Scales and Descriptors

EECS 442 – David Fouhey Fall 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Recap: Motivation

1: find corners+features

Last Time

Image gradients – treat image like function of x,y – gives edges, corners, etc.

$$\nabla f = \left| \frac{\partial f}{\partial x}, 0 \right|$$

$$\nabla f = \left| 0, \frac{\partial f}{\partial y} \right|$$

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

Last Time – Corner Detection

Can localize the location, or any shift → big intensity change.

"flat" region: no change in all directions

"edge":
no change
along the edge
direction

"corner":
significant
change in all
directions

Corner Detection

By doing a taylor expansion of the image, the second moment matrix tells us how quickly the image changes and in which directions.

Can compute at each pixel
$$M = \begin{bmatrix} \sum_{x,y \in W} I_x^2 & \sum_{x,y \in W} I_x I_y \\ \sum_{x,y \in W} I_x I_y & \sum_{x,y \in W} I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$
 Amounts

Putting Together The Eigenvalues

$$R = \det(\mathbf{M}) - \alpha \operatorname{trace}(\mathbf{M})^{2}$$
$$= \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

 α : constant (0.04 to 0.06)

In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w

$$\mathbf{M} = \begin{bmatrix} \sum_{x,y \in W} w(x,y)I_x^2 & \sum_{x,y \in W} w(x,y)I_xI_y \\ \sum_{x,y \in W} w(x,y)I_xI_y & \sum_{x,y \in W} w(x,y)I_y^2 \end{bmatrix}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R

$$R = \det(\mathbf{M}) - \alpha \operatorname{trace}(\mathbf{M})^{2}$$
$$= \lambda_{1}\lambda_{2} - \alpha(\lambda_{1} + \lambda_{2})^{2}$$

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Computing R

Computing R

In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Thresholded R

In Practice

- 1. Compute partial derivatives Ix, Iy per pixel
- 2. Compute **M** at each pixel, using Gaussian weighting w
- 3. Compute response function R
- 4. Threshold R
- 5. Take only local maxima (called non-maxima suppression)

C.Harris and M.Stephens. <u>"A Combined Corner and Edge Detector."</u>

Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988.

Thresholded

Final Results

Slide credit: S. Lazebnik

Desirable Properties

If our detectors are repeatable, they should be:

- Invariant to some things: image is transformed and corners remain the same
- Covariant/equivariant with some things: image is transformed and corners transform with it.

Slide credit: S. Lazebnik

Recall Motivating Problem

Images may be different in lighting and geometry

Affine Intensity Change

$$I_{new} = aI_{old} + b$$

M only depends on derivatives, so b is irrelevant

But a scales derivatives and there's a threshold

Partially invariant to affine intensity changes

Image Translation

All done with convolution. Convolution is translation equivariant.

Equivariant with translation

Image Rotation

Rotations just cause the corner rotation matrix to change. Eigenvalues remain the same.

Equivariant with rotation

Image Scaling

One pixel can become many pixels and vice-versa.

Not equivariant with scaling

How do we fix this?

Slide credit: S. Lazebnik

Recap: Motivation

- 1: find corners+features
- 2: match based on local image data

Today

- Fixing scaling by making detectors in both location and scale
- Enabling matching between features by describing regions

Key Idea: Scale

Left to right: each image is half-sized Upsampled with big pixels below

Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

Key Idea: Scale

Left to right: each image is half-sized

If I apply a KxK filter, how much of the original image does it see in each image?

$$-1/2 \rightarrow -1/2 \rightarrow -1/2 \rightarrow$$

Note: I'm also slightly blurring to prevent aliasing (https://en.wikipedia.org/wiki/Aliasing)

Solution to Scales

Try them all!

See: Multi-Image Matching using Multi-Scale Oriented Patches, Brown et al. CVPR 2005

Given a 50x16 person detector, how do I detect: (a) 250x80 (b) 150x48 (c) 100x32 (d) 25x8 people?

Detecting all the people The red box is a fixed size

Detecting all the people The red box is a fixed size

Detecting all the people The red box is a fixed size

Blob Detection

Another detector (has some nice properties)

Find maxima *and minima* of blob filter response in scale *and space*

Gaussian Derivatives

Gaussian

1st Deriv

2nd Deriv

$$\frac{\partial}{\partial x}g$$

$$\frac{\partial^2}{\partial^2 x}g$$

Laplacian of Gaussian

Slight detail: for technical reasons, you need to scale the Laplacian.

$$\nabla_{norm}^2 = \sigma^2 \left(\frac{\partial^2}{\partial x^2} g + \frac{\partial^2}{\partial y^2} g \right)$$

Edge Detection with Laplacian

Figure credit: S. Seitz

Blob Detection with Laplacian

Edge: zero-crossing

Blob: superposition of zero-crossing

Remember: can scale signal or filter

Scale Selection

Given binary circle and Laplacian filter of scale σ , we can compute the response as a function of the scale.

Image

Radius: 8

 $\sigma = 2$

R: 0.02

 $\sigma = 6$

R: 2.9

R: 1.8

Characteristic Scale

Characteristic scale of a blob is the scale that produces the maximum response

Scale-space blob detector

 Convolve image with scale-normalized Laplacian at several scales

Scale-space blob detector: Example

Scale-space blob detector: Example

sigma = 11.9912

Scale-space blob detector

- Convolve image with scale-normalized Laplacian at several scales
- 2. Find maxima of squared Laplacian response in scale-space

Finding Maxima

Point i,j is maxima (minima if you flip sign) in image I if:

```
for y=range(i-1,i+1+1):

for x in range(j-1,j+1+1):

if y == i and x== j: continue

#below has to be true

I[y,x] < I[i,j]
```

Scale Space

Red lines are the scale-space neighbors

Scale Space

Blue lines are image-space neighbors (should be just one pixel over but you should get the point)

Image

Radius: 8

 $\sigma = 2$

R: 0.02

 $\sigma = 6$

R: 2.9

R: 1.8

Finding Maxima

```
Suppose I[:,:,k] is image at scale k. Point i,i,k is
maxima (minima if you flip sign) in image I if:
for y=range(i-1,i+1+1):
      for x in range(j-1,j+1+1):
            for c in range(k-1,k+1+1):
                   if y == i and x == j and c == k:
                         continue
            #below has to be true
            I[y,x,c] < I[i,i,k]
```

Scale-space blob detector: Example

Efficient implementation

Approximating the Laplacian with a difference of Gaussians:

$$L = \sigma^2 \left(G_{xx}(x, y, \sigma) + G_{yy}(x, y, \sigma) \right)$$
(Laplacian)

$$DoG = G(x, y, k\sigma) - G(x, y, \sigma)$$
(Difference of Gaussians)

Efficient implementation

David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Slide credit: S. Lazebnik

Problem 1 Solved

- How do we deal with scales: try them all
- Why is this efficient?

Vast majority of effort is in the first and second scales

$$1 + \frac{1}{4} + \frac{1}{16} + \frac{1}{64} + \frac{1}{4^i} \dots = \frac{4}{3}$$

Problem 2 – Describing Features

Image - 40

1/2 size, rot. 45° Lightened+40

Image

100x100 crop at Glasses

Problem 2 – Describing Features

Once we've found a corner/blobs, we can't just use the image nearby. What about:

- 1. Scale?
- 2. Rotation?
- 3. Additive light?

Handling Scale

Given characteristic scale (maximum Laplacian response), we can just rescale image

Handling Rotation

Given window, can compute dominant orientation and then rotate image

Scale and Rotation

SIFT features at characteristic scales and dominant orientations

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

Scale and Rotation

Picture credit: S. Lazebnik. Paper: David G. Lowe. "Distinctive image features from scale-invariant keypoints." IJCV 60 (2), pp. 91-110, 2004.

SIFT Descriptors

- 1. Compute gradients
- 2. Build histogram (2x2 here, 4x4 in practice) Gradients ignore global illumination changes

SIFT Descriptors

- In principle: build a histogram of the gradients
- In reality: quite complicated
 - Gaussian weighting: smooth response
 - Normalization: reduces illumination effects
 - Clamping
 - Affine adaptation

Properties of SIFT

- Can handle: up to ~60 degree out-of-plane rotation,
 Changes of illumination
- Fast and efficient and lots of code available

Feature Descriptors

Think of feature as some non-linear filter that maps pixels to 128D feature

128D vector **x**

Photo credit: N. Snavely

Using Descriptors

- Instance Matching
- Category recognition

Instance Matching

Instance Matching

$$||x_4 - x_5|| = 0.34$$

$$||x_4 - x_6|| = 0.40$$

$$||x_4 - x_6|| = 0.40$$

2nd Nearest Neighbor Trick

- Given a feature x, nearest neighbor to x is a good match, but distances can't be thresholded.
- Instead, find nearest neighbor and second nearest neighbor. This ratio is a good test for matches:

$$r = \frac{\|\boldsymbol{x}_q - \boldsymbol{x}_{1NN}\|}{\|\boldsymbol{x}_q - \boldsymbol{x}_{2NN}\|}$$

2nd Nearest Neighbor Trick

Figure from David G. Lowe. "Distinctive image features from scale-invariant keypoints." *IJCV* 60 (2), pp. 91-110, 2004.

Extra Reading for the Curious

Affine adaptation

Consider the second moment matrix of the window containing the blob:

$$M = \sum_{x,y} w(x,y) \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

Recall:

$$\begin{bmatrix} u & v \end{bmatrix} M \begin{bmatrix} u \\ v \end{bmatrix} = \text{const}$$

This ellipse visualizes the "characteristic shape" of the window

Slide: S. Lazebnik

Affine adaptation example

Scale-invariant regions (blobs)

Affine adaptation example

Affine-adapted blobs