnik

𝑴 = 𝑹−𝟏 𝜆1 0
0 𝜆2

𝑹

We can look at the shape of this ellipse by

decomposing M into a rotation + scaling

What are

λ1 and λ2?

Interpreting The Matrix M

The second moment matrix tells us how quickly

the image changes and in which directions.

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

= 𝑹−1 𝜆1 0
0 𝜆2

𝑹

Can compute at

each pixel
Directions

Amounts

Visualizing M

Slide credit: S. Lazebnik

Visualizing M

Slide credit: S. Lazebnik

Technical note: M is often

best visualized by first

taking inverse, so long edge

of ellipse goes along edge

Interpreting Eigenvalues of M

Slide credit: S. Lazebnik; Note: this refers to previous ellipses, not original M ellipse. Other slides on the internet may vary

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all

directions

1 and 2 are small;

E is almost constant

in all directions

“Edge”

1 >> 2

“Edge”

2 >> 1

“Flat”

region

Putting Together The Eigenvalues

𝑅 = det 𝑴 − 𝛼 𝑡𝑟𝑎𝑐𝑒 𝑴 2

= 𝜆1𝜆2 − 𝛼 𝜆1 + 𝜆2
2

“Corner”

R > 0

“Edge”

R < 0

“Edge”

R < 0

“Flat”

region

|R| small

α: constant (0.04 to 0.06)

Slide credit: S. Lazebnik; Note: this refers to previous ellipses, not original M ellipse. Other slides on the internet may vary

In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian
weighting w

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

𝑴 =

෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑦
2

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

𝑅 = det 𝑴 − 𝛼 𝑡𝑟𝑎𝑐𝑒 𝑴 2

= 𝜆1𝜆2 − 𝛼 𝜆1 + 𝜆2
2

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Computing R

Slide credit: S. Lazebnik

Computing R

Slide credit: S. Lazebnik

In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R

4. Threshold R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Thresholded R

Slide credit: S. Lazebnik

In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R

4. Threshold R

5. Take only local maxima (called non-maxima
suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Thresholded, NMS R

Slide credit: S. Lazebnik

Final Results

Slide credit: S. Lazebnik

Desirable Properties

If our detectors are repeatable, they should be:

• Invariant to some things: image is transformed
and corners remain the same

• Covariant/equivariant with some things:
image is transformed and corners transform
with it.

Slide credit: S. Lazebnik

Recall Motivating Problem

Images may be different in lighting and geometry

Affine Intensity Change

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity changes

Slide credit: S. Lazebnik

𝐼𝑛𝑒𝑤 = 𝑎𝐼𝑜𝑙𝑑 + 𝑏

M only depends on derivatives, so b is irrelevant

But a scales derivatives and there’s a threshold

Image Translation

Slide credit: S. Lazebnik

All done with convolution. Convolution is

translation invariant.

Equivariant with translation

Image Rotation

Rotations just cause the corner rotation to change.

Eigenvalues remain the same.

Equivariant with rotation

Image Scaling

Corner

One pixel can become many pixels and vice-

versa.

Not equivariant with scaling

