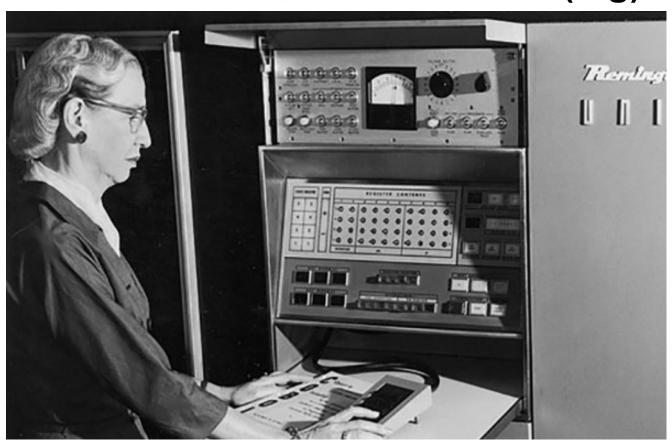
Detectors and Descriptors

EECS 442 – David Fouhey Fall 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Goal

How big is this image as a vector? 389x600 = 233,400 dimensions (big)



Applications To Have In Mind

Part of the same photo?

Same computer from another angle?

Applications To Have In Mind

Building a 3D Reconstruction Out Of Images

Applications To Have In Mind

Stitching photos taken at different angles

One Familiar Example

Given two images: how do you align them?

One (Hopefully Familiar) Solution

```
for y in range(-ySearch,ySearch+1):
    for x in range(-xSearch,xSearch+1):
        #Touches all HxW pixels!
        check_alignment_with_images()
```

One Motivating Example

Given these images: how do you align them?

These aren't off by a small 2D translation but instead by a 3D rotation + translation of the camera.

One (Hopefully Familiar) Solution

```
for y in yRange:
  for x in xRange:
     for z in zRange:
       for xRot in xRotVals:
          for yRot in yRotVals:
             for zRot in zRotVals:
               #touches all HxW pixels!
               check alignment with images()
```

Note: this actually isn't even the full number of parameters; it's actually 8 for loops.

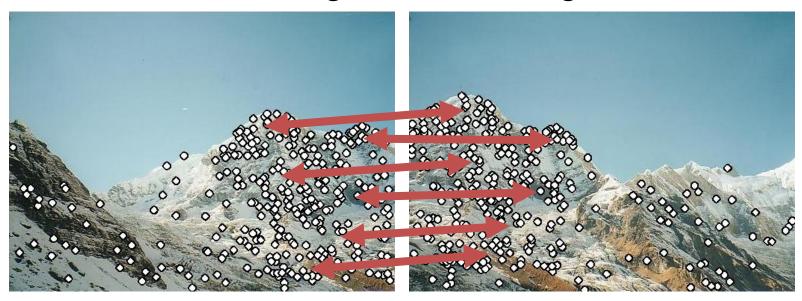
This code should make you really unhappy

An Alternate Approach

Given these images: how would you align them?

An Alternate Approach

Finding and Matching

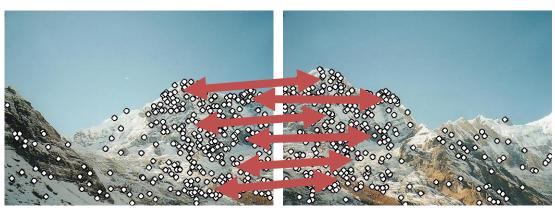


1: find corners+features

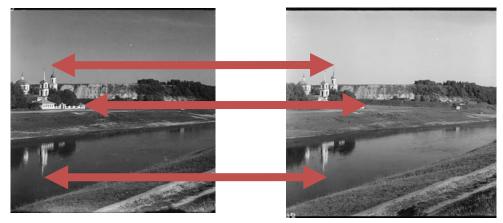
2: match based on local image data

What Now?

Given pairs p1,p2 of correspondence, how do I align?

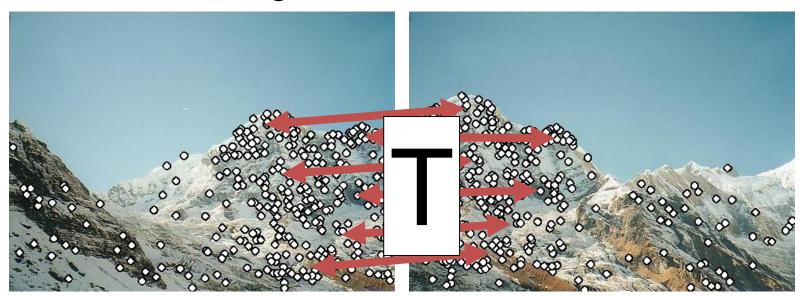


Consider translationonly case from HW1.



An Alternate Approach

Solving for a Transformation



3: Solve for transformation T (e.g. such that **p1** ≡ **T p2**) that fits the matches well

Note the homogeneous coordinates, you'll see them again.

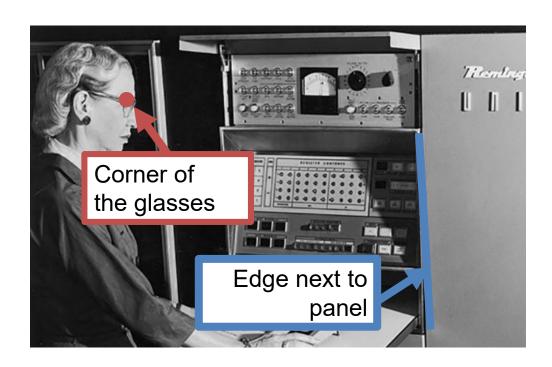
An Alternate Approach

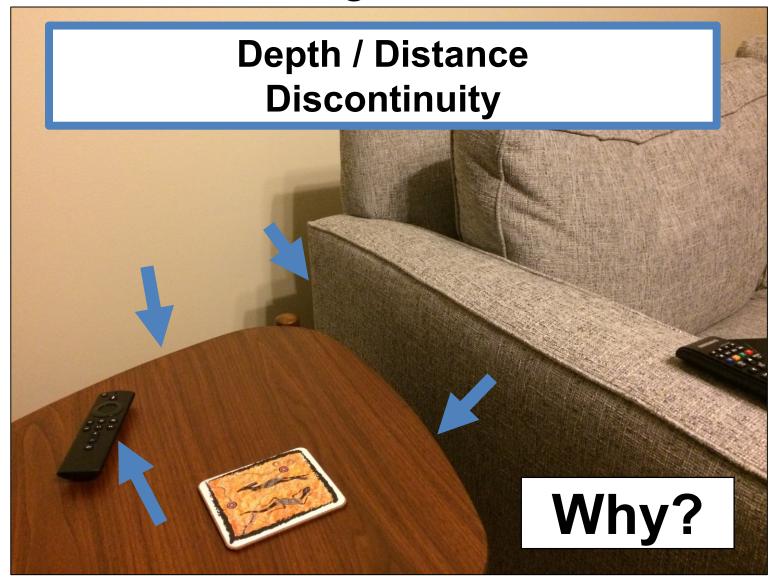
Blend Them Together

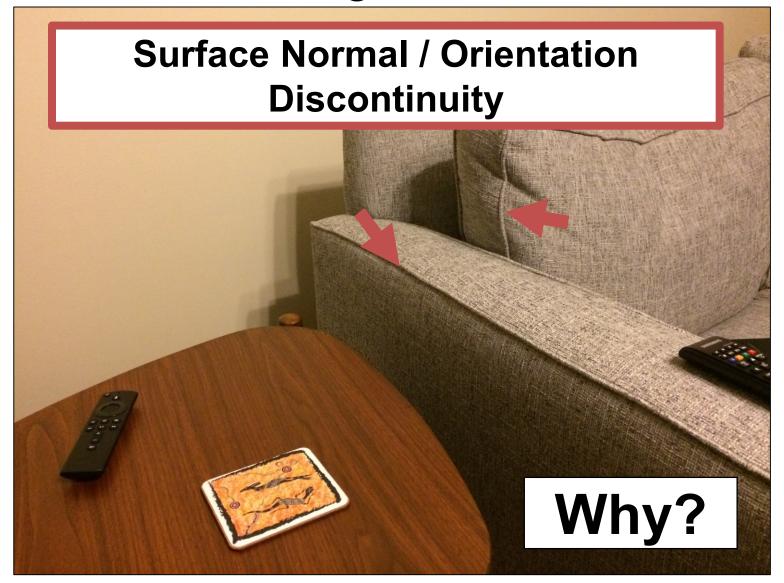
Key insight: we don't work with full image. We work with only parts of the image.

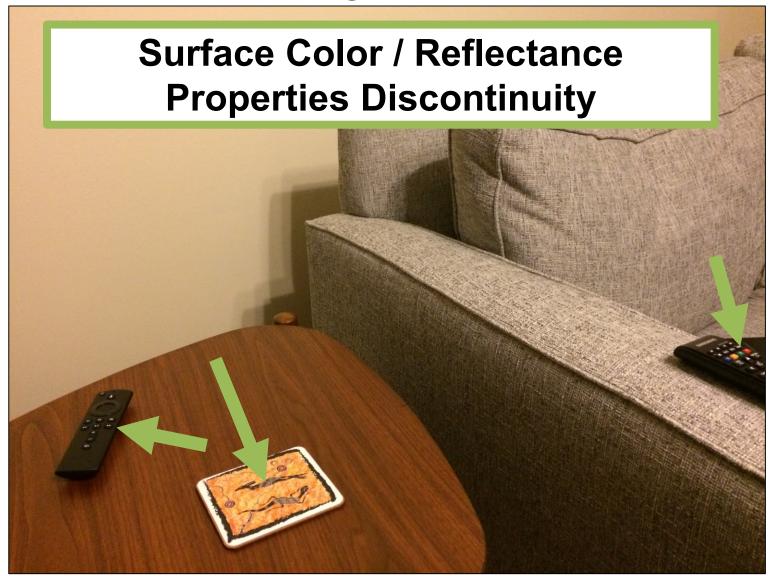
Today

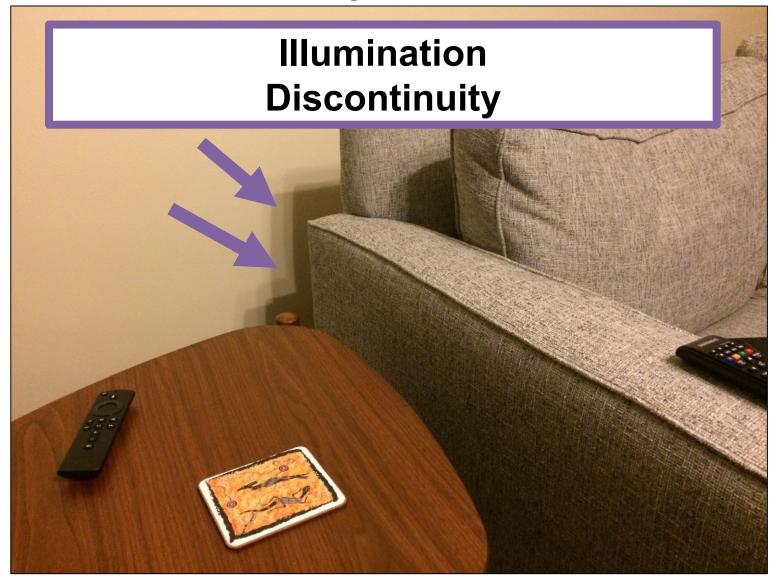
Finding edges (part 1) and corners (part 2) in images.



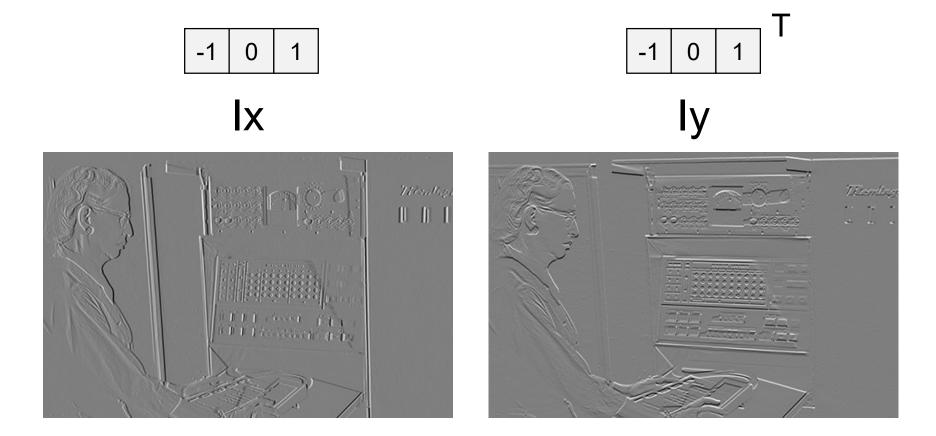








Last Time



Derivatives

Remember derivatives?

Derivative: rate at which a function f(x) changes at a point as well as the direction that increases the function

Given quadratic function f(x)

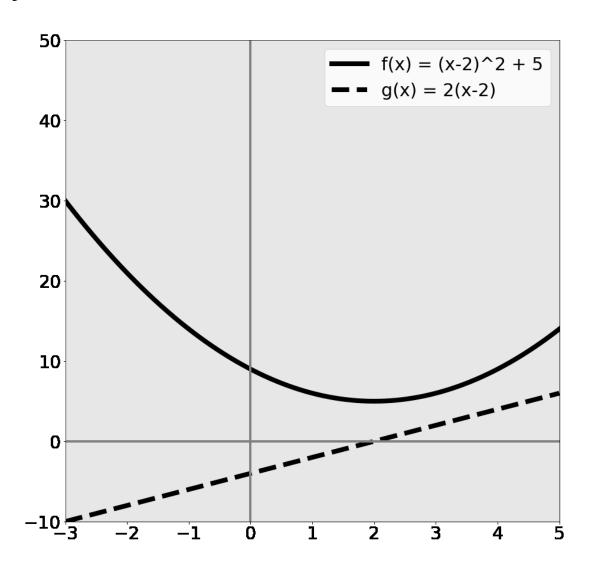
$$f(x,y) = (x-2)^2 + 5$$

f(x) is function

$$g(x) = f'(x)$$

aka

$$g(x) = \frac{d}{dx}f(x)$$



Given quadratic function f(x)

$$f(x,y) = (x-2)^2 + 5$$

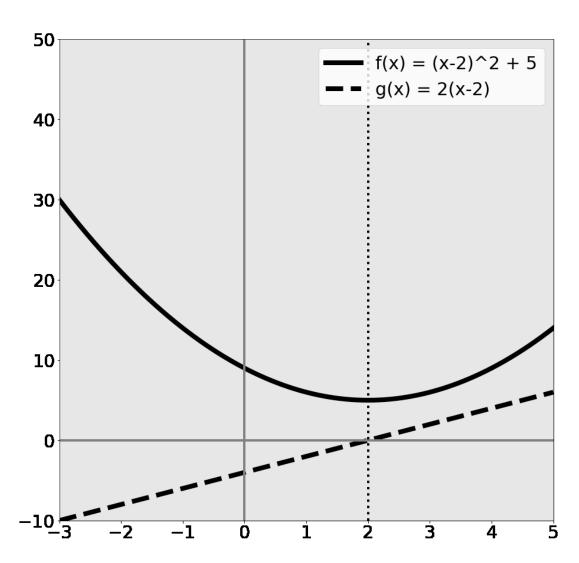
What's special about x=2?

$$f(x)$$
 minim. at 2 $g(x) = 0$ at 2

$$a = minimum of f \rightarrow$$

 $g(a) = 0$

Reverse is *not true*



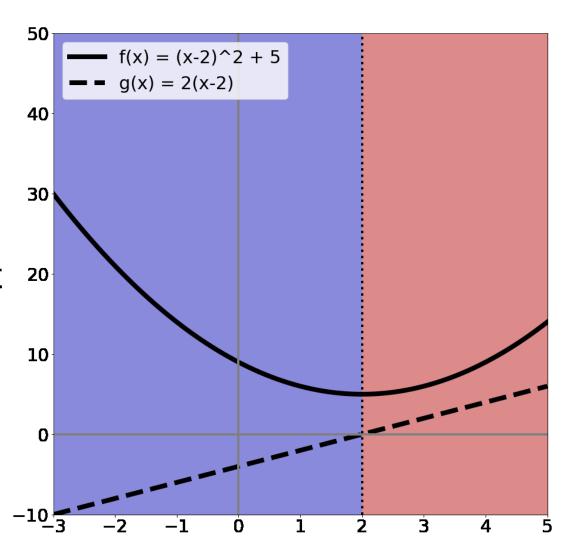
Rates of change

$$f(x,y) = (x-2)^2 + 5$$

Suppose I want to increase f(x) by changing x:

Blue area: move left Red area: move right

Derivative tells you direction of ascent and rate



What Calculus Should I Know

- Really need intuition
- Need chain rule
- Rest you should look up / use a computer algebra system / use a cookbook
- Partial derivatives (and that's it from multivariable calculus)

Partial Derivatives

- Pretend other variables are constant, take a derivative. That's it.
- Make our function a function of two variables

$$f(x) = (x-2)^2 + 5$$

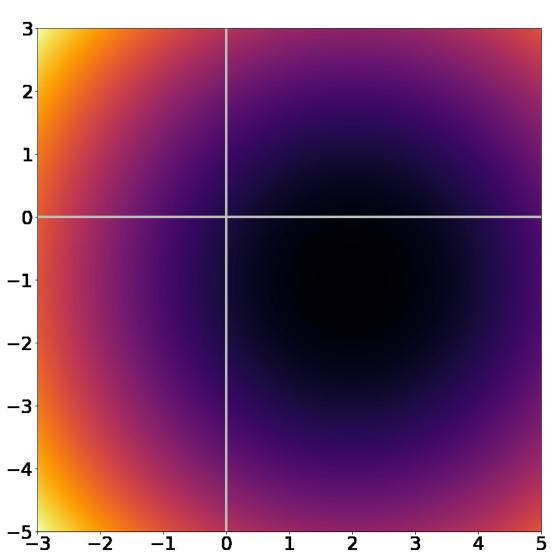
$$\frac{\partial}{\partial x} f(x) = 2(x-2) * 1 = 2(x-2)$$

$$f_2(x,y) = (x-2)^2 + 5 + (y+1)^2$$
Pretend it's constant \rightarrow derivative = 0
$$\frac{\partial}{\partial x} f_2(x) = 2(x-2)$$

Zooming Out

$$f_2(x,y) = (x-2)^2 + 5 + (y+1)^2$$

Dark = f(x,y) low Bright = f(x,y) high



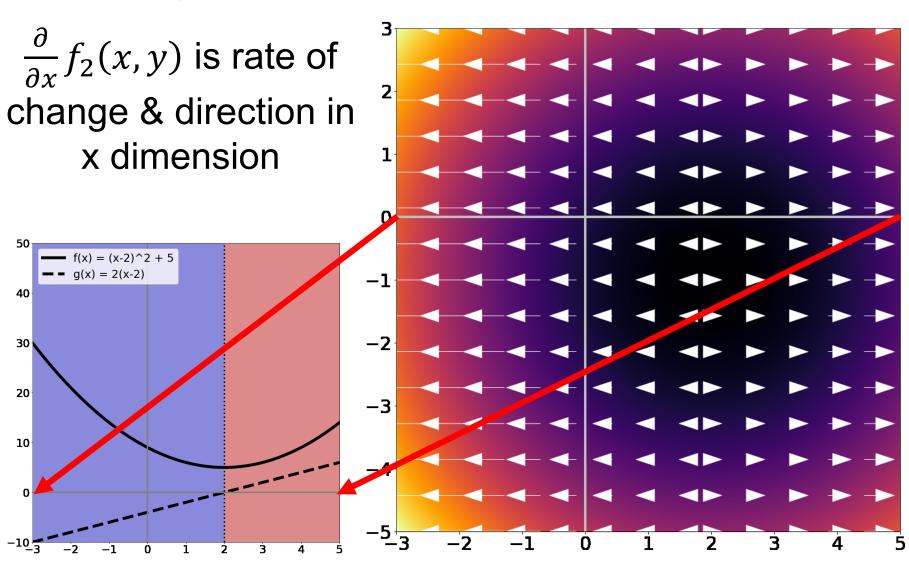
Taking a slice of

$$f_2(x,y) = (x-2)^2 + 5 + (y+1)^2$$

Slice of y=0 is the function from before: $f(x) = (x-2)^2 + 5$ f'(x) = 2(x-2) $f(x) = (x-2)^2 + 5$ - = g(x) = 2(x-2)40 20 10

Taking a slice of

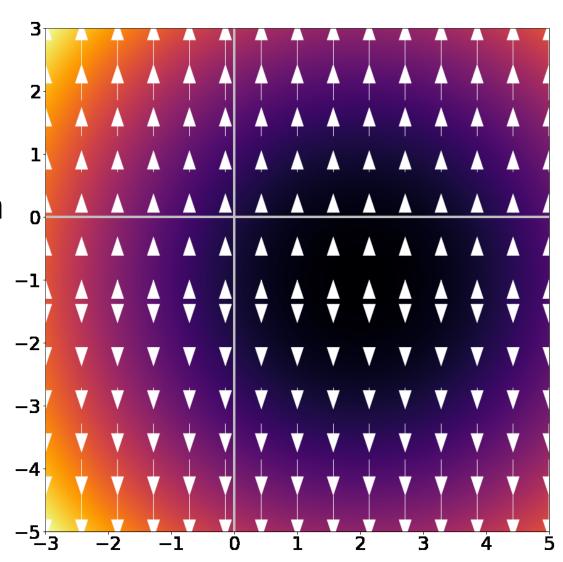
$$f_2(x,y) = (x-2)^2 + 5 + (y+1)^2$$



Zooming Out

$$f_2(x,y) = (x-2)^2 + 5 + (y+1)^2$$

 $\frac{\partial}{\partial y} f_2(x,y)$ is 2(y+1) and is the rate of change & direction in y dimension



Zooming Out

$$f_2(x,y) = (x-2)^2 + 5 + (y+1)^2$$

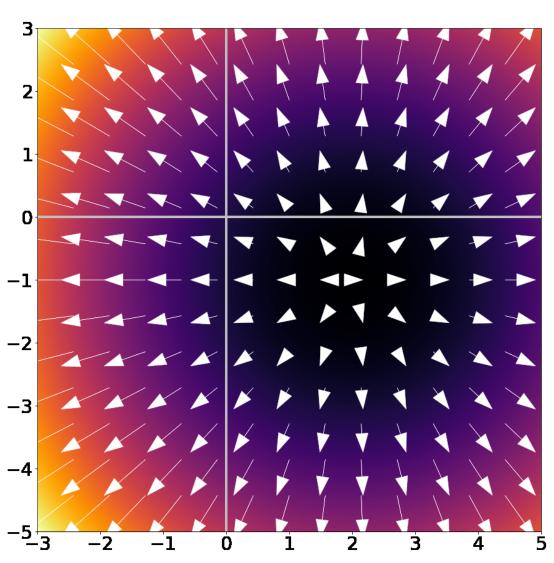
Gradient/Jacobian:

Making a vector of

$$\nabla_f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

gives rate and direction of change.

Arrows point OUT of minimum / basin.



What Should I Know?

- Gradients are simply partial derivatives perdimension: if x in f(x) has n dimensions, $\nabla_f(x)$ has n dimensions
- Gradients point in direction of ascent and tell the rate of ascent
- If a is minimum of $f(x) \rightarrow \nabla_f(a) = \mathbf{0}$
- Reverse is not true, especially in highdimensional spaces

Last Time

 $(Ix^2 + Iy^2)^{1/2}$

Why Does This Work?

Image is function f(x,y)

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x+\epsilon,y) - f(x,y)}{\epsilon}$$

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

Another one:

$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x-1,y)}{2}$$

Other Differentiation Operations

	Horizontal	Vertical
Prewitt	$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$
Sobel	$\begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

Why might people use these compared to [-1,0,1]?

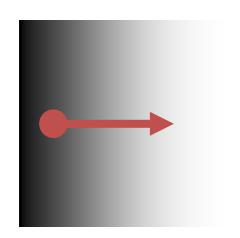
Images as Functions or Points

Key idea: can treat image as a point in R^(HxW) or as a function of x,y.

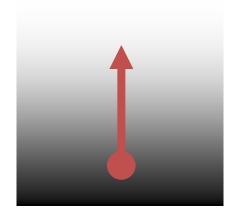
$$\nabla I(x,y) = \begin{bmatrix} \frac{\partial I}{\partial x}(x,y) \\ \frac{\partial I}{\partial y}(x,y) \end{bmatrix}$$
 How much the intensity of the image changes as you go horizontally at (x,y) (Often called lx)

Image Gradient Direction

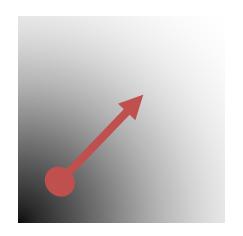
Some gradients



$$\nabla f = \left| \frac{\partial f}{\partial x}, 0 \right|$$



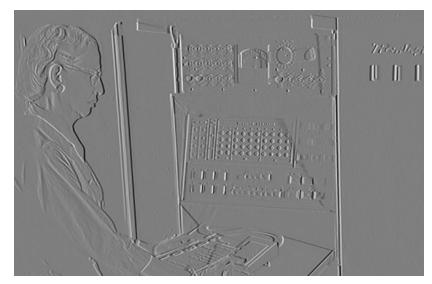
$$\nabla f = \left[0, \frac{\partial f}{\partial y}\right]$$

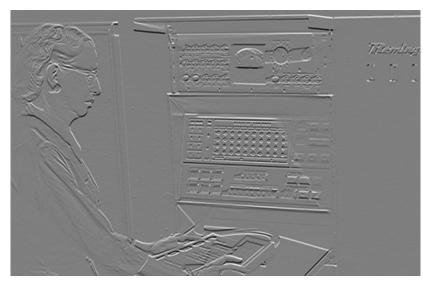


$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Gradient: direction of maximum change. What's the relationship to edge direction?

lx ly



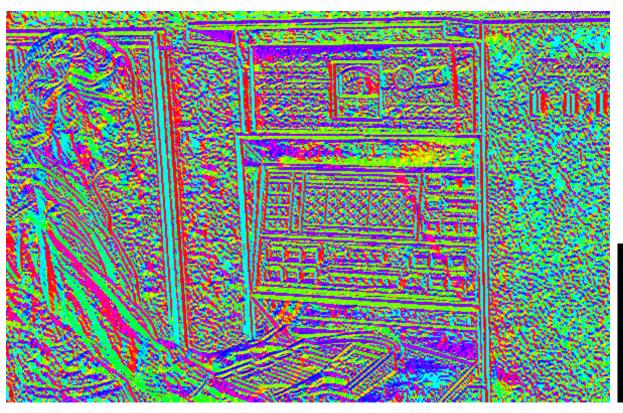


 $(Ix^2 + Iy^2)^{1/2}$: magnitude

atan2(ly,lx): orientation

I'm making the lightness equal to gradient magnitude

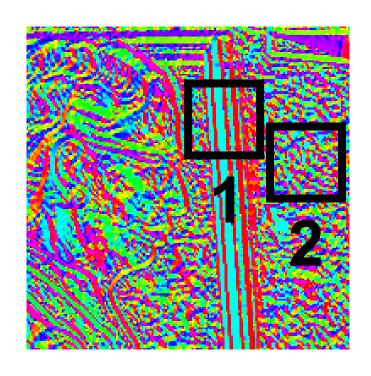
atan2(ly,lx): orientation



Now I'm showing all the gradients

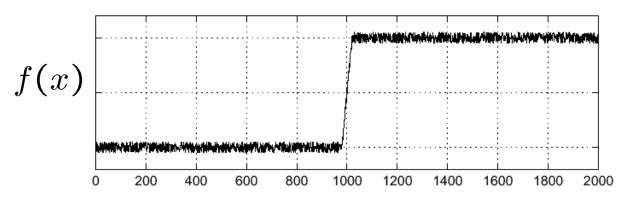
atan2(ly,lx): orientation

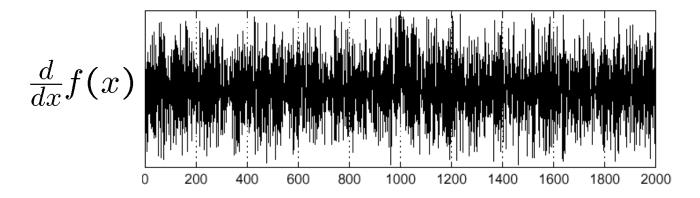
Why is there structure at 1 and not at 2?



Noise

Consider a row of f(x,y) (i.e., fix y)





Noise

Conv. image + per-pixel noise with

$$I_{i,j} = \text{True image} \quad \epsilon_{i,j} \sim N(0, \sigma^2)$$

$$D_{i,j} = (I_{i,j+1} + \epsilon_{i,j+1}) - (I_{i,j-1} + \epsilon_{i,j-1})$$

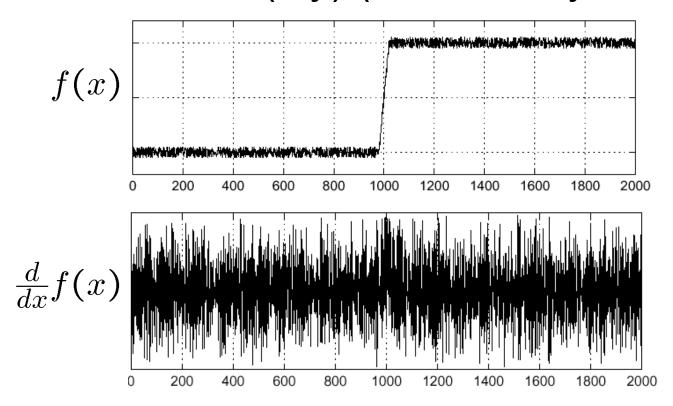
$$D_{i,j} = (I_{i,j+1} - I_{i,j-1}) + \epsilon_{i,j+1} - \epsilon_{i,j-1}$$

True

Sum of 2 difference Gaussians

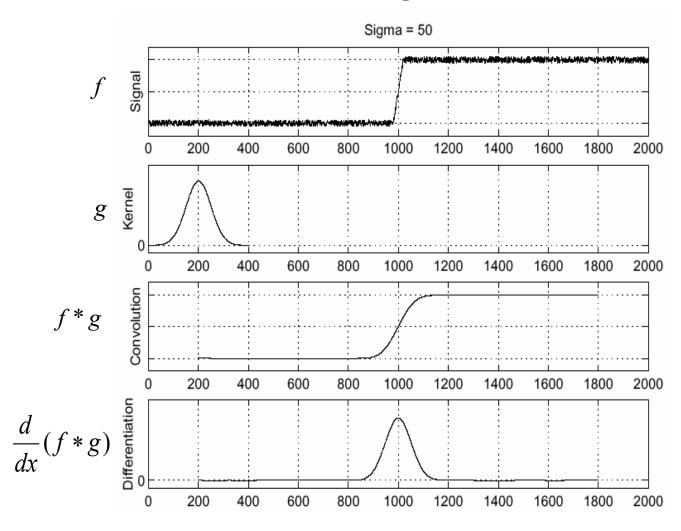
$$\epsilon_{i,j} - \epsilon_{k,l} \sim N(0, 2\sigma^2) \rightarrow \text{Variance doubles!}$$

Noise Consider a row of f(x,y) (i.e., make y constant)



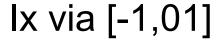
How can we use the last class to fix this?

Handling Noise

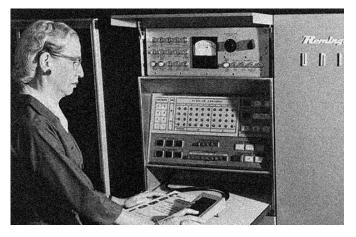


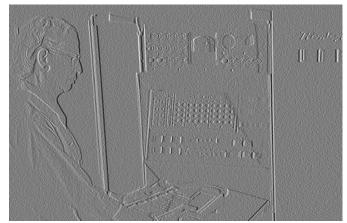
Noise in 2D

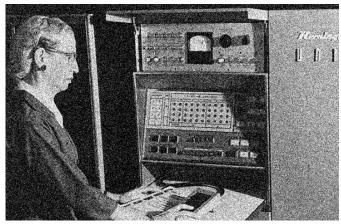
Noisy Input

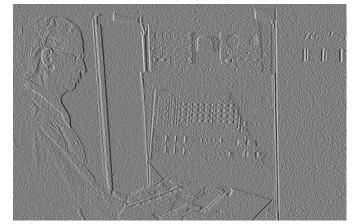


Zoom





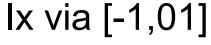




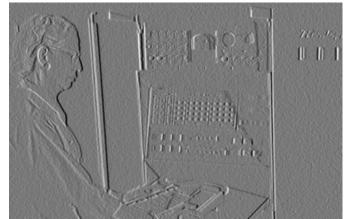


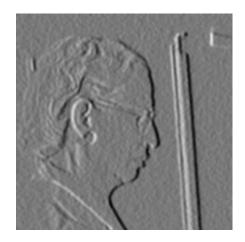
Noise + Smoothing

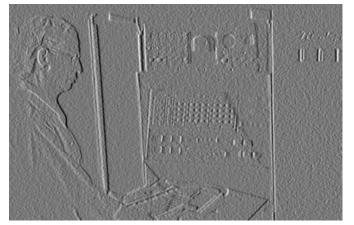
Smoothed Input

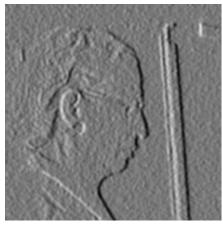


Zoom

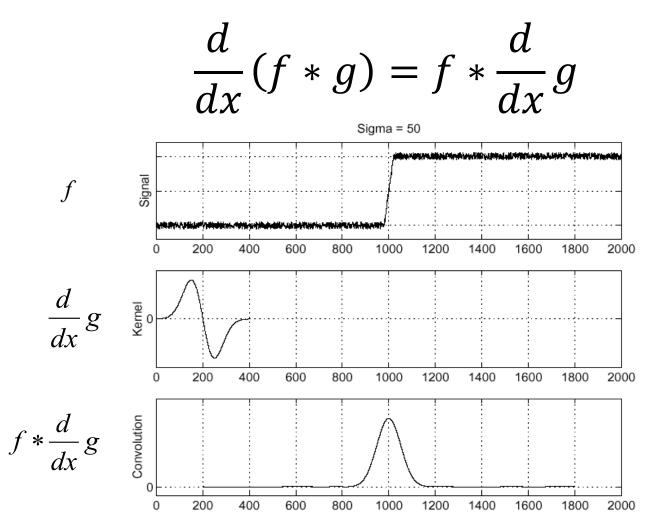




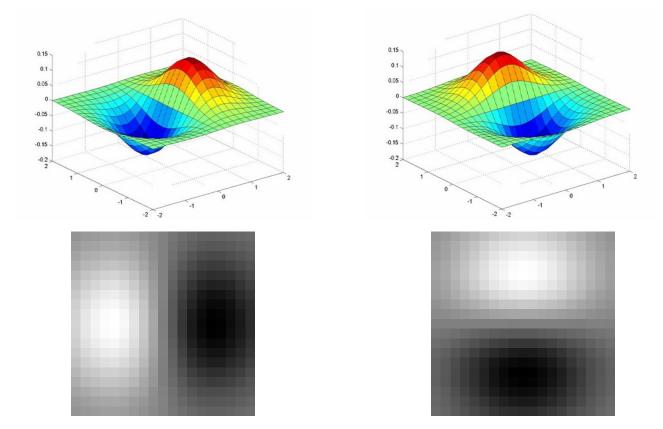




Let's Make It One Pass (1D)



Let's Make It One Pass (2D) Gaussian Derivative Filter



Which one finds the X direction?

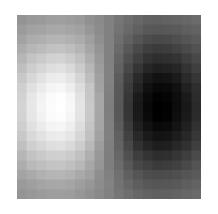
Applying the Gaussian Derivative

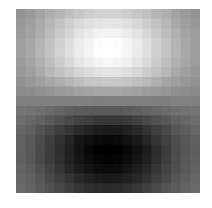
1 pixel 3 pixels 7 pixels

Removes noise, but blurs edge

Compared with the Past

Gaussian Derivative





Sobel Filter

$$\begin{bmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$$

Why would anybody use the bottom filter?

Filters We've Seen

Smoothing

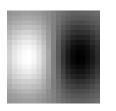
Gaussian

Remove noise

Yes

1

Derivative



Deriv. of gauss

Find edges

No

0

Why sum to 1 or 0, intuitively?

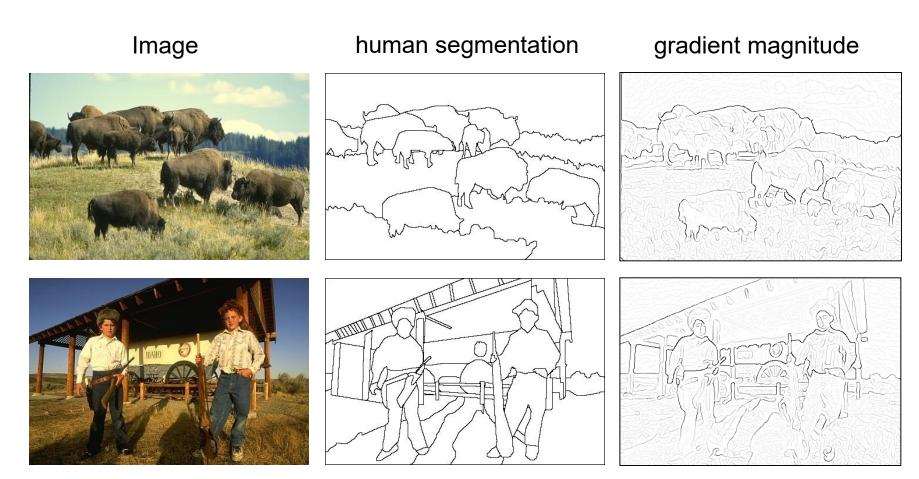
Example

Goal

Only +?

Sums to

Problems



Still an active area of research

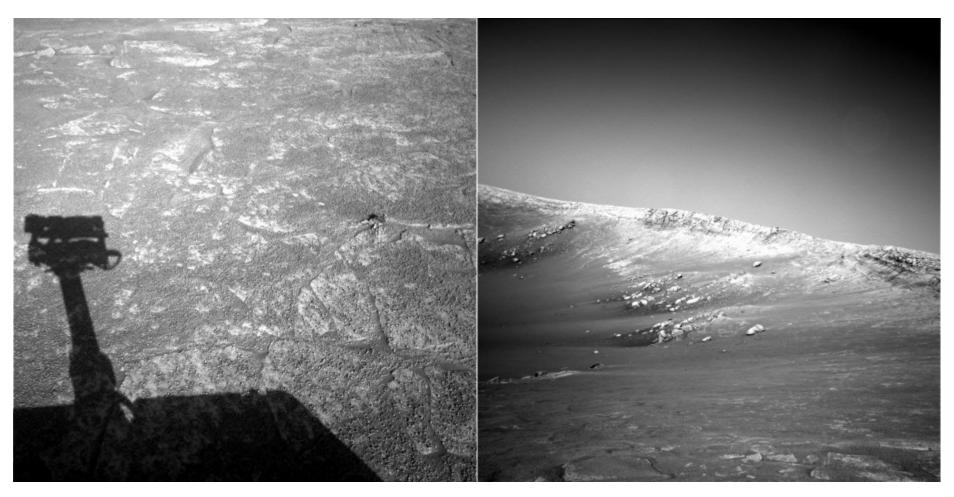
Corners

Slide Credit: S. Lazebnik

Desirables

- Repeatable: should find same things even with distortion
- Saliency: each feature should be distinctive
- Compactness: shouldn't just be all the pixels
- Locality: should only depend on local image data

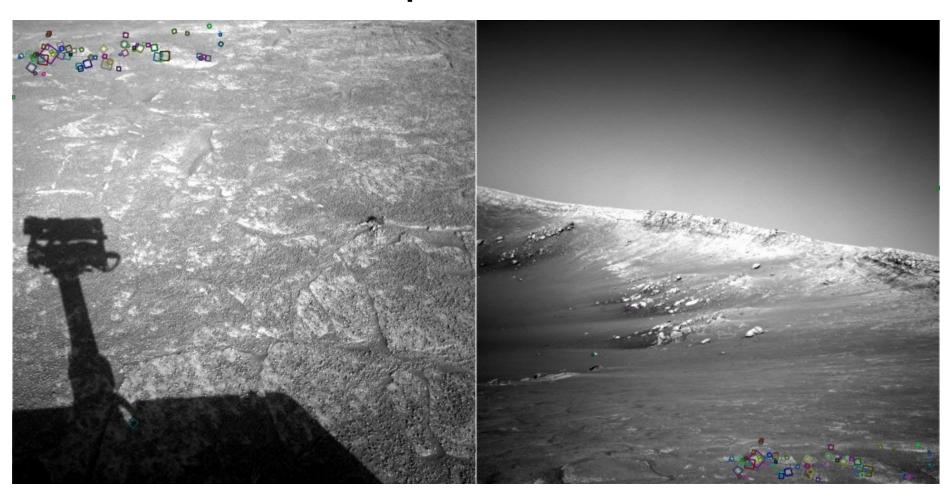
Example



Can you find the correspondences?

Slide credit: N. Snavely

Example Matches

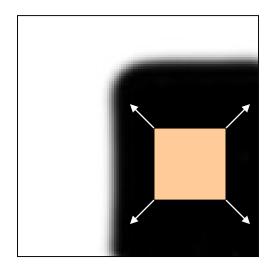


Look for the colored squares

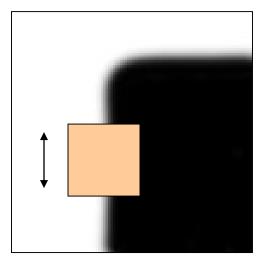
Slide credit: N. Snavely

Basic Idea

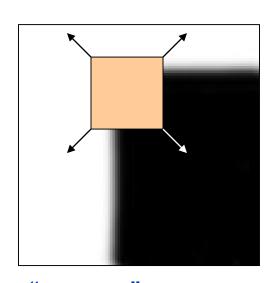
Should see where we are based on small window, or any shift → big intensity change.



"flat" region: no change in all directions



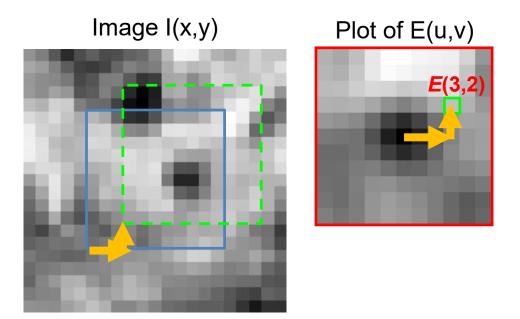
"edge":
no change
along the edge
direction



"corner":
significant
change in all
directions

Sum of squared differences between image and image shifted u,v pixels over.

$$E(u,v) = \sum_{(x,y)\in W} (I[x+u,y+v] - I[x,y])^2$$

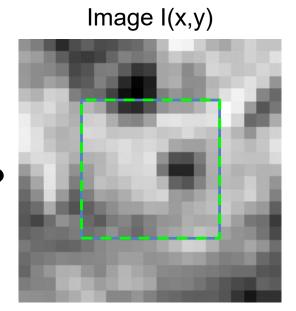


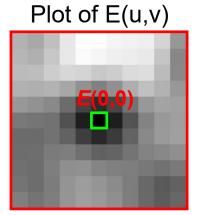
Slide Credit: S. Lazebnik

Sum of squared differences between image and image shifted u,v pixels over.

$$E(u,v) = \sum_{(x,y)\in W} (I[x+u,y+v] - I[x,y])^2$$

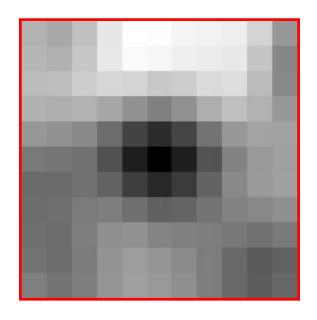
What's the value of E(0,0)?





Slide Credit: S. Lazebnik

Can compute E[u,v] for any window and u,v. But we'd like an simpler function of u,v.



Aside: Taylor Series for Images

Recall Taylor Series:

$$f(x+d) \approx f(x) + \frac{\partial f}{\partial x}d$$

Do the same with images, treating them as function of x, y

$$I(x+u,y+v) \approx I(x,y) + I_x u + I_y v$$

Taylor series expansion for I at every single point in window

$$E(u,v) = \sum_{(x,y)\in W} (I[x+u,y+v] - I[x,y])^{2}$$

$$\approx \sum_{(x,y)\in W} (I[x,y] + I_{x}[x,y]u + I_{y}[x,y]v - I[x,y])^{2}$$

Cancel

$$= \sum_{(x,y)\in W} \left(I_x[x,y]u + I_y[x,y]v\right)^2$$

Expand

$$= \sum_{(x,y)\in W} I_x u^2 + 2I_x I_y uv + I_y^2 v^2$$

For brevity: Ix = Ix at point (x,y), Iy = Iy at point (x,y)

By linearizing image, we can approximate E(u,v) with quadratic function of u and v

$$E(u, v) \approx \sum_{(x,y)\in W} (I_x^2 u^2 + 2I_x I_y u v + I_y^2 v^2)$$

$$= [u, v] M [u, v]^T$$

$$M = \begin{bmatrix} \sum_{x,y\in W} I_x^2 & \sum_{x,y\in W} I_x I_y \\ \sum_{x,v\in W} I_x I_y & \sum_{x,v\in W} I_y^2 \end{bmatrix}$$

M is called the second moment matrix

Intuitively what is M?

Pretend for now gradients are either vertical or

Obviously horizontal at a pixel (so lx ly = 0)

Wrong!
$$M = \begin{bmatrix} \sum_{x,y \in W} I_x^2 & \sum_{x,y \in W} I_x I_y \\ \sum_{x,y \in W} I_x I_y & \sum_{x,y \in W} I_y^2 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

If a,b are both small:

flat

If one is big, one is small:

edge

If a,b both big:

corner

Review: Quadratic Forms

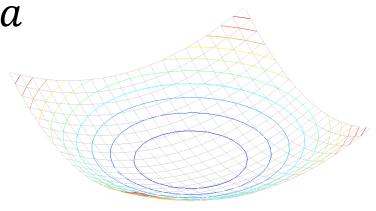
Suppose have symmetric matrix **M**, scalar a, vector [u,v]:

$$E([u,v]) = [u,v]\mathbf{M}[u,v]^T$$

Then the isocontour / slice-through of F, i.e.

$$E([u,v]) = a$$

is an ellipse.

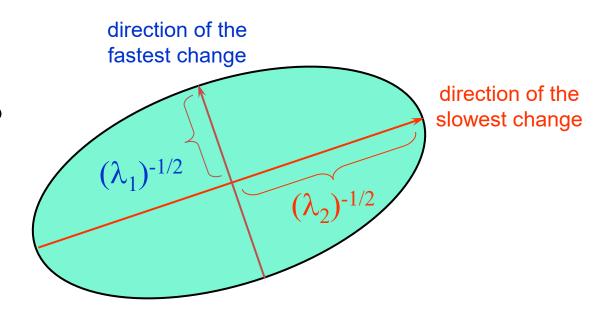


Review: Quadratic Forms

We can look at the shape of this ellipse by decomposing M into a rotation + scaling

$$\mathbf{M} = \mathbf{R}^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \mathbf{R}$$

What are λ_1 and λ_2 ?



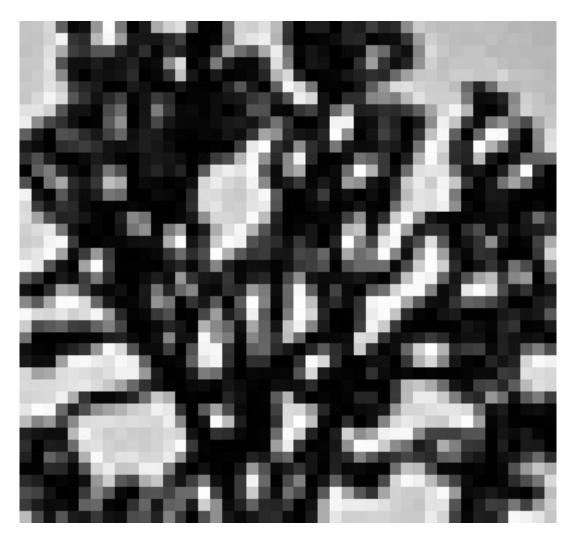
Slide credit: S. Lazebnik

Interpreting The Matrix M

The second moment matrix tells us how quickly the image changes and in which directions.

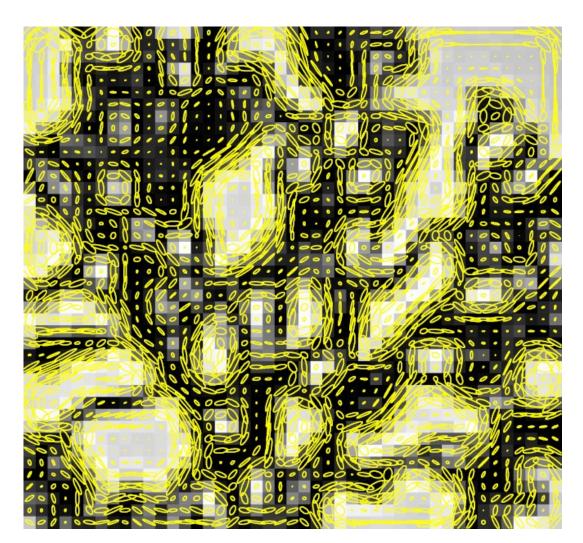
Can compute at each pixel
$$\mathbf{M} = \begin{bmatrix} \sum_{x,y \in W} I_x^2 & \sum_{x,y \in W} I_x I_y \\ \sum_{x,y \in W} I_x I_y & \sum_{x,y \in W} I_y^2 \end{bmatrix} = \mathbf{R}^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \mathbf{R}$$
 Amounts

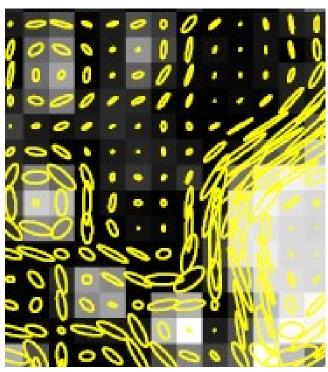
Visualizing M



Slide credit: S. Lazebnik

Visualizing M

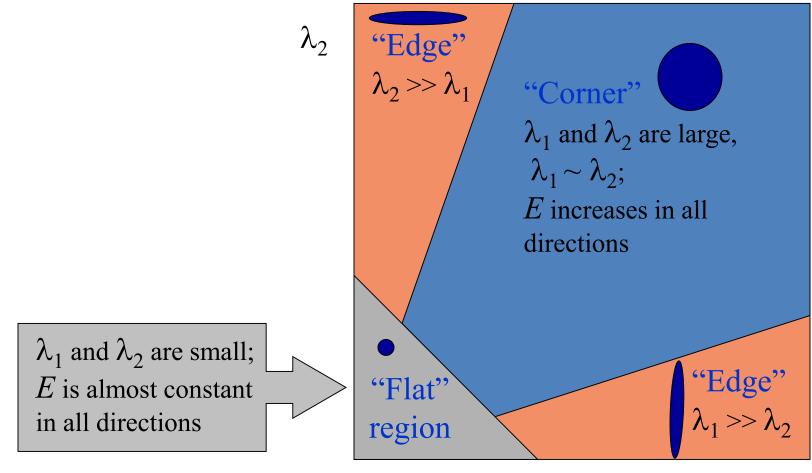




Technical note: M is often best *visualized* by first taking inverse, so long edge of ellipse goes along edge

Slide credit: S. Lazebnik

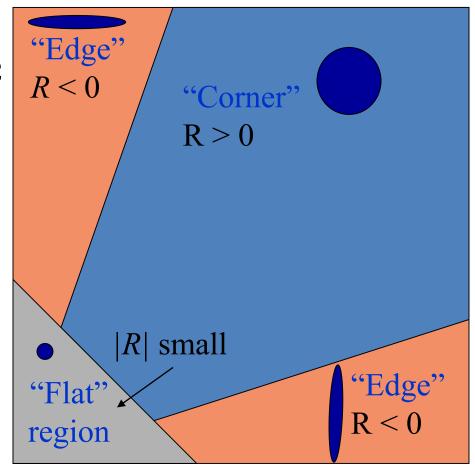
Interpreting Eigenvalues of M



Putting Together The Eigenvalues

$$R = \det(\mathbf{M}) - \alpha \operatorname{trace}(\mathbf{M})^{2}$$
$$= \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

 α : constant (0.04 to 0.06)



- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w

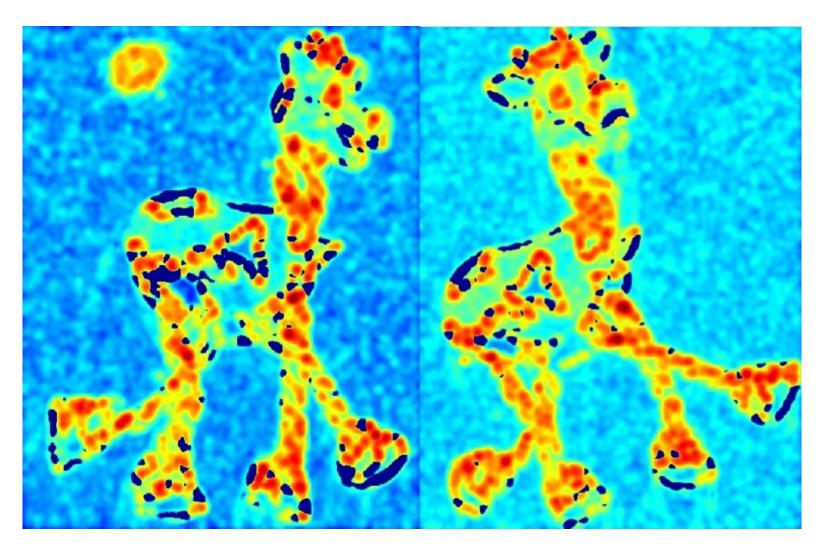
$$\mathbf{M} = \begin{bmatrix} \sum_{x,y \in W} w(x,y)I_x^2 & \sum_{x,y \in W} w(x,y)I_xI_y \\ \sum_{x,y \in W} w(x,y)I_xI_y & \sum_{x,y \in W} w(x,y)I_y^2 \end{bmatrix}$$

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R

$$R = \det(\mathbf{M}) - \alpha \operatorname{trace}(\mathbf{M})^{2}$$
$$= \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

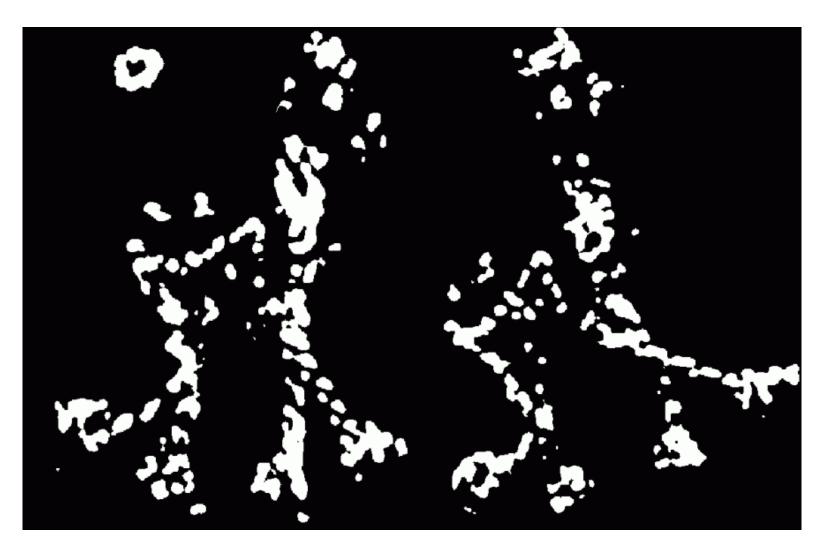
Computing R

Computing R



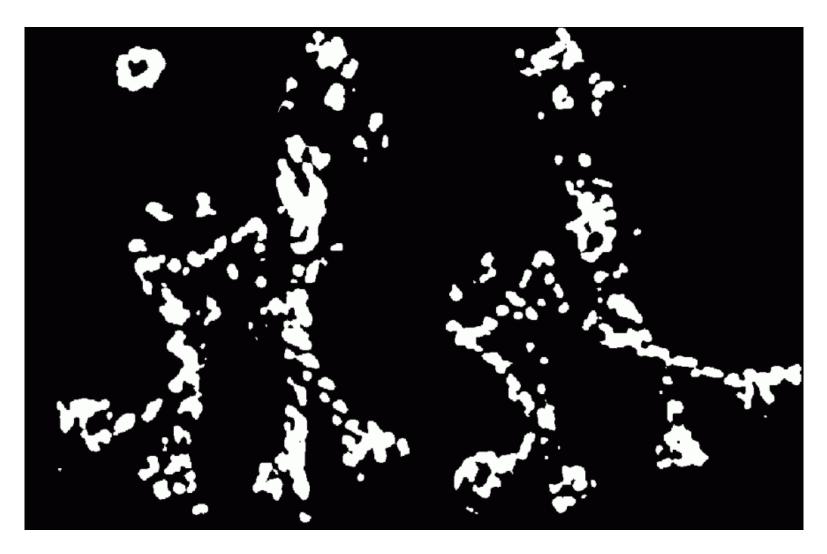
- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R

Thresholded R



- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R
- 5. Take only local maxima (called non-maxima suppression)

Thresholded, NMS R



Final Results

Slide credit: S. Lazebnik

Desirable Properties

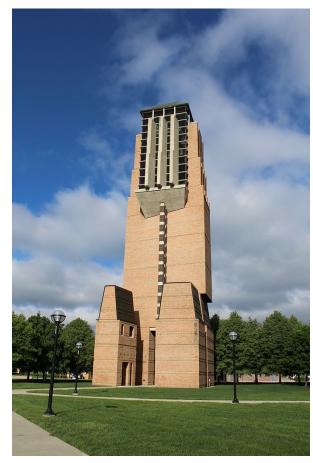
If our detectors are repeatable, they should be:

- Invariant to some things: image is transformed and corners remain the same
- Covariant/equivariant with some things: image is transformed and corners transform with it.

Slide credit: S. Lazebnik

Recall Motivating Problem

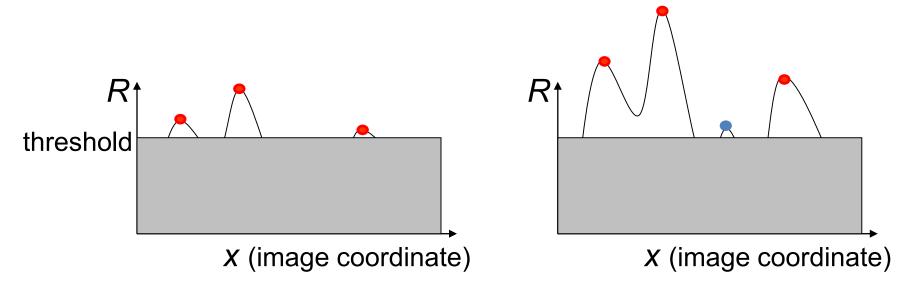
Images may be different in lighting and geometry



Affine Intensity Change

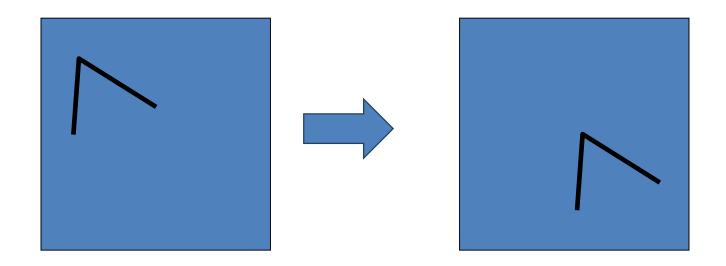
$$I_{new} = aI_{old} + b$$

M only depends on derivatives, so b is irrelevant But a scales derivatives and there's a threshold



Partially invariant to affine intensity changes

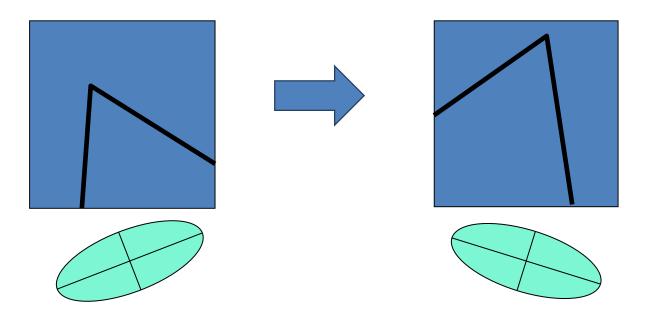
Image Translation



All done with convolution. Convolution is translation invariant.

Equivariant with translation

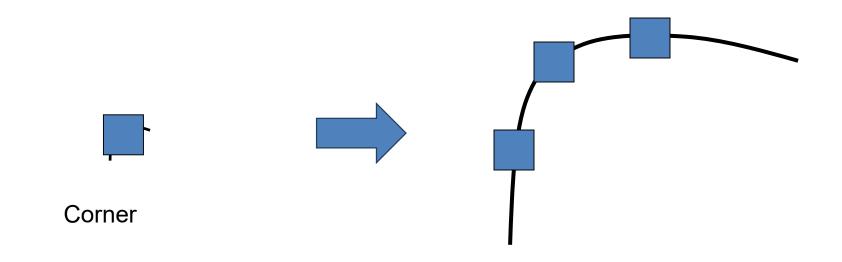
Image Rotation



Rotations just cause the corner rotation to change. Eigenvalues remain the same.

Equivariant with rotation

Image Scaling



One pixel can become many pixels and viceversa.

Not equivariant with scaling