
Filtering
EECS 442 – David Fouhey

Fall 2019, University of Michigan
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Note: I’ll ask the front row on the right to participate in a

demo. All you have to do is say a number that I’ll give to

you. If you don’t want to, it’s fine, but don’t sit in the front.

Let’s Take An Image

Let’s Fix Things

Slide Credit: D. Lowe

• We have noise in our image

• Let’s replace each pixel with a weighted

average of its neighborhood

• Weights are filter kernel

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Out

1D Case

1/3 1/3 1/3
Filter/

David

Signal/

Front Row
10 12 9 11 10 11 12

Output 10.33 10.66 10 10.66 11

Applying a Linear Filter

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input

F11 F12 F13

F21 F22 F23

F31 F32 F33

Filter

O11 O12 O13

O21 O22 O23

O31 O32 O33

O14

O24

O34

Output

Applying a Linear Filter

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input & Filter

F11 F12 F13

F21 F22 F23

F31 F32 F33

Output

O11

O11 = I11*F11 + I12*F12 + … + I33*F33

Applying a Linear Filter

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input & Filter

F11 F12 F13

F21 F22 F23

F31 F32 F33

Output

O11

O12 = I12*F11 + I13*F12 + … + I34*F33

O12

Applying a Linear Filter

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input

F11 F12 F13

F21 F22 F23

F31 F32 F33

Filter Output

How many times can we apply a

3x3 filter to a 5x6 image?

Applying a Linear Filter

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43

I51 I52 I53

I44 I45 I46

I54 I55 I56

Input Output

Oij = Iij*F11 + Ii(j+1)*F12 + … + I(i+2)(j+2)*F33

O11 O12 O13

O21 O22 O23

O31 O32 O33

O14

O24

O34

F11 F12 F13

F21 F22 F23

F31 F32 F33

Filter

Painful Details – Edge Cases

f

gg

gg

f

gg

gg

f

gg

gg

full same valid

Convolution doesn’t keep the whole image.

Suppose f is the image and g the filter.

f/g Diagram Credit: D. Lowe

Full – any part of g touches f. Same – same size as f;

Valid – only when filter doesn’t fall off edge.

Painful Details – Edge Cases

What to about the “?” region?

Symm: fold sides over

pad/fill: add value, often 0

f

gg

gg

? ? ? ?

Circular/Wrap: wrap around

f/g Diagram Credit: D. Lowe

Painful Details – Does it Matter?

Input

Image

Box Filtered

???

Box Filtered

???

(I’ve applied the filter per-color channel)

Which padding did I use and why?

Note – this is a zoom of the filtered, not a filter of the zoomed

Painful Details – Does it Matter?

Input

Image

Box Filtered

Symm Pad

Box Filtered

Zero Pad

(I’ve applied the filter per-color channel)

Note – this is a zoom of the filtered, not a filter of the zoomed

Practice with Linear Filters

Slide Credit: D. Lowe

Original

?
0 0 0

0 1 0

0 0 0

Practice with Linear Filters

Slide Credit: D. Lowe

Original

0 0 0

0 1 0

0 0 0

The Same!

Practice with Linear Filters

Slide Credit: D. Lowe

Original

?
0 0 0

0 0 1

0 0 0

Practice with Linear Filters

Slide Credit: D. Lowe

Original

0 0 0

0 0 1

0 0 0

Shifted

LEFT

1 pixel

Practice with Linear Filters

Slide Credit: D. Lowe

Original

?
0 1 0

0 0 0

0 0 0

Practice with Linear Filters

Slide Credit: D. Lowe

Original

0 1 0

0 0 0

0 0 0

Shifted

DOWN

1 pixel

Practice with Linear Filters

?

Slide Credit: D. Lowe

Original

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Practice with Linear Filters

Slide Credit: D. Lowe

Original

1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

Blur

(Box Filter)

Practice with Linear Filters

?

Slide Credit: D. Lowe

Original
1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

0 0 0

0 2 0

0 0 0

-

Practice with Linear Filters

Slide Credit: D. Lowe

Original
1/9 1/9 1/9

1/9 1/9 1/9

1/9 1/9 1/9

0 0 0

0 2 0

0 0 0

-

Sharpened
(Acccentuates

difference from

local average)

Sharpening

Slide Credit: D. Lowe

Properties – Linear

Assume: I image f1, f2 filters

Linear: apply(I,f1+f2) = apply(I,f1) + apply(I,f2)

I is a box on black, and f1, f2 are rectangles

Note: I am showing filters un-normalized and blown up. They’re a

smaller box filter (i.e., each entry is 1/(size^2))

== +

=A(,)+A(,) =

)+A(A(, ,)

Properties – Shift-Invariant

Assume: I image, f filter

Shift-invariant: shift(apply(I,f)) = apply(shift(I,f))

Intuitively: only depends on filter neighborhood

A(,) =

A(,) =

Painful Details – Signal Processing

Often called “convolution”. Actually cross-
correlation.

Cross-Correlation

(Original Orientation)

Convolution

(Flipped in x and y)

Properties of Convolution

• Any shift-invariant, linear operation is a convolution

• Commutative: f ⁎ g = g ⁎ f

• Associative: (f ⁎ g) ⁎ h = f ⁎ (g ⁎ h)

• Distributes over +: f ⁎ (g + h) = f ⁎ g + f ⁎ h

• Scalars factor out: kf ⁎ g = f ⁎ kg = k (f ⁎ g)

• Identity (a single one with all zeros):

Property List: K. Grauman

=*

Questions?

• Nearly everything onwards is a convolution.

• This is important to get right.

Smoothing With A Box

Intuition: if filter touches it, it gets a contribution.

Input Box Filter

Solution – Weighted Combination

Intuition: weight contributions according to
closeness to center.

𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑗 ∝ 1

𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑗 ∝ exp −
𝑥2 + 𝑦2

2𝜎2

What’s this?

Recognize the Filter?

𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑗 ∝
1

2𝜋𝜎2
exp −

𝑥2 + 𝑦2

2𝜎2

It’s a Gaussian!

0.003 0.013 0.022 0.013 0.003

0.013 0.060 0.098 0.060 0.013

0.022 0.098 0.162 0.098 0.022

0.013 0.060 0.098 0.060 0.013

0.003 0.013 0.022 0.013 0.003

Smoothing With A Box & Gauss

Still have some speckles, but it’s not a big box

Input Box Filter Gauss. Filter

Gaussian Filters

σ = 1

filter = 21x21

σ = 2

filter = 21x21

σ = 4

filter = 21x21

σ = 8

filter = 21x21

Note: filter visualizations are independently normalized throughout

the slides so you can see them better

Applying Gaussian Filters

Applying Gaussian Filters

Input Image

(no filter)

Applying Gaussian Filters

σ = 1

Applying Gaussian Filters

σ = 2

Applying Gaussian Filters

σ = 4

Applying Gaussian Filters

σ = 8

Picking a Filter Size

σ = 8, size = 21 σ = 8, size = 43

Too small filter → bad approximation

Want size ≈ 6σ (99.7% of energy)

Left far too small; right slightly too small!

Runtime Complexity

for ImageY in range(N):

for ImageX in range(N):

for FilterY in range(M):

for FilterX in range(M):

…

Time: O(N2M2)

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43 I44 I45 I46

I51 I52 I53 I54 I55 I56

F11 F12 F13

F21 F22 F23

F31 F32 F33

I61 I62 I63 I64 I65 I66

Image size = NxN = 6x6

Filter size = MxM = 3x3

Separability

Fy1

Fy2

Fy3

Fx1 Fx2 Fx3⁎ =

Fx1 *

Fy1

Fx1 *

Fy2

Fx1 *

Fy3

Fx2 *

Fy1

Fx2 *

Fy2

Fx2 *

Fy3

Fx3 *

Fy1

Fx3 *

Fy2

Fx3 *

Fy3

Conv(vector, transposed vector) → outer product

Separability

𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑗 ∝
1

2𝜋𝜎2
exp −

𝑥2 + 𝑦2

2𝜎2

𝐹𝑖𝑙𝑡𝑒𝑟𝑖𝑗 ∝
1

2𝜋𝜎
exp −

𝑥2

2𝜎2

1

2𝜋𝜎
exp −

𝑦2

2𝜎2

→

Separability

⁎ =

1D Gaussian ⁎ 1D Gaussian = 2D Gaussian

Image ⁎ 2D Gauss = Image ⁎ (1D Gauss ⁎ 1D Gauss)

= (Image ⁎ 1D Gauss) ⁎ 1D Gauss

Runtime Complexity

for ImageY in range(N):

for ImageX in range(N):

for FilterY in range(M):

…

for ImageY in range(N):

for ImageX in range(N):

for FilterX in range(M):

…

Time: O(N2M)

I11 I12 I13

I21 I22 I23

I31 I32 I33

I14 I15 I16

I24 I25 I26

I34 I35 I36

I41 I42 I43 I44 I45 I46

I51 I52 I53 I54 I55 I56

I61 I62 I63 I64 I65 I66

Image size = NxN = 6x6

Filter size = Mx1 = 3x1

F1

F2

F3

What are my compute

savings for a 13x13 filter?

Why Gaussian?

Gaussian filtering removes parts of the signal
above a certain frequency. Often noise is high

frequency and signal is low frequency.

Where Gaussian Fails

Applying Gaussian Filters

σ = 1

Why Does This Fail?

0.1 0.8 0.1Filter

Signal 10 12 9 8 1000 11 10 12

Output 11.5 9.2 107.3 801.9 109.8 10.3

Means can be arbitrarily distorted by outliers

What else is an “average” other than a mean?

Non-linear Filters (2D)

[040, 081, 013, 125, 830, 076, 144, 092, 108]

92

Sort

[013, 040, 076, 081, 092, 108, 125, 144, 830]

[830, 076, 080, 092, 108, 095, 102, 106, 087]

[076, 080, 087, 092, 095, 102, 106, 108, 830]

Sort

95

40 81

125 830

144 92

13

76

108

22

80

95

132 102 106 87

Applying Median Filter

Median

Filter

(size=3)

Applying Median Filter

Median

Filter

(size = 7)

Is Median Filtering Linear?

Example from (I believe): Kristen Grauman

1 1 1
1 1 2
2 2 2

0 0 0
0 1 0
0 0 0

+
1 1 1
1 2 2
2 2 2

=

Median Filter

1 0 2+ =

Some Examples of Filtering

Filtering – Sharpening

-

Image Smoothed

=

Details

Filtering – Sharpening

+α

Image Details

=

“Sharpened” α=1

Filtering – Sharpening

=

+α

Image Details

“Sharpened” α=0

Filtering – Sharpening

=

+α

Image Details

“Sharpened” α=2

Filtering – Sharpening

=

+α

Image Details

“Sharpened” α=0

Filtering – Extreme Sharpening

=

+α

Image Details

“Sharpened” α=10

Filtering

-1 0 1

Dx Dy

-1 0 1
T

What’s this Filter?

Filtering – Derivatives

(Dx2 + Dy2)1/2

Filtering – Counting

⁎ =
r=10

Pixels Disk ???

How many “on” pixels have

10+ neighbors within 10 pixels?

Filtering – Counting

How many “on” pixels have

10+ neighbors within 10 pixels?

x =

Pixels AnswerDensity

Filtering – Missing Data

Oh no! Missing data!

(and we know where)

Common with many non-normal cameras (e.g., depth cameras)

Filtering – Missing Data

Binary

Mask

Image ⁎

⁎

Per-element /

Filtering – Missing Data

Binary

Mask

Image

Per-element /

Filtering – Missing Data

Before

Filtering – Missing Data

After

Filtering – Missing Data

After (without missing data)

