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Goal

How big is this image as a vector?

389x600 = 233,400 dimensions (big)



Applications To Have In Mind 

Part of the 

same 

photo?

Same 

computer 

from another 

angle?



Applications To Have In Mind

Building a 3D Reconstruction Out Of Images

Slide Credit: N. Seitz



Applications To Have In Mind

Stitching photos taken at different angles



One Familiar Example

Given two images: how do you align them?



One (Hopefully Familiar) Solution

for y in range(-ySearch,ySearch+1):

for x in range(-xSearch,xSearch+1):

#Touches all HxW pixels! 

check_alignment_with_images()



One Motivating Example

Given these images: how do you align them?

Photo credit: M. Brown, D. Lowe

These aren’t off by a small 2D translation but instead by 

a 3D rotation + translation of the camera.



One (Hopefully Familiar) Solution

for y in yRange:

for x in xRange:

for z in zRange:

for xRot in xRotVals:

for yRot in yRotVals:

for zRot in zRotVals:

#touches all HxW pixels!

check_alignment_with_images() 

This code should make you really unhappy
Note: this actually isn’t even the full number of parameters; it’s actually 8 for loops. 



An Alternate Approach

Given these images: how would you align them?

A mountain peak!
A mountain peak!

This dark spot This dark spot



An Alternate Approach

1: find corners+features

2: match based on local image data

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe

Finding and Matching



What Now?

Given pairs

p1,p2 of 

correspondence, 

how do I align?

Consider translation-

only case from HW1.



An Alternate Approach

3: Solve for transformation T (e.g. such that  

p1 ≡ T p2) that fits the matches well

Solving for a Transformation

T

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe

Note the homogeneous coordinates, you’ll see them again.



An Alternate Approach

Blend Them Together

Photo Credit: M. Brown, D. Lowe

Key insight: we don’t work with full image. We 

work with only parts of the image.  



Today

Corner of 

the glasses

Edge next to 

panel 

Finding edges (part 1) and corners 

(part 2) in images.



Where do Edges Come From?



Where do Edges Come From?

Depth / Distance 

Discontinuity

Why?



Where do Edges Come From?

Surface Normal / Orientation 

Discontinuity

Why?



Where do Edges Come From?

Surface Color / Reflectance 

Properties Discontinuity



Where do Edges Come From?

Illumination

Discontinuity



Last Time

-1 0 1

Ix Iy

-1 0 1
T



Derivatives

Remember derivatives? 

Derivative: rate at which a function f(x) changes 
at a point as well as the direction that increases 
the function



Given quadratic function f(x)

𝑓 𝑥 is function

𝑔 𝑥 = 𝑓′ 𝑥

aka

𝑔 𝑥 =
𝑑

𝑑𝑥
𝑓(𝑥)

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5



Given quadratic function f(x)

What’s special 

about x=2?

𝑓 𝑥 minim. at 2

𝑔 𝑥 = 0 at 2

a = minimum of f →

𝑔 𝑎 = 0

Reverse is not true

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5



Rates of change

Suppose I want to 

increase f(x) by 

changing x:

Blue area: move left

Red area: move right

Derivative tells you 

direction of ascent 

and rate

𝑓 𝑥, 𝑦 = 𝑥 − 2 2 + 5



What Calculus Should I Know

• Really need intuition

• Need chain rule

• Rest you should look up / use a computer 
algebra system / use a cookbook 

• Partial derivatives (and that’s it from 
multivariable calculus)



Partial Derivatives

• Pretend other variables are constant, take a 
derivative. That’s it.

• Make our function a function of two variables

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

𝑓 𝑥 = 𝑥 − 2 2 + 5
𝜕

𝜕𝑥
𝑓 𝑥 = 2 𝑥 − 2 ∗ 1 = 2(𝑥 − 2)

𝜕

𝜕𝑥
𝑓2 𝑥 = 2(𝑥 − 2)

Pretend it’s 

constant → 

derivative = 0



Zooming Out

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Dark = f(x,y) low

Bright = f(x,y) high



Taking a slice of

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Slice of y=0 is the 

function from before:

𝑓 𝑥 = 𝑥 − 2 2 + 5
𝑓′ 𝑥 = 2(𝑥 − 2)



Taking a slice of

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

𝜕

𝜕𝑥
𝑓2 𝑥, 𝑦 is rate of 

change & direction in 

x dimension



Zooming Out

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

𝜕

𝜕𝑦
𝑓2 𝑥, 𝑦 is

2(𝑦 + 1)
and is the rate of 

change & direction in 

y dimension



Zooming Out

𝑓2 𝑥, 𝑦 = 𝑥 − 2 2 + 5 + 𝑦 + 1 2

Gradient/Jacobian:

Making a vector of 

∇𝑓=
𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦

gives rate and 

direction of change.

Arrows point OUT of 

minimum / basin.



What Should I Know?

• Gradients are simply partial derivatives per-
dimension: if 𝒙 in 𝑓(𝒙) has n dimensions, ∇𝑓(𝑥)
has n dimensions

• Gradients point in direction of ascent and tell 
the rate of ascent

• If a is minimum of 𝑓(𝒙) → ∇f a = 𝟎

• Reverse is not true, especially in high-
dimensional spaces



Last Time

(Ix2 + Iy2 )1/2



Why Does This Work?

𝜕 𝑓(𝑥, 𝑦)

𝜕𝑥
= lim

𝜖→0

𝑓 𝑥 + 𝜖, 𝑦 − 𝑓(𝑥, 𝑦)

𝜖
Remember:

Image is function f(x,y)

Approximate:
𝜕 𝑓(𝑥, 𝑦)

𝜕𝑥
≈
𝑓 𝑥 + 1, 𝑦 − 𝑓(𝑥, 𝑦)

1

Another one:
𝜕 𝑓(𝑥, 𝑦)

𝜕𝑥
≈
𝑓 𝑥 + 1, 𝑦 − 𝑓(𝑥 − 1, 𝑦)

2

-1 1

-1 0 1



Other Differentiation Operations

−1 0 1
−1 0 1
−1 0 1

1 1 1
0 0 0
−1 −1 −1

Prewitt

−1 0 1
−2 0 2
−1 0 1

1 2 1
0 0 0
−1 −2 −1

Sobel

Horizontal Vertical

Why might people use these compared 

to [-1,0,1]? 



Images as Functions or Points

Key idea: can treat image as a point in R(HxW)

or as a function of x,y. 

∇𝐼(𝑥, 𝑦) =

𝜕𝐼

𝜕𝑥
(𝑥, 𝑦)

𝜕𝐼

𝜕𝑦
(𝑥, 𝑦)

How much the intensity 

of the image changes 

as you go horizontally 

at (x,y)

(Often called Ix)



Image Gradient Direction

∇𝑓 =
𝜕𝑓

𝜕𝑥
, 0 ∇𝑓 = 0,

𝜕𝑓

𝜕𝑦
∇𝑓 =

𝜕𝑓

𝜕𝑥
,
𝜕𝑓

𝜕𝑦

Some gradients

Figure Credit: S. Seitz



Image Gradient

Gradient: direction of maximum change.

What’s the relationship to edge direction?

Ix Iy



Image Gradient

(Ix2 + Iy2 )1/2 : magnitude



Image Gradient

atan2(Iy,Ix): orientation

I’m making the lightness equal to gradient magnitude



Image Gradient

atan2(Iy,Ix): orientation

Now I’m showing all the gradients



Image Gradient

atan2(Iy,Ix): orientation

Why is there structure at 1 and not at 2?

1
2



Noise

Consider a row of f(x,y) (i.e., fix y)

Slide Credit: S. Seitz



Noise

-1 0 1Conv. image + per-pixel noise with

𝐷𝑖,𝑗 = (𝐼𝑖,𝑗+1+𝜖𝑖,𝑗+1) − (𝐼𝑖,𝑗−1+𝜖𝑖,𝑗−1 )

𝐼𝑖,𝑗 = True image 𝜖𝑖,𝑗 ∼ 𝑁(0, 𝜎2)

𝐷𝑖,𝑗 = (𝐼𝑖,𝑗+1−𝐼𝑖,𝑗−1) + 𝜖𝑖,𝑗+1 − 𝜖𝑖,𝑗−1

True 

difference

Sum of 2 

Gaussians

𝜖𝑖,𝑗 − 𝜖𝑘,𝑙 ∼ 𝑁 0, 2𝜎2 → Variance doubles!



Noise
Consider a row of f(x,y) (i.e., make y constant)

Slide Credit: S. Seitz

How can we use the last class to fix this?



Handling Noise

f

g

f * g

)( gf
dx

d


Slide Credit: S. Seitz



Noise in 2D

Noisy Input Ix via [-1,01] Zoom



Noise + Smoothing

Smoothed Input Ix via [-1,01] Zoom



Let’s Make It One Pass (1D)

g
dx

d
f 

f

g
dx

d

Slide Credit: S. Seitz

𝑑

𝑑𝑥
𝑓 ∗ 𝑔 = 𝑓 ∗

𝑑

𝑑𝑥
𝑔



Let’s Make It One Pass (2D)

Which one finds the X direction?
Slide Credit: L. Lazebnik

Gaussian Derivative Filter



Applying the Gaussian Derivative

1 pixel 3 pixels 7 pixels

Removes noise, but blurs edge

Slide Credit: D. Forsyth



Compared with the Past

Why would anybody use the bottom filter?

Gaussian 

Derivative

1 0 −1
2 0 −2
1 0 −1

1 2 1
0 0 0
−1 −2 −1

Sobel

Filter



Filters We’ve Seen

Smoothing

Slide Credit: J. Deng

Derivative

Example Gaussian Deriv. of gauss

Only +? Yes No

Goal Remove noise Find edges

Sums to 1 0

Why sum to 1 or 0, intuitively? 



Problems

Image human segmentation gradient magnitude

Still an active area of research



Corners
9300 Harris Corners Pkwy, Charlotte, NC

Slide Credit: S. Lazebnik



Desirables

• Repeatable: should find same things even with 
distortion

• Saliency: each feature should be distinctive

• Compactness: shouldn’t just be all the pixels

• Locality: should only depend on local image 
data

Property list: S. Lazebnik



Example

Slide credit: N. Snavely

Can you find the correspondences?



Example Matches

Slide credit: N. Snavely

Look for the colored squares



Basic Idea

“edge”:

no change 

along the edge 

direction

“corner”:

significant 

change in all 

directions

“flat” region:

no change in 

all directions

Slide Credit: S. Lazebnik

Should see where we are based on small 

window, or any shift → big intensity change.



Formalizing Corner Detection

Sum of squared differences between image 

and image shifted u,v pixels over.

Plot of E(u,v)

E(3,2)

Image I(x,y)

Slide Credit: S. Lazebnik

𝐸 𝑢, 𝑣 = ෍

𝑥,𝑦 ∈𝑊

𝐼[𝑥 + 𝑢, 𝑦 + 𝑣] − 𝐼[𝑥, 𝑦] 2



Formalizing Corner Detection

𝐸 𝑢, 𝑣 = ෍

𝑥,𝑦 ∈𝑊

𝐼[𝑥 + 𝑢, 𝑦 + 𝑣] − 𝐼[𝑥, 𝑦] 2

Sum of squared differences between image 

and image shifted u,v pixels over.

Plot of E(u,v)

E(0,0)

Image I(x,y)

Slide Credit: S. Lazebnik

What’s the 

value of E(0,0)?



Formalizing Corner Detection

Can compute E[u,v] for any window and u,v. 

But we’d like an simpler function of u,v.

Slide Credit: S. Lazebnik



Aside: Taylor Series for Images

Recall Taylor Series: 

𝑓 𝑥 + 𝑑 ≈ 𝑓 𝑥 +
𝜕𝑓

𝜕𝑥
𝑑

𝐼 𝑥 + 𝑢, 𝑦 + 𝑣 ≈ 𝐼 𝑥, 𝑦 + 𝐼𝑥𝑢 + 𝐼𝑦𝑣

Do the same with images, treating them as 

function of x, y



Formalizing Corner Detection 

𝐸 𝑢, 𝑣 = ෍

𝑥,𝑦 ∈𝑊

𝐼[𝑥 + 𝑢, 𝑦 + 𝑣] − 𝐼[𝑥, 𝑦] 2

≈ ෍

𝑥,𝑦 ∈𝑊

𝐼 𝑥, 𝑦 + 𝐼𝑥[𝑥, 𝑦]𝑢 + 𝐼𝑦[𝑥, 𝑦]𝑣 − 𝐼[𝑥, 𝑦]
2

Taylor series 

expansion for I 

at every single 

point in window

= ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥[𝑥, 𝑦]𝑢 + 𝐼𝑦[𝑥, 𝑦]𝑣
2

Cancel

= ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥𝑢
2 + 2𝐼𝑥𝐼𝑦𝑢𝑣 + 𝐼𝑦

2𝑣2Expand

For brevity: Ix = Ix at point (x,y), Iy = Iy at point (x,y)



Formalizing corner Detection

𝐸 𝑢, 𝑣 ≈ ෍

𝑥,𝑦 ∈𝑊

𝐼𝑥
2𝑢2 + 2𝐼𝑥𝐼𝑦𝑢𝑣 + 𝐼𝑦

2𝑣2

= 𝑢, 𝑣 𝑴 𝑢, 𝑣 𝑇

By linearizing image, we can approximate E(u,v) 

with quadratic function of u and v

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

M is called the second moment matrix



Intuitively what is M?

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

=
𝑎 0
0 𝑏

Pretend for now gradients are either vertical or 

horizontal at a pixel (so Ix Iy = 0)Obviously 

Wrong!

If a,b are both small: flat

If one is big, one is small: edge

If a,b both big: corner



Review: Quadratic Forms

Diagram credit: S. Lazebnik

𝐸 [𝑢, 𝑣] = 𝑢, 𝑣 𝑴 𝑢, 𝑣 𝑇

Suppose have symmetric matrix M, scalar a, 

vector [u,v]: 

𝐸 [𝑢, 𝑣] = 𝑎

Then the isocontour / slice-through of F, i.e. 

is an ellipse.



Review: Quadratic Forms

direction of the 

slowest change

direction of the 

fastest change

(1)
-1/2

(2)
-1/2

Slide credit: S. Lazebnik

𝑴 = 𝑹−𝟏 𝜆1 0
0 𝜆2

𝑹

We can look at the shape of this ellipse by 

decomposing M into a rotation + scaling

What are 

λ1 and λ2? 



Interpreting The Matrix M

The second moment matrix tells us how quickly 

the image changes and in which directions. 

𝑴 =

෍

𝑥,𝑦∈𝑊

𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝐼𝑦
2

= 𝑹−1 𝜆1 0
0 𝜆2

𝑹

Can compute at 

each pixel
Directions

Amounts 



Visualizing M

Slide credit: S. Lazebnik



Visualizing M

Slide credit: S. Lazebnik

Technical note: M is often 

best visualized by first 

taking inverse, so long edge 

of ellipse goes along edge



Interpreting Eigenvalues of M

Slide credit: S. Lazebnik; Note: this refers to previous ellipses, not original M ellipse. Other slides on the internet may vary

1

2

“Corner”

1 and 2 are large,

1 ~ 2;

E increases in all 

directions

1 and 2 are small;

E is almost constant 

in all directions

“Edge” 

1 >> 2

“Edge” 

2 >> 1

“Flat” 

region



Putting Together The Eigenvalues

𝑅 = det 𝑴 − 𝛼 𝑡𝑟𝑎𝑐𝑒 𝑴 2

= 𝜆1𝜆2 − 𝛼 𝜆1 + 𝜆2
2

“Corner”

R > 0

“Edge” 

R < 0

“Edge” 

R < 0

“Flat” 

region

|R| small

α: constant (0.04 to 0.06)

Slide credit: S. Lazebnik; Note: this refers to previous ellipses, not original M ellipse. Other slides on the internet may vary



In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian 
weighting w

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

𝑴 =

෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥
2 ෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥𝐼𝑦

෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑥𝐼𝑦 ෍

𝑥,𝑦∈𝑊

𝑤(𝑥, 𝑦)𝐼𝑦
2

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian 
weighting w

3. Compute response function R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

𝑅 = det 𝑴 − 𝛼 𝑡𝑟𝑎𝑐𝑒 𝑴 2

= 𝜆1𝜆2 − 𝛼 𝜆1 + 𝜆2
2

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Computing R

Slide credit: S. Lazebnik



Computing R

Slide credit: S. Lazebnik



In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian 
weighting w

3. Compute response function R

4. Threshold R

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Thresholded R

Slide credit: S. Lazebnik



In Practice

1. Compute partial derivatives Ix, Iy per pixel

2. Compute M at each pixel, using Gaussian 
weighting w

3. Compute response function R

4. Threshold R

5. Take only local maxima (called non-maxima 
suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Slide credit: S. Lazebnik

http://www.bmva.org/bmvc/1988/avc-88-023.pdf


Thresholded, NMS R 

Slide credit: S. Lazebnik



Final Results

Slide credit: S. Lazebnik



Desirable Properties

If our detectors are repeatable, they should be:

• Invariant to some things: image is transformed 
and corners remain the same

• Covariant/equivariant with some things: 
image is transformed and corners transform 
with it.

Slide credit: S. Lazebnik



Recall Motivating Problem

Images may be different in lighting and geometry



Affine Intensity Change

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity changes

Slide credit: S. Lazebnik

𝐼𝑛𝑒𝑤 = 𝑎𝐼𝑜𝑙𝑑 + 𝑏

M only depends on derivatives, so b is irrelevant

But a scales derivatives and there’s a threshold



Image Translation

Slide credit: S. Lazebnik

All done with convolution. Convolution is 

translation invariant. 

Equivariant with translation



Image Rotation

Rotations just cause the corner rotation to change. 

Eigenvalues remain the same.

Equivariant with rotation



Image Scaling

Corner

One pixel can become many pixels and vice-

versa.

Not equivariant with scaling




