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Goal

How big is this image as a vector?
389x600 = 233,400 dimensions (big)




Applications To Have In Mind

Part of the
same
photo?
IR Same
computer
o from another

angle?



Applications To Have In Mind

Building a 3D Reconstruction Out Of Images

Slide Credit: N. Seitz



Applications To Have In Mind

Stitching photos taken at different angles




One Familiar Example

Given two images: how do you align them?




One (Hopefully Familiar) Solution

for y in range(-ySearch,ySearch+1):
for x in range(-xSearch,xSearch+1):
#Touches all HxW pixels!
check alignment_with_images()



One Motivating Example

Given these images: how do you align them?

These arn’t off by a mII 2D translation but inted by
a 3D rotation + translation of the camera.

Photo credit: M. Brown, D. Lowe



One (Hopefully Familiar) Solution

for y in yRange:
for x in xRange:
for z in zZRange:
for xRot in xRotVals:
for yRot in yRotVals:
for zZRot in zZRotVals:
#touches all HxW pixels!
check alignment_with_images()
This code should make you really unhappy

Note: this actually isn’t even the full number of parameters; it's actually 8 for loops.




An Alternate Approach

Given these images: how would you align them?

A mountain peak!

A mountain peak!

E e R S

% This dark spot |




An Alternate Approach

Finding and Matching

1: find corners+features
2: match based on local image data

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe



What Now?

Given pairs
p1,p2 of
correspondence,
how do | align?

Consider translation-
only case from HW1.




An Alternate Approach

Solving for a Transformation

3: Solve for transformation T (e.g. such that
p1 =T p2) that fits the matches well

Note the homogeneous coordinates, you'll see them again.

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe



An Alternate Approach

Blend Them Together

Key insight: we don't work with full image. We
work with only parts of the image.

Photo Credit: M. Brown, D. Lowe



Today

Finding edges (part 1) and corners
(part 2) in images.




Where do Edges Come From?




ere do Edges Come From?

Depth / Distance
Discontinuity




ere do Edges Come From?

Surface Normal / Orientation
Discontinuity




ere do Edges Come From?

Surface Color / Reflectance
Properties Discontinuity




Where do Edges Come From?
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Last Time




Derivatives

Remember derivatives?

Derivative: rate at which a function f(x) changes
at a point as well as the direction that increases

the function



Given quadratic function f(x)
fO,y)=(x—-2)*+5

f(x) is function 0= (22t
== g(x) = 2(x-2)
g =f'x)
30
aka
20
101
g(x) = —f(X) ~ -
0 _‘,r"”
il




Given quadratic function f(x)
fO,y)=(x—-2)*+5

50

What'’s special — ) = (x2)"2 +5

—'_Q(X) = 2(x-2)

about x=27?

40/

f(x) minim.at2 3
gx)=0at2

a = minimum of f —
gla) =0 o

Reverse Is noft true




Rates of change
fl,y)=(x—2)*+5

50
Suppose | want to — f(x) = (x2)"2 + 5

== g(x) = 2(x-2)

iIncrease f(x) by
changing x:

40

30

Blue area: move left
Red area: move right 2o
Derivative tells you *°
direction of ascent
and rate




What Calculus Should | Know

* Really need intuition
* Need chain rule

* Rest you should look up / use a computer
algebra system / use a cookbook

 Partial derivatives (and that's it from
multivariable calculus)



Partial Derivatives

* Pretend other variables are constant, take a

derivative. That’s it.

 Make our function a function of two variables

fG)=x—-2)"+5

0
af(x)=2(x—2)*1=2(x_2)

f26y)=(x—-2)*+5+

0
afz(x) = 2(x — 2)

(y + 1)*

Pretend it's
constant —
derivative = 0



Zooming Out
foe,y) = (x=2)>+5+ (y + 1)

3_

Dark = f(x,y) low
Bright = f(x,y) high 2|




Taking a slice of
f(6,y) = (x—2)" + 5+ (y + 1)

3_

Slice of y=0 is the
function from before: 2|
fx)=(x-2)>+5 |
fl(x) =2(x—2)

— f(X) = (X-2)"2 + 5
== g(x) = 2(x-2)

-
-
-
-
-




Taking a slice of
f(6,y) = (x—2)" + 5+ (y + 1)
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Zooming Out
foe,y) = (x=2)>+5+ (y + 1)

Gradient/Jacobian:
Making a vector of

v of odf .
I~ {ox " ay
gives rate and

N




What Should | Know?

» Gradients are simply partial derivatives per-
dimension: if x in f(x) has n dimensions, V,(x)
has n dimensions

» Gradients point in direction of ascent and tell
the rate of ascent

e If ais minimum of f(x) — V¢(a) =0

* Reverse is not true, especially in high-
dimensional spaces



Last Time

(IX2 + ly2 )12




Why Does This Work??
Image is function f(x,y)

Remember: 0/ y) = limf(x tey) —f(xy)

0x e—0 €
X

-1 1

Another one: ~ 0fGey) flx+ly)—f(x—1y)

0x 2
110 | 1




Other Differentiation Operations

Horizonta Vertical
—1 0 1 T 1 1 17
Prewitt -1 0 1 0 0 0
-1 0 1. -1 -1 -1l
—1 0 1 1 2 17
Sobel -2 0 2 0 0 0
-1 0 1. -1 -2 —1.

Why might people use these compared
to [-1,0,1]?



Images as Functions or Points

Key idea: can treat image as a point in R(HxW)
or as a function of x,y.

VIi(x,y) =

3y (x, Y)_

35 (5 V)

dl

01 | How much the intensity

of the image changes
as you go horizontally

at (X,y)
(Often called Ix)



Image Gradient Direction

Some gradients

ﬁ O- - df af of

Vf= —ax; | Vf= _O,_ sz -ax)ay_

Figure Credit: S. Seitz



Image Gradient

Gradient: direction of maximum change.
What's the relationship to edge direction?




Image Gradient

(Ix2 + ly2 )2 magnitude




Image Gradient

atan2(ly,Ix): orientation

I’m making the lightness equal to gradient magnitude



Image Gradient

atan2(ly,Ix): orientation
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Now I'm showing all the gradients



Image Gradient

atan2(ly,Ix): orientation

Why is there structure at 1 and not at 2?




Noise

Consider a row of f(x,y) (i.e., fix y)

.................................................

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Slide Credit: S. Seitz



Noise

Conv. image + per-pixel noise with |-1]0 |

I; ; = True image ¢€;; ~ N(0,0%)
Di;=(;jy11+€ j41) — Ui j—1t€j—1)

Dij=(js1—1ij—1) + € j41 — € j-1
N— s N— s

True Sum of 2
difference Gaussians

€;j — €x1 ~ N(0,20%) - Variance doubles!



Noise
Consider a row of f(x,y) (i.e., make y constant)

flx)|

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

2 f(x)

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1800 1800 2000

How can we use the last class to fix this?

Slide Credit: S. Seitz



Handling Noise

Sigma = 50

(0)e)
Kernel

1600

f*g

Convolution
T

400

1600

1800 2000

d
a(f*g)

Differentiation

Slide Credit: S. Seitz
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Let's Make It One Pass (1D)

d d
E(f*9)=f*a

Sigma = 50

.................................................

~
Signal

| 1 1 1 | 1 | 1
0 200 400 600 800 1000 1200 1400 1600 1800 2000

0Q
Kernel

| 1 1 1 I 1 I 1 I
0 200 400 600 800 1000 1200 1400 1600 1800 2000

*
oQ
Convolution

| | 1 |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Slide Credit: S. Seitz



Let's Make It One Pass (2D)

Gaussian Derivative Filter

.
Which one finds the X direction?

Slide Credit: L. Lazebnik



Applying the Gaussian Derivative

1 pixel 3 pixels [ pixels

Removes noise, but blurs edge

Slide Credit: D. Forsyth



Compared with the Past

Gaussian

Derivative -
1 0 —17 1 2 1]

Eﬁtt:' 2 0 -2 0 0 0
1 0 -1 -1 -2 -1

Why would anybody use the bottom filter?



Filters We’ve Seen

Smoothing Derivative
Example Gaussian Deriv. of gauss
Goal Remove noise Find edges
Only +7 Yes No
Sums to 1 0

Why sum to 1 or 0, intuitively?

Slide Credit: J. Deng



Still an active

Problems

human segmentation

gradient magnitude
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Corners

9300 Harris Corners Pkwy, Charlotte, NC

Slide Credit: S. Lazebnik



Desirables

» Repeatable: should find same things even with
distortion

« Saliency: each feature should be distinctive
« Compactness: shouldn’t just be all the pixels

* Locality: should only depend on local image
data

Property list: S. Lazebnik



Example

Can you find the correspondences?

Slide credit: N. Snavely



Example Matches

Look for the colored squares

Slide credit: N. Snavely



Basic Idea

Should see where we are based on small
window, or any shift — big intensity change.

“flat” region: “edge”: ‘corner’;
no change in no change significant
all directions along the edge change in all

direction directions

Slide Credit: S. Lazebnik



Formalizing Corner Detection

Sum of squared differences between image

and image shifted u,v pixels over.
E(u,v) = z (I[x +u,y+v]—I[x,y])?
(x,y)EW

Image I(x,y) Plot of E(u,v)
n »

Slide Credit: S. Lazebnik

EG,



Formalizing Corner Detection

Sum of squared differences between image

and image shifted u,v pixels over.
E(uv) = Z (I[x +u,y +v] —I[x, y])?
(x,y)EW

#

What’s the
value of E(0,0)?

Slide Credit: S. Lazebnik

Image I(x,y) Plot of E(u,v)




Formalizing Corner Detection

Can compute E[u,v] for any window and u,v.
But we’'d like an simpler function of u,v.

Slide Credit: S. Lazebnik



Aside: Taylor Series for Images

Recall Taylor Series:

flx+d) ~ () + 2

Do the same with images, treating them as
function of x, y

Ix+uy+v)=Ixy)+Lu+lv



Formalizing Corner Detection

E(u,v) = 2 (I[x +u,y +v]—I[x,y])?

Taylor series (x,y)EW
' 2
expansion forl Z (1T, y] + Le[x, y]u + I [x, y]v — I[x, y])
at every single (
CL : X, y)EW
point in window
2
Cancel = Z (Le[x, ylu + L [x, y]v)
(x,y)ew
Expand = Z Lu® + 2L I,uv + [v?
(x,y)ew

For brevity: Ix = Ix at point (x,y), ly = ly at point (x,y)



Formalizing corner Detection

By linearizing image, we can approximate E(u,v)
with quadratic function of u and v

E(u,v) = Z (I2u? + 2L uv + [2v?)

(x,y)EW
= [u, v]M[u, v]"
Z I2 Z Ll
M = xX,yeW xX,yeW
Z L1, Z I
Lx,yeEW xX,yeW 4

M is called the second moment matrix



Obviouslj‘}w

Wrong!

Intuitively what is M?

Pretend for now gradients are either vertical or
ontal at a pixel (so Ix ly =0)

M =

2!

xX,yeW

Lx,yeEW

If a,b are both small:

If one is big, one is small:

If a,b both big:

z L1,

zz L1,

xX,yeW

xX,YyEW

flat

corner

2
25

edge

=[5 4l




Review: Quadratic Forms

Suppose have symmetric matrix M, scalar a,
vector [u,V]:
E([u,v]) = [u, vIM[u, v]"

Then the isocontour / slice-through of F, i.e.
E([u,v]) =a <

IS an ellipse. g eue=rer

Diagram credit: S. Lazebnik

74
7



Review: Quadratic Forms

We can look at the shape of this ellipse by
decomposing M into a rotation + scaling

A 0
— p-1|71
M =R [O Az]R

direction of the
fastest change
What are
o direction of the
slowest change
A, and A,

Slide credit: S. Lazebnik



Interpreting The Matrix M

The second moment matrix tells us how quickly
the image changes and in which directions.

Can compute at Directions
each pixel
D B Iy
ok 1,
z LI, 2 I;
Lx,yeW x,yeW J

Amounts



Visualizing M

Slide credit: S. Lazebnik
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Slide credit: S. Lazebnik



Interpreting Eigenvalues of M

Ay

A, and A, are small;
E is almost constant :>

in all directions

Ay

Slide credit: S. Lazebnik; Note: this refers to previous ellipses, not original M ellipse. Other slides on the internet may vary



Putting Together The Eigenvalues

R = det(M) — a trace(M)?
= LAy — a(Ay + 2,)?

a. constant (0.04 to 0.06)

Slide credit: S. Lazebnik; Note: this refers to previous ellipses, not original M ellipse. Other slides on the internet may vary



In Practice

1. Compute partial derivatives Ix, ly per pixel
2. Compute M at each pixel, using Gaussian

weighting w
> wenE ) wayL,
M = xX,YEW X,YEW
z w(x, ) L I, Z w(x, y)I;
Lx,yeW xX,yeW il

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik


http://www.bmva.org/bmvc/1988/avc-88-023.pdf

In Practice

1. Compute partial derivatives Ix, ly per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R

R = det(M) — a trace(M)?
= 1Ay — a(Ay + 2,)?

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik


http://www.bmva.org/bmvc/1988/avc-88-023.pdf

Computing R

Slide credit: S. Lazebnik



Computing R

Slide credit: S. Lazebnik



In Practice

1. Compute partial derivatives Ix, ly per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R

4. Threshold R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik


http://www.bmva.org/bmvc/1988/avc-88-023.pdf
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Slide credit: S. Lazebnik



In Practice

1. Compute partial derivatives Ix, ly per pixel

2. Compute M at each pixel, using Gaussian
weighting w

3. Compute response function R
Threshold R

5. Take only local maxima (called non-maxima
suppression)

s

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik


http://www.bmva.org/bmvc/1988/avc-88-023.pdf
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Slide credit: S. Lazebnik



Final Results

Slide credit: S. Lazebnik



Desirable Properties

If our detectors are repeatable, they should be:

* Invariant to some things: image is transformed
and corners remain the same

« Covariant/equivariant with some things:
image is transformed and corners transform
with it.

Slide credit: S. Lazebnik



Recall Motivating Problem

Images may be different in lighting and geometry

o




Affine Intensity Change

Inew = algig + b

M only depends on derivatives, so b is irrelevant

But a scales derivatives and there’s a threshold

R
threshold

|~ [\

)N

X (image coordinaté)

R

i

X (image coordinaté)

Partially invariant to affine intensity changes

Slide credit: S. Lazebnik



Image Translation

=)

All done with convolution. Convolution is
translation invariant.

Equivariant with translation

Slide credit: S. Lazebnik



Image Rotation
~ 1
57 S

Rotations just cause the corner rotation to change.
Eigenvalues remain the same.

Equivariant with rotation



Image Scaling

Corner F\

One pixel can become many pixels and vice-
versa.

Not equivariant with scaling






