# Numerical Linear Algebra

EECS 442 – David Fouhey Fall 2019, University of Michigan

http://web.eecs.umich.edu/~fouhey/teaching/EECS442\_W19/

#### Administrivia

- HW 1 out due in two weeks
- Follow submission format (wrong format = 0)
- The homeworks are **not** fill-in-the-blank. This is harder to do but mirrors life
- If it's ambiguous: make a decision, document what you think and why in your homework, and move on
- · Highly encouraged to work together. See piazza
- Please check syllabus for what's allowed. I guarantee checking the syllabus thoroughly will help boost your grade.

#### This Week – Math

Two goals for the next two classes:

- Math with computers ≠ Math
- Practical math you need to know but may not have been taught



#### This Week – Goal

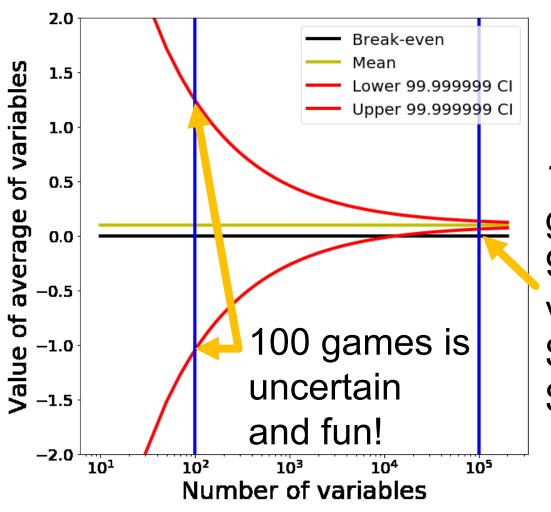
- Not a "Linear algebra in two lectures" that's impossible.
- Some of this you should know!
- Aimed at reviving your knowledge and plugging any gaps
- Aimed at giving you intuitions

## Adding Numbers

- 1 + 1 = ?
- Suppose  $x_i$  is normally distributed with mean  $\mu$  and standard deviation  $\sigma$  for  $1 \le i \le N$
- How is the average, or  $\widehat{\mu} = \frac{1}{N} \sum_{i=1}^{N} x_i$ , distributed (qualitatively), in terms of variance?
- The Free Drinks in Vegas Theorem:  $\hat{\mu}$  has mean  $\mu$  and standard deviation  $\frac{\sigma}{\sqrt{N}}$  .

#### Free Drinks in Vegas

Each game/variable has mean \$0.10, std \$2



100K games is guaranteed profit: 99.999999% lowest value is \$0.064. \$0.01 for drinks \$0.054 for profits

## Let's Make It Big

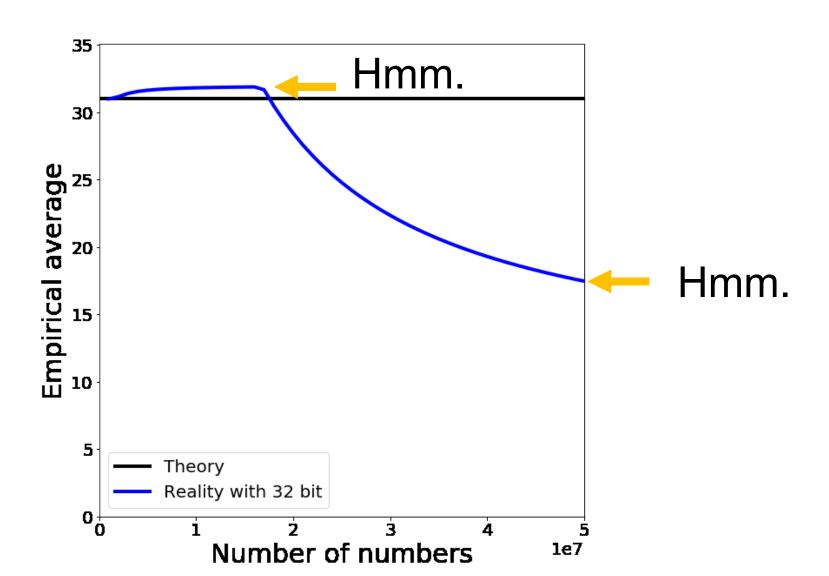
- Suppose I average 50M normally distributed numbers (mean: 31, standard deviation: 1)
- For instance: have predicted and actual depth for 200 480x640 images and want to know the average error (|predicted actual|)

```
numerator = 0
for x in xs:
  numerator += x
return numerator / len(xs)
```

## Let's Make It Big

- What should happen qualitatively?
- Theory says that the average is distributed with mean 31 and standard deviation  $\frac{1}{\sqrt{50M}} \approx (10^{-5})$
- What will happen?
- Reality: 17.47

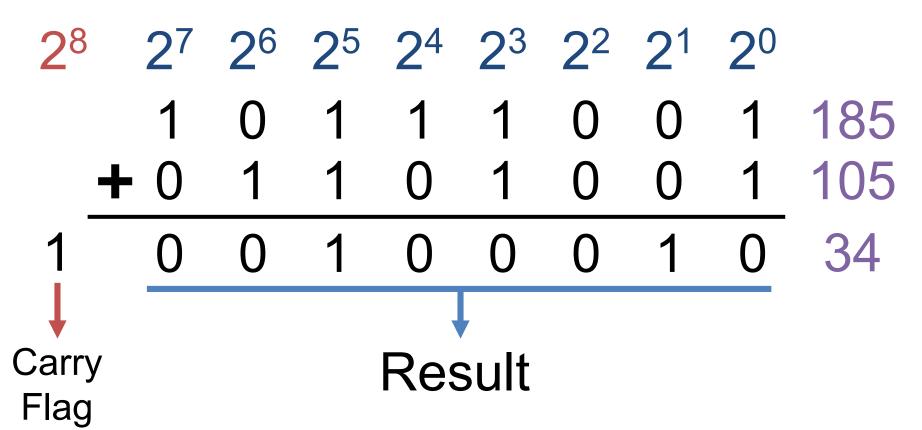
## Trying it Out



#### What's a Number?

$$2^{7}$$
  $2^{6}$   $2^{5}$   $2^{4}$   $2^{3}$   $2^{2}$   $2^{1}$   $2^{0}$   
 $1$   $0$   $1$   $1$   $1$   $0$   $0$   $1$   $185$   
 $128 + 32 + 16 + 8 + 1 = 185$ 

#### Adding Two Numbers



"Integers" on a computer are integers modulo 2k

#### Some Gotchas

$$32 + (3 / 4) \times 40 = 32$$
 $32 + (3 \times 40) / 4 = 62$ 
Underflow
 $32 + 3 / 4 \times 40 = 32 + 3 \times 40 / 4 = 32 + 0 \times 40 = 32 + 120 / 4 = 32 + 0 = 32 + 30 = 32$ 

Why?

Ok – you have to multiply before dividing

#### Some Gotchas

math 
$$32 + (9 \times 40) / 10 = 68$$
  
uint8  $32 + (9 \times 40) / 10 = 42$   
Overflow

$$32 + 9 \times 40 / 10 =$$
 $32 + 104 / 10 =$ 
 $32 + 10 =$ 
 $42$ 

## Should be: 9x4=36

#### Why 104?

#### What's a Number?

#### How can we do fractions?

#### Fixed-Point Arithmetic

What's the largest number we can represent?

63.75 – **Why?** 

How precisely can we measure at 63?

0.25

How precisely can we measure at 0?

0.25

Fine for many purposes but for science, seems silly

Bias: allows exponent to be negative; Note: fraction = significant = mantissa; exponents of all ones or all zeros are special numbers

Fraction

Sign

Exponent

$$0/8$$
  $0 0 0 -2^{\circ} \times 1.00 = -1$ 

$$1/8$$
 0 0 1  $-2^{\circ}$  x  $1.125 = -1.125$ 

$$2/8$$
 0 1 0  $-2^{\circ}$  x  $1.25 = -1.25$ 

1 0 1 1 1 
$$\frac{7-7=0}{*(-bias)^*}$$
 6/8 1 1 0  $\frac{1}{1}$  -2° x 1.23 = -1.23  $\frac{1}{1}$  -1.25  $\frac{7}{1}$  -1.25  $\frac{7}{1}$  -2° x 1.75 = -1.75  $\frac{7}{1}$  -2° x 1.875 = -1.875

Fraction

$$0/8$$
  $0 0 0 -2^2 \times 1.00 = -4$ 

$$1/8$$
 0 0 1  $-2^2$  x  $1.125 = -4.5$ 

Sign Exponent 
$$2/8$$
 0 1 0  $-2^2 \times 1.25 = -5$ 

Sign Exponent 
$$000 - 2^0 \times 1.00 = -1$$
  
 $00111 - 2^0 \times 1.125 = -1.125$ 

Gap between numbers is relative, not absolute

1 1 0 0 1 0 0 1 
$$-2^2 \times 1.125 = -4.5$$

Actual implementation is complex

Sign Exponent Fraction

1 0 1 0 0 0 0 -2<sup>-3</sup> x 1.00 = -0.125

1 1 0 0 1 0 0 0 -2<sup>2</sup> x 1.00 = -4

$$-2^2 \times 1.03125 = -4.125$$

1 1 0 0 1 0 0 0 
$$-2^2$$
 x 1.00 = -4

1 1 0 0 1 0 0 1 
$$-2^2 \times 1.125 = -4.5$$

$$-2^2 \times 1.03125 = -4.125$$

1 1 0 0 1 0 0 0 
$$-2^2$$
 x 1.00 = -4

For a and b, these can happen

$$a + b = a$$
  $a+b-a \neq b$ 

IEEE 754 Single Precision / Single

8 bits

23 bits

 $2^{127} \approx 10^{38}$ 

≈ 7 decimal digits

S Exponent

Fraction

IEEE 754 Double Precision / Double

11 bits  $2^{1023} \approx 10^{308}$ 

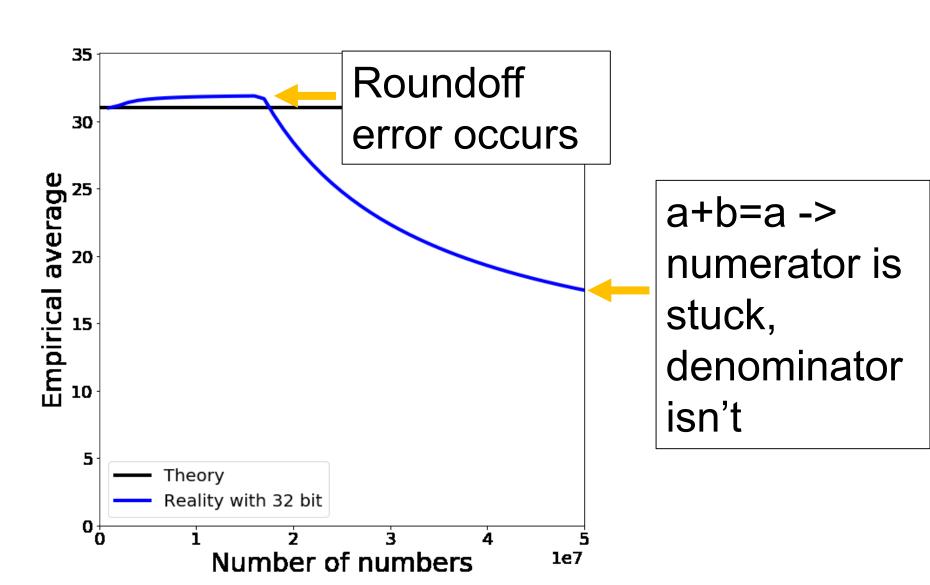
52 bits

≈ 15 decimal digits

s Exponent

Fraction

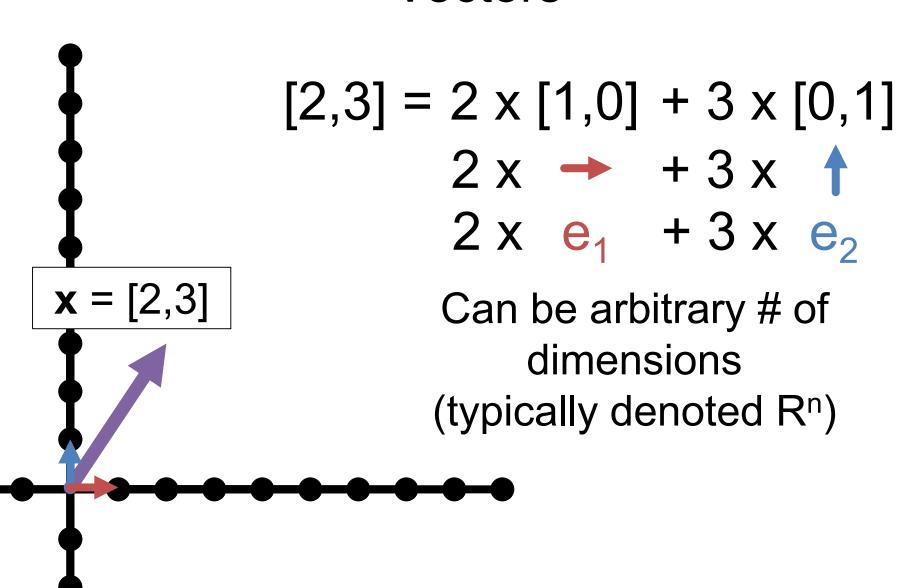
## Trying it Out



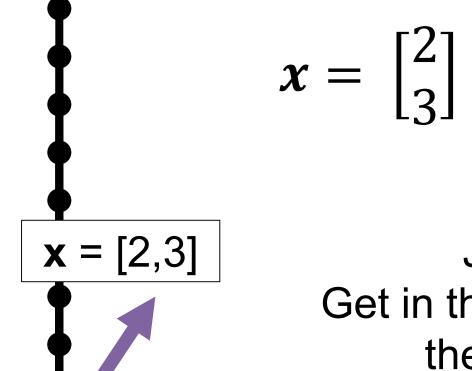
#### Take-homes

- Computer numbers aren't math numbers
- Overflow, accidental zeros, roundoff error, and basic equalities are almost certainly incorrect for some values
- Floating point defaults and numpy try to protect you.
- Generally safe to use a double and use built-infunctions in numpy (not necessarily others!)
- Spooky behavior = look for numerical issues

#### **Vectors**



#### **Vectors**

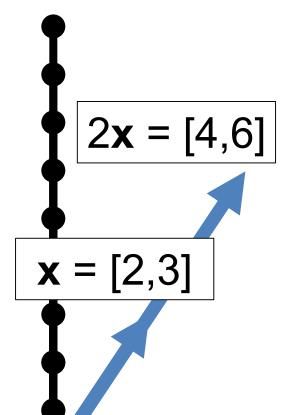


$$x_1 = 2$$
$$x_2 = 3$$

Just an array!

Get in the habit of thinking of them as columns.

## Scaling Vectors



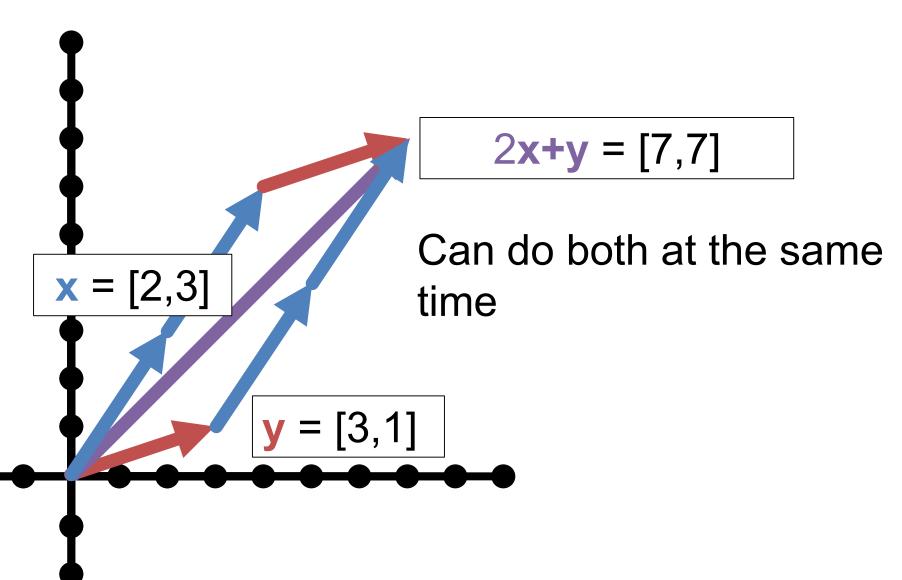
- Can scale vector by a scalar
- Scalar = single number
- Dimensions changed independently
- Changes *magnitude / length*, does not change *direction*.

## **Adding Vectors**

- Can add vectors
- Dimensions changed independently
- Order irrelevant
- Can change direction and magnitude

$$x = [2,3]$$
  $x+y = [5,4]$   $y = [3,1]$ 

## Scaling and Adding



## Measuring Length

Magnitude / length / (L2) norm of vector

$$||x|| = ||x||_2 = \left(\sum_{i=1}^{n} x_i^2\right)^{1/2}$$

There are other norms; assume L2 unless told otherwise

$$||x||_{2} = \sqrt{13}$$

$$||y||_{2} = \sqrt{10}$$
Why?

#### Normalizing a Vector

$$\mathbf{x} = [2,3]$$

Diving by norm gives something on the *unit* sphere (all vectors with length 1)

$$x' = x/||x||_2$$
  $y = [3,1]$ 



$$\boldsymbol{x} \cdot \boldsymbol{y} = \sum_{i=1}^{n} x_i y_i = \boldsymbol{x}^T \boldsymbol{y}$$

$$x \cdot y = \cos(\theta) ||x|| ||y||$$

What happens with normalized / unit vectors?

#### **Dot Products**

$$\boldsymbol{x} = [2,3] \quad \boldsymbol{x} \cdot \boldsymbol{y} = \sum_{i}^{n} x_{i} y_{i}$$

What's  $x \cdot e_1$ ,  $x \cdot e_2$ ?

Ans:  $x \cdot e_1 = 1$ ;  $x \cdot e_2 = 3$ 

- Dot product is projection
- Amount of x that's also pointing in direction of y

#### **Dot Products**

$$\boldsymbol{x} = [2,3] \quad \boldsymbol{x} \cdot \boldsymbol{y} = \sum_{i} x_{i} y_{i}$$

What's  $x \cdot x$ ?

Ans:  $x \cdot x = \sum x_i x_i = ||x||_2^2$ 

## **Special Angles**

$$\begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = 0 * 1 + 1 * 0 = 0$$

Perpendicular /
orthogonal vectors
have dot product 0
irrespective of their
magnitude

|y'|

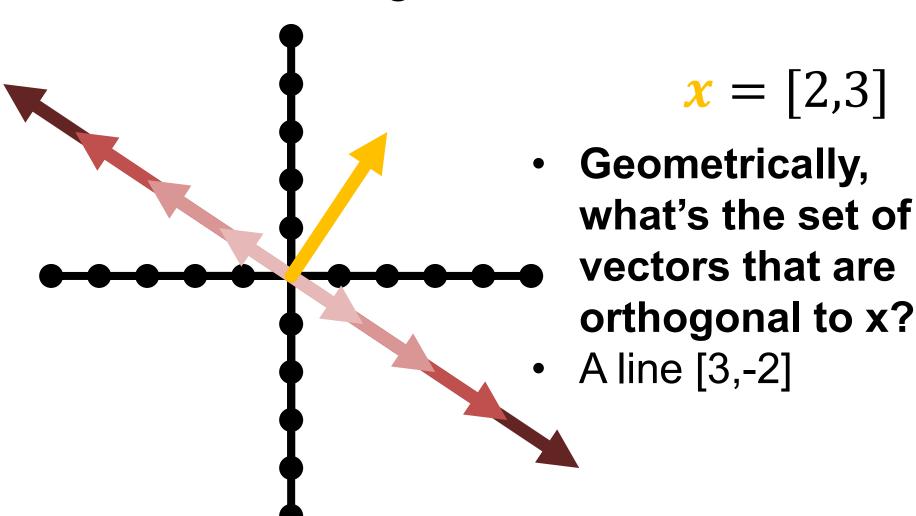
y



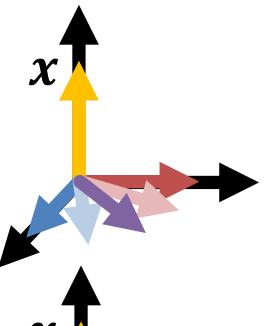
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = x_1 y_1 + x_2 y_2 = 0$$

Perpendicular / orthogonal vectors have dot product 0 irrespective of their magnitude

# Orthogonal Vectors



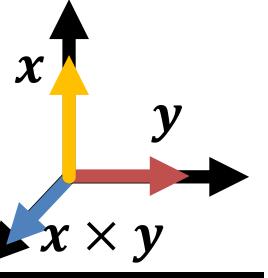
# **Orthogonal Vectors**



- What's the set of vectors that are orthogonal to x = [5,0,0]?
- A plane/2D space of vectors/any vector [0, a, b]
- What's the set of vectors that are orthogonal to x and y = [0,5,0]?
- A line/1D space of vectors/any vector [0,0,b]
- Ambiguity in sign and magnitude

### **Cross Product**

- Set  $\{z: z \cdot x = 0, z \cdot y = 0\}$  has an ambiguity in sign and magnitude
- Cross product x × y is: (1)
   orthogonal to x, y (2) has sign
   given by right hand rule and (3)
   has magnitude given by area of
   parallelogram of x and y
- Important: if x and y are the same direction or either is  $\mathbf{0}$ , then  $\mathbf{x} \times \mathbf{y} = \mathbf{0}$ .
- Only in 3D!



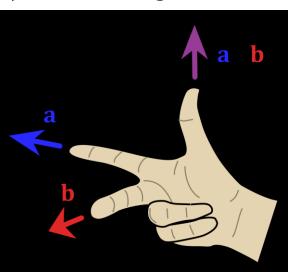


Image credit: Wikipedia.org

### Operations You Should Know

- Scale (vector, scalar → vector)
- Add (vector, vector → vector)
- Magnitude (vector → scalar)
- Dot product (vector, vector → scalar)
  - Dot products are projection / angles
- Cross product (vector, vector → vector)
  - Vectors facing same direction have cross product 0
- You can never mix vectors of different sizes

#### **Matrices**

Horizontally concatenate n, m-dim column vectors and you get a mxn matrix A (here 2x3)

$$A = [v_1, \cdots, v_n] = \begin{bmatrix} v_{1_1} & v_{2_1} & v_{3_1} \\ v_{1_2} & v_{2_2} & v_{3_2} \end{bmatrix}$$

a (scalar)
lowercase
undecorated

a (vector)
lowercase
bold or arrow

A (matrix)
uppercase
bold

### **Matrices**

Transpose: flip rows / columns 
$$\begin{bmatrix} a \\ b \end{bmatrix}^{T} = \begin{bmatrix} a & b & c \end{bmatrix} \quad (3x1)^{T} = 1x3$$

Vertically concatenate m, n-dim row vectors and you get a mxn matrix A (here 2x3)

$$A = \begin{bmatrix} \boldsymbol{u}_{1}^{T} \\ \vdots \\ \boldsymbol{u}_{n}^{T} \end{bmatrix} = \begin{bmatrix} u_{1_{1}} & u_{1_{2}} & u_{1_{3}} \\ u_{2_{1}} & u_{2_{2}} & u_{2_{3}} \end{bmatrix}$$

### **Matrix-Vector Product**

$$y_{2x1} = A_{2x3}x_{3x1}$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$y = x_1 v_1 + x_2 v_2 + x_3 v_3$$

Linear combination of columns of A

### **Matrix-Vector Product**

$$y_{2x1} = A_{2x3}x_{3x1}$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} x \begin{bmatrix} 3 \\ 3 \end{bmatrix}$$

$$y_1 = \boldsymbol{u_1^T} \boldsymbol{x} \qquad y_2 = \boldsymbol{u_2^T} \boldsymbol{x}$$

Dot product between rows of **A** and **x** 

### Matrix Multiplication

Generally:  $A_{mn}$  and  $B_{np}$  yield product  $(AB)_{mp}$ 

$$AB = \begin{bmatrix} - & a_1^T & - \\ & \vdots & - \\ - & a_m^T & - \end{bmatrix} \begin{bmatrix} | & & | \\ b_1 & \cdots & b_p \\ | & & | \end{bmatrix}$$

Yes – in **A**, I'm referring to the rows, and in **B**, I'm referring to the columns

### Matrix Multiplication

Generally:  $A_{mn}$  and  $B_{np}$  yield product  $(AB)_{mp}$ 

$$AB = \begin{bmatrix} b_1 & \cdots & b_p \\ \vdots & \vdots & \ddots & \vdots \\ a_m^T b_1 & \cdots & a_m^T b_p \\ \vdots & \ddots & \vdots \\ a_m^T b_1 & \cdots & a_m^T b_p \end{bmatrix}$$

$$AB_{ij} = a_i^T b_j$$

# Matrix Multiplication

- Dimensions must match
- Dimensions must match
- Dimensions must match
- (Yes, it's associative): ABx = (A)(Bx) = (AB)x
- (No it's not commutative): ABx ≠ (BA)x ≠ (BxA)

# Operations They Don't Teach

You Probably Saw Matrix Addition

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & f \\ g & h \end{bmatrix} = \begin{bmatrix} a+e & b+f \\ c+g & d+h \end{bmatrix}$$

What is this? FYI: e is a scalar

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + e = \begin{bmatrix} a+e & b+e \\ c+e & d+e \end{bmatrix}$$

### Broadcasting

If you want to be pedantic and proper, you expand e by multiplying a matrix of 1s (denoted 1)

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} + e = \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \mathbf{1}_{2x2}e$$
$$= \begin{bmatrix} a & b \\ c & d \end{bmatrix} + \begin{bmatrix} e & e \\ e & e \end{bmatrix}$$

Many smart matrix libraries do this automatically.
This is the source of many bugs.

### Broadcasting Example

Given: a nx2 matrix **P** and a 2D column vector **v**, Want: nx2 difference matrix **D** 

$$\mathbf{P} = \begin{bmatrix} x_1 & y_1 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} \quad \mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix} \quad \mathbf{D} = \begin{bmatrix} x_1 - a & y_1 - b \\ \vdots & \vdots \\ x_n - a & y_n - b \end{bmatrix}$$

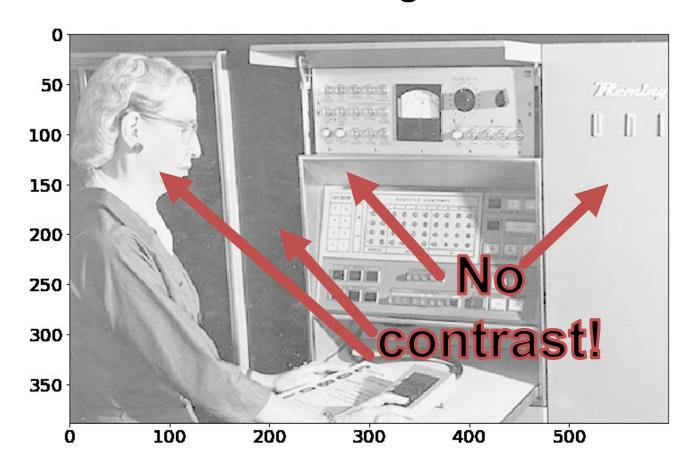
$$P - v^T = \begin{bmatrix} x_1 & y_1 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix} - \begin{bmatrix} a & b \end{bmatrix}$$
 Blue stuff is assumed / broadcast

#### Two Uses for Matrices

- 1. Storing things in a rectangular array (images, maps)
  - Typical operations: element-wise operations, convolution (which we'll cover next)
  - Atypical operations: almost anything you learned in a math linear algebra class
- 2. A linear operator that maps vectors to another space (**Ax**)
  - Typical/Atypical: reverse of above

### Images as Matrices

Suppose someone hands you this matrix. What's wrong with it?

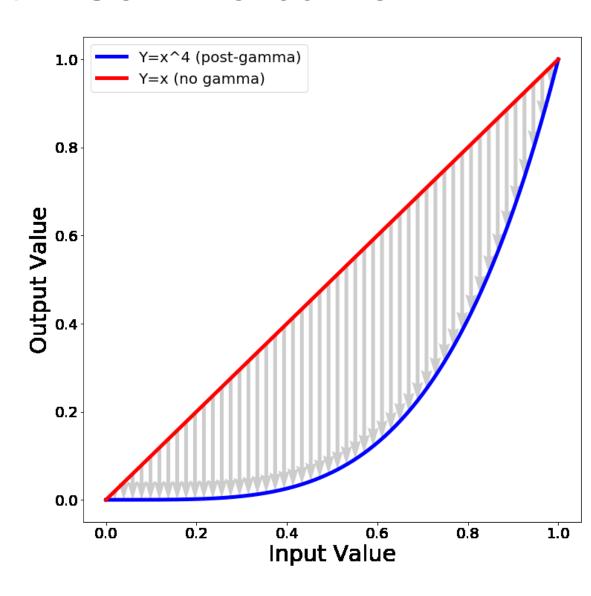


### Contrast – Gamma curve

Typical way to change the contrast is to apply a nonlinear correction

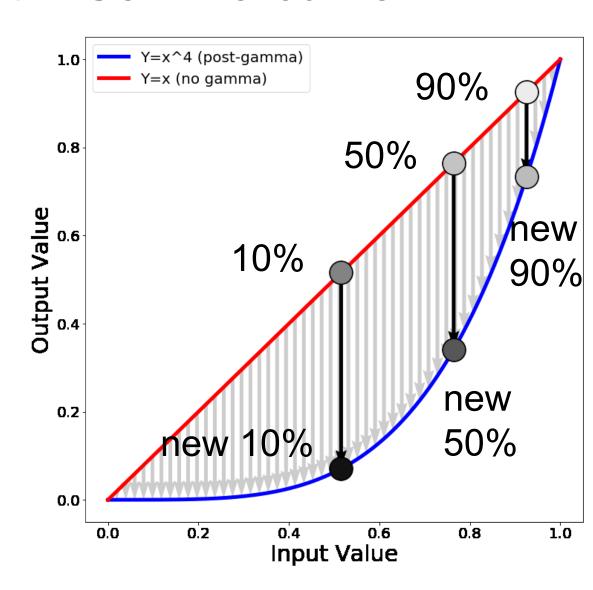
pixelvalue<sup>γ</sup>

The quantity γ controls how much contrast gets added



### Contrast – Gamma curve

Now the darkest regions (10<sup>th</sup> pctile) are **much** darker than the moderately dark regions (50<sup>th</sup> pctile).



### **Implementation**

### Python+Numpy (right way):

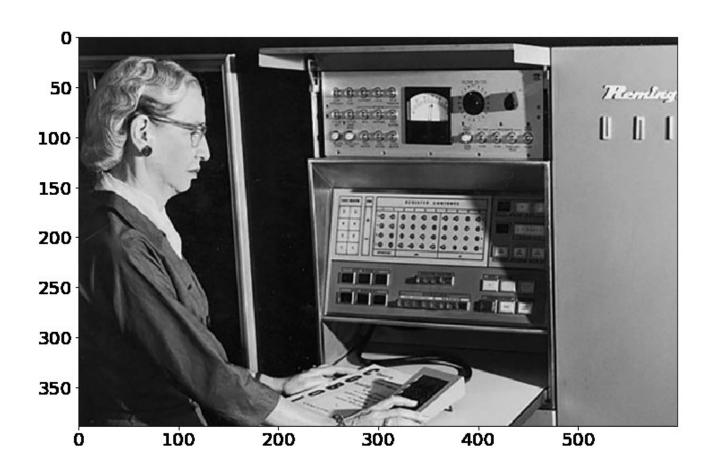
```
imNew = im**0.25
```

#### Python+Numpy (slow way – why? ):

```
imNew = np.zeros(im.shape)
for y in range(im.shape[0]):
  for x in range(im.shape[1]):
   imNew[y,x] = im[y,x]**expFactor
```

### Results

Phew! Much Better.



### Element-wise Operations

Element-wise power – beware notation

$$(A^p)_{ij} = A^p_{ij}$$

"Hadamard Product" / Element-wise multiplication

$$(\boldsymbol{A} \odot \boldsymbol{B})_{ij} = \boldsymbol{A}_{ij} * \boldsymbol{B}_{ij}$$

Element-wise division

$$(A/B)_{ij} = \frac{A_{ij}}{B_{ij}}$$

### Sums Across Axes

$$A = \begin{bmatrix} x_1 & y_1 \\ \vdots & \vdots \\ x_n & y_n \end{bmatrix}$$

ND col. vec.

$$\Sigma(A,1) = \begin{bmatrix} x_1 & y_1 \\ \vdots \\ x_n + y_n \end{bmatrix}$$

2D row vec

$$\Sigma(A,0) = \left[\sum_{i=1}^{n} x_i , \sum_{i=1}^{n} y_i \right]$$

Note – libraries distinguish between N-D column vector and Nx1 matrix.

- Suppose I represent each image as a 128dimensional vector
- I want to compute all the pairwise distances between  $\{\mathbf{x}_1, ..., \mathbf{x}_N\}$  and  $\{\mathbf{y}_1, ..., \mathbf{y}_M\}$  so I can find, for every  $\mathbf{x}_i$  the nearest  $\mathbf{y}_i$
- Identity:  $||x y||^2 = ||x||^2 + ||y||^2 2x^Ty$
- Or:  $||x y|| = (||x||^2 + ||y||^2 2x^Ty)^{1/2}$

$$egin{aligned} oldsymbol{x} & = egin{bmatrix} - & oldsymbol{x}_1 & - \ & dramptooling & oldsymbol{x}_1 & - \ - & oldsymbol{x}_N & - \ \end{bmatrix} oldsymbol{Y} & = egin{bmatrix} - & oldsymbol{y}_1 & - \ - & oldsymbol{y}_M & - \ \end{bmatrix} oldsymbol{Y}^T & = egin{bmatrix} | oldsymbol{y}_1 & \cdots & oldsymbol{y}_M \ | & & & \ \end{vmatrix} egin{bmatrix} oldsymbol{y}_1 & \cdots & oldsymbol{y}_M \ | & & & \ \end{vmatrix} \end{aligned}$$

Compute a Nx1 vector of norms (can also do Mx1)

$$\Sigma(X^2, \mathbf{1}) = \begin{vmatrix} ||x_1||^2 \\ \vdots \\ ||x_N||^2 \end{vmatrix}$$

Compute a NxM matrix of dot products

$$\left(XY^T\right)_{ij} = x_i^T y_j$$

$$\mathbf{D} = \left(\Sigma(X^2, 1) + \Sigma(Y^2, 1)^T - 2XY^T\right)^{1/2}$$

$$\begin{bmatrix} ||x_1||^2 \\ \vdots \\ ||x_N||^2 \end{bmatrix} + [||y_1||^2 \cdots ||y_M||^2]$$

$$\begin{bmatrix} ||x_1||^2 + ||y_1||^2 & \cdots & ||x_1||^2 + ||y_M||^2 \\ \vdots & \ddots & \vdots & & \vdots \\ ||x_N||^2 + ||y_1||^2 & \cdots & ||x_N||^2 + ||y_M||^2 \end{bmatrix}$$
 Why?

 $(\Sigma(X^2,1) + \Sigma(Y^2,1)^T)_{ij} = ||x_i||^2 + ||y_i||^2$ 

$$\mathbf{D} = \left(\Sigma(X^2, 1) + \Sigma(Y^2, 1)^T - 2XY^T\right)^{1/2}$$

$$\mathbf{D}_{ij} = \|x_i\|^2 + \|y_i\|^2 + 2x^Ty$$

#### Numpy code:

```
XNorm = np.sum(X**2,axis=1,keepdims=True)
YNorm = np.sum(Y**2,axis=1,keepdims=True)
D = (XNorm+YNorm.T-2*np.dot(X,Y.T))**0.5
```

\*May have to make sure this is at least 0 (sometimes roundoff issues happen)

### Does it Make a Difference?

Computing pairwise distances between 300 and 400 128-dimensional vectors

- 1. for x in X, for y in Y, using native python: 9s
- 2. for x in X, for y in Y, using numpy to compute distance: 0.8s
- 3. vectorized: 0.0045s (~2000x faster than 1, 175x faster than 2)

Expressing things in primitives that are optimized is usually faster

### Linear Independence

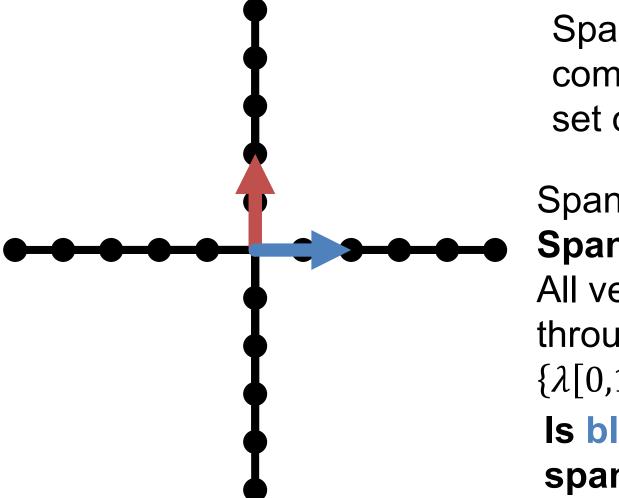
A set of vectors is linearly independent if you can't write one as a linear combination of the others.

Suppose: 
$$\boldsymbol{a} = \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} \boldsymbol{b} = \begin{bmatrix} 0 \\ 6 \\ 0 \end{bmatrix} \boldsymbol{c} = \begin{bmatrix} 5 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} 0 \\ 0 \\ 4 \end{bmatrix} = 2\mathbf{a}$$
  $\mathbf{y} = \begin{bmatrix} 0 \\ -2 \\ 1 \end{bmatrix} = \frac{1}{2}\mathbf{a} - \frac{1}{3}\mathbf{b}$ 

- Is the set {a,b,c} linearly independent?
- Is the set {a,b,x} linearly independent?
  - Max # of independent 3D vectors?

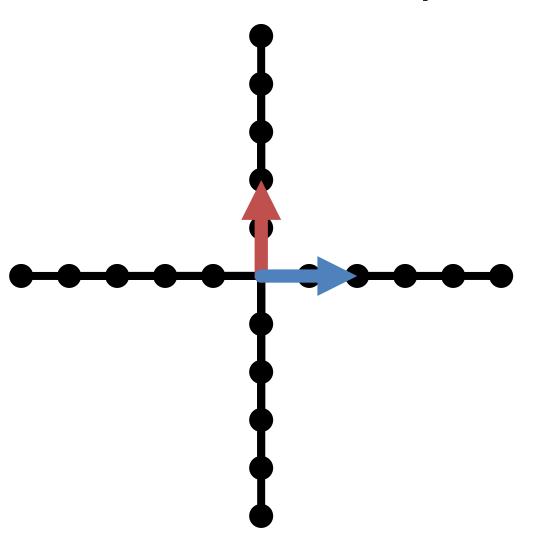
### Span



Span: all linear combinations of a set of vectors

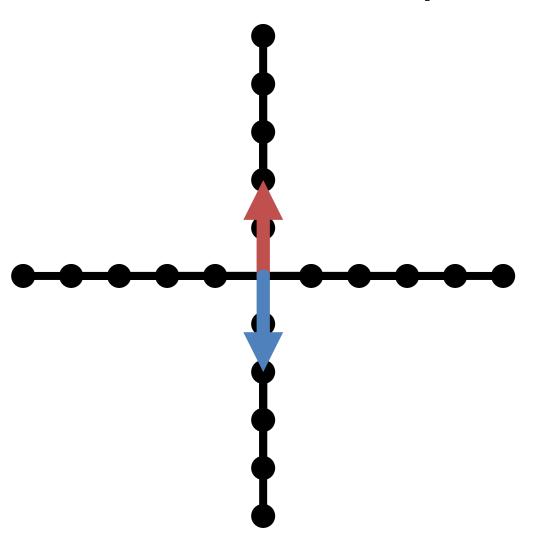
Span( $\{\uparrow\}$ ) = Span( $\{[0,1]\}$ ) = ? All vertical lines through origin =  $\{\lambda[0,1]:\lambda\in R\}$  Is blue in  $\{\text{red}\}$ 's span?

# Span



Span: all linear combinations of a set of vectors

# Span



Span: all linear combinations of a set of vectors

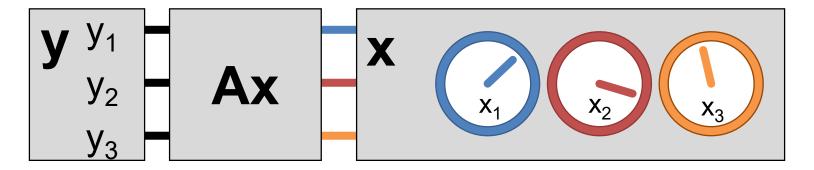
### **Matrix-Vector Product**

$$Ax = \begin{bmatrix} 1 & & 1 \\ c_1 & \cdots & c_n \\ 1 & & 1 \end{bmatrix} x$$
 Right-multiplying **A** by **x** mixes columns of **A** according to entries of **x**

- The output space of f(x) = Ax is constrained to be the span of the columns of A.
- Can't output things you can't construct out of your columns

#### An Intuition

$$y = Ax = \begin{bmatrix} | & | & | \\ c_1 & c_2 & c_n \\ | & | & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$



- **x** knobs on machine (e.g., fuel, brakes)
- y state of the world (e.g., where you are)
- **A** machine (e.g., your car)

### Linear Independence

Suppose the columns of 3x3 matrix **A** are *not* linearly independent ( $c_1$ ,  $\alpha c_1$ ,  $c_2$  for instance)

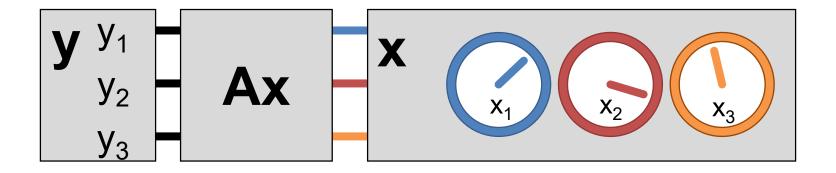
$$y = Ax = \begin{bmatrix} | & | & | \\ c_1 & \alpha c_1 & c_2 \\ | & | & | \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$y = x_1c_1 + \alpha x_2c_1 + x_3c_2$$
$$y = (x_1 + \alpha x_2)c_1 + x_3c_2$$

# Linear Independence Intuition

Knobs of **x** are redundant. Even if **y** has 3 outputs, you can only control it in two directions

$$y = (x_1 + \alpha x_2)c_1 + x_3c_2$$



#### Linear Independence

Recall:  $Ax = (x_1 + \alpha x_2)c_1 + x_3c_2$ 

$$y = A \begin{bmatrix} x_1 + \beta \\ x_2 - \beta / \alpha \\ x_3 \end{bmatrix} = \left( x_1 + \beta + \alpha x_2 - \alpha \frac{\beta}{\alpha} \right) c_1 + x_3 c_2$$

- Can write **y** an infinite number of ways by adding  $\beta$  to  $\mathbf{x_1}$  and subtracting  $\frac{\beta}{\alpha}$  from  $\mathbf{x_2}$
- Or, given a vector y there's not a unique vector x s.t. y = Ax
- Not all y have a corresponding x s.t. y=Ax

#### Linear Independence

$$Ax = (x_1 + \alpha x_2)c_1 + x_3c_2$$

$$y = A \begin{bmatrix} \beta \\ -\beta/\alpha \end{bmatrix} = \left(\beta - \alpha \frac{\beta}{\alpha}\right) c_1 + 0 c_2$$

- What else can we cancel out?
- An infinite number of non-zero vectors x can map to a zero-vector y
- Called the right null-space of A.

#### Rank

- Rank of a nxn matrix A number of linearly independent columns (or rows) of A / the dimension of the span of the columns
- Matrices with full rank (n x n, rank n) behave nicely: can be inverted, span the full output space, are one-to-one.
- Matrices with full rank are machines where every knob is useful and every output state can be made by the machine

#### Inverses

- Given y = Ax, y is a linear combination of columns of A proportional to x. If A is full-rank, we should be able to invert this mapping.
- Given some y (output) and A, what x (inputs) produced it?
- $x = A^{-1}y$
- Note: if you don't need to compute it, never ever compute it. Solving for x is much faster and stable than obtaining A-1.

## Symmetric Matrices

- Symmetric:  $A^T = A$  or  $A_{ij} = A_{ji}$
- Have **lots** of special properties

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Any matrix of the form  $A = X^T X$  is symmetric.

Quick check: 
$$A^T = (X^T X)^T$$

$$A^T = X^T (X^T)^T$$

$$A^T = X^T X$$

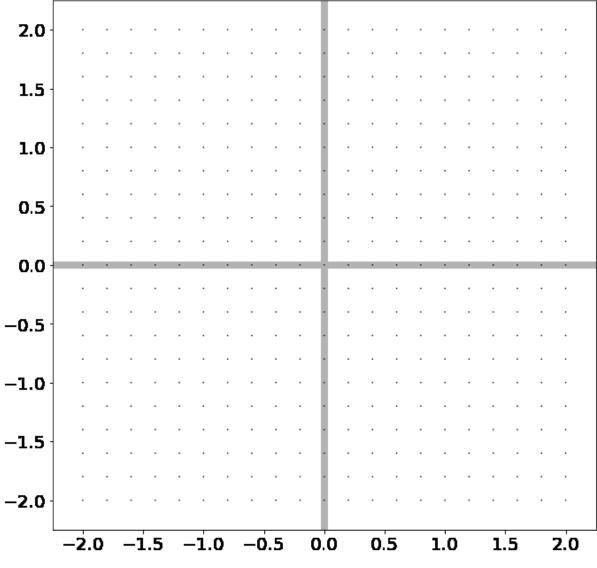
## Special Matrices – Rotations

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

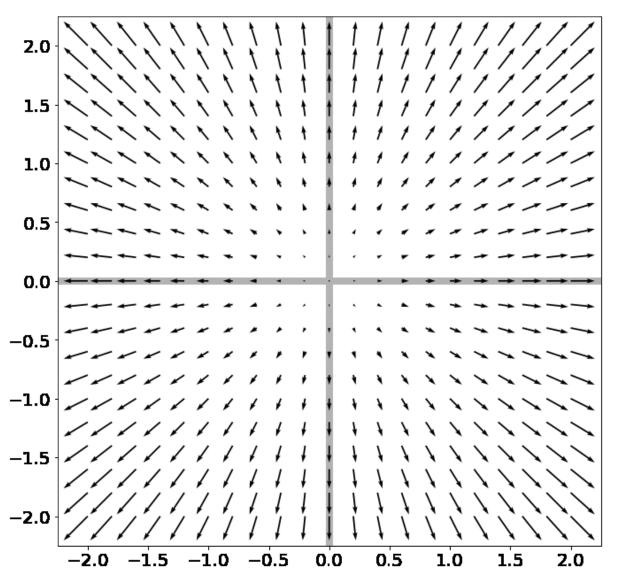
- Rotation matrices R rotate vectors and do not change vector L2 norms  $(\|Rx\|_2 = \|x\|_2)$
- Every row/column is unit norm
- Every row is linearly independent
- Transpose is inverse  $RR^T = R^TR = I$
- Determinant is 1 (otherwise it's also a coordinate flip/reflection), eigenvalues are 1

## Eigensystems

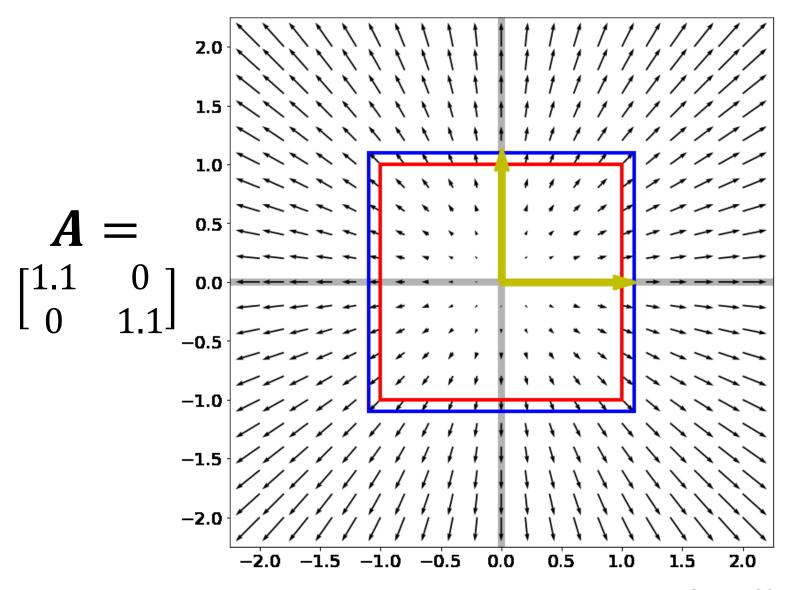
- An eigenvector  $v_i$  and eigenvalue  $\lambda_i$  of a matrix A satisfy  $Av_i = \lambda_i v_i$  ( $Av_i$  is scaled by  $\lambda_i$ )
- Vectors and values are always paired and typically you assume  $\|v_i\|^2=1$
- Biggest eigenvalue of A gives bounds on how much f(x) = Ax stretches a vector **x**.
- Hints of what people really mean:
  - "Largest eigenvector" = vector w/ largest value
  - Spectral just means there's eigenvectors



Suppose I have points in a grid



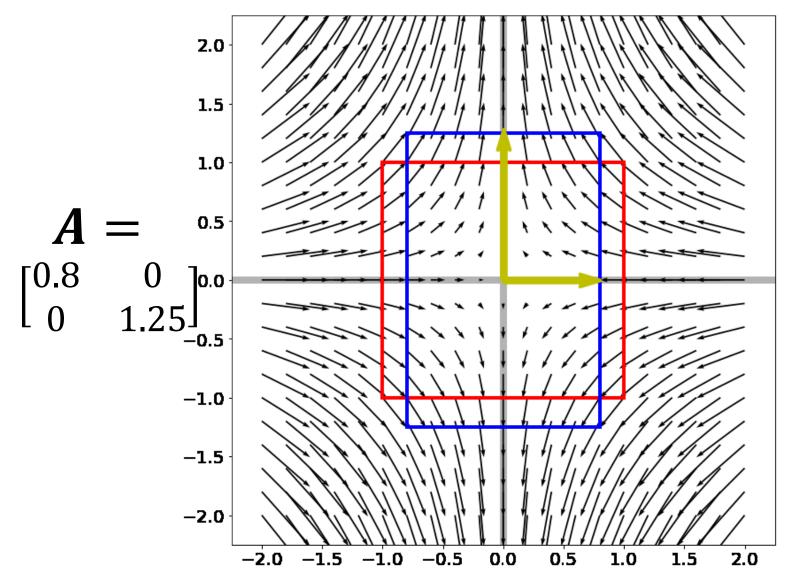
Now I apply f(x) = Ax to these points Pointy-end: Ax . Non-Pointy-End: x



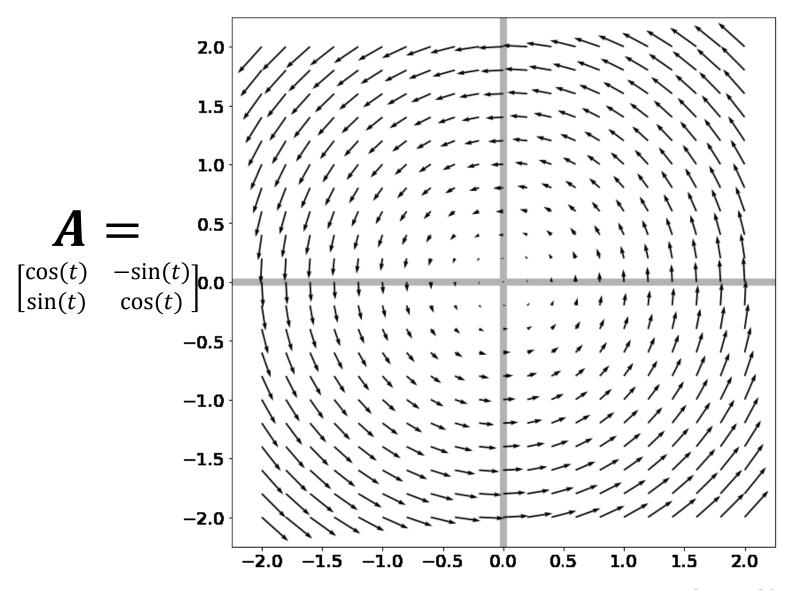
Red box – unit square, Blue box – after f(x) = Ax. What are the yellow lines and why?



Now I apply f(x) = Ax to these points Pointy-end: Ax . Non-Pointy-End: x



Red box – unit square, Blue box – after f(x) = Ax. What are the yellow lines and why?



Red box – unit square, Blue box – after f(x) = Ax.

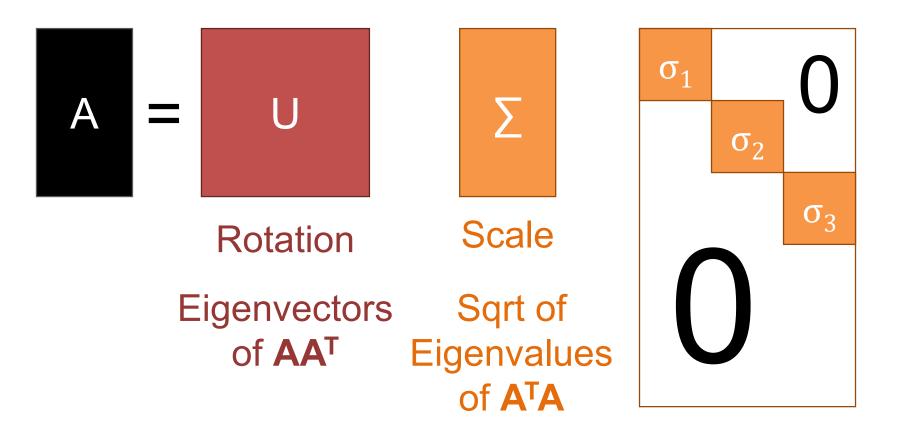
Can we draw any yellow lines?

## Eigenvectors of Symmetric Matrices

- Always n mutually orthogonal eigenvectors with n (not necessarily) distinct eigenvalues
- For symmetric A, the eigenvector with the largest eigenvalue maximizes  $\frac{x^TAx}{x^Tx}$  (smallest/min)
- So for unit vectors (where  $x^Tx = 1$ ), that eigenvector maximizes  $x^TAx$
- A surprisingly large number of optimization problems rely on (max/min)imizing this

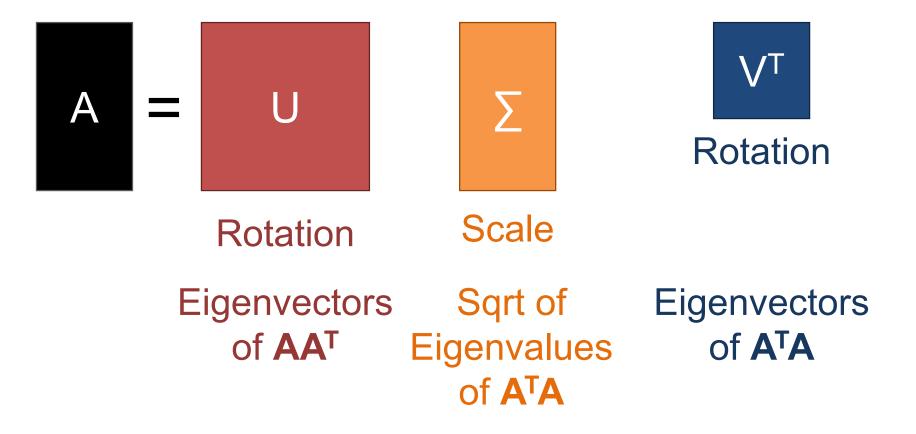
## The Singular Value Decomposition

Can always write a mxn matrix **A** as:  $A = U \Sigma V^T$ 



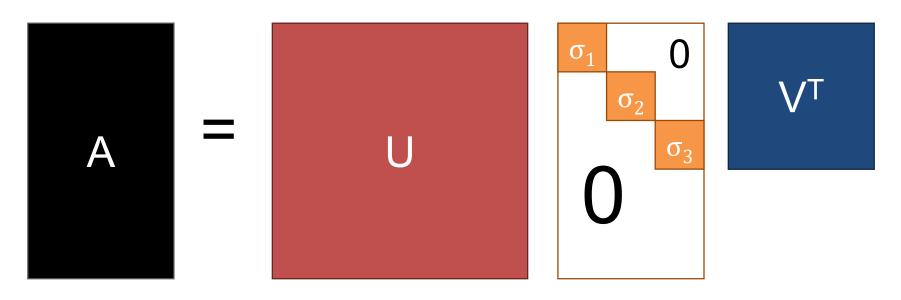
## The Singular Value Decomposition

Can always write a mxn matrix **A** as:  $A = U \Sigma V^T$ 



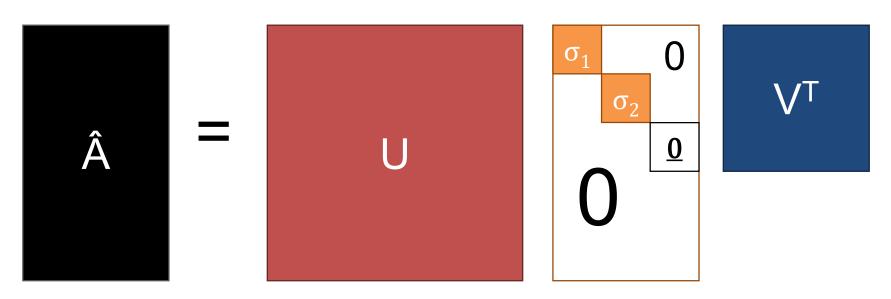
## Singular Value Decomposition

- Every matrix is a rotation, scaling, and rotation
- Number of non-zero singular values = rank / number of linearly independent vectors
- "Closest" matrix to A with a lower rank



## Singular Value Decomposition

- Every matrix is a rotation, scaling, and rotation
- Number of non-zero singular values = rank / number of linearly independent vectors
- "Closest" matrix to A with a lower rank



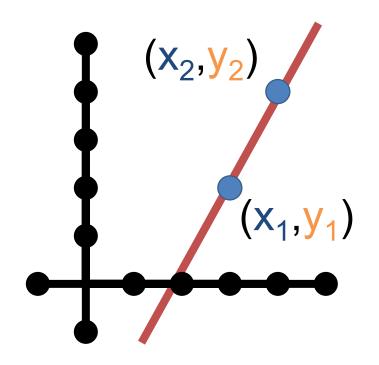
## Singular Value Decomposition

- Every matrix is a rotation, scaling, and rotation
- Number of non-zero singular values = rank / number of linearly independent vectors
- "Closest" matrix to A with a lower rank

Secretly behind basically many things you do.

with matrices



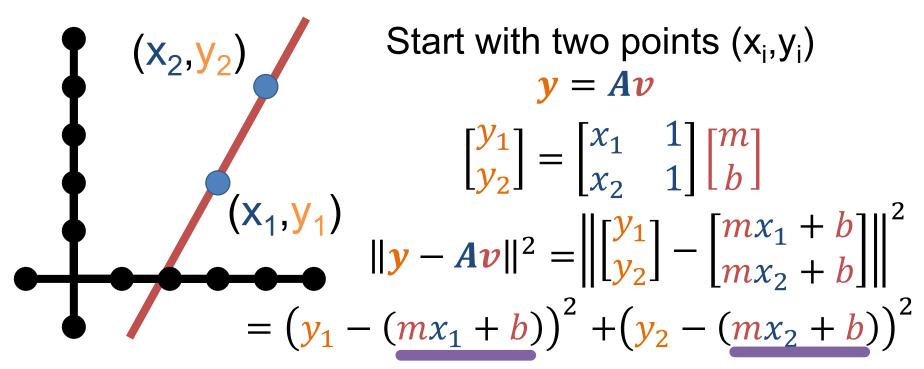


Start with two points  $(x_i, y_i)$ y = Av

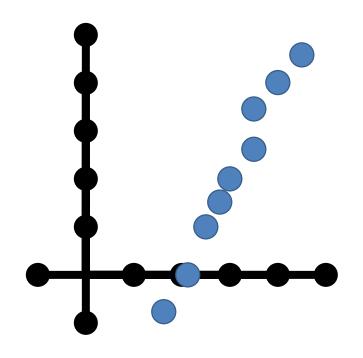
$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix}$$

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} mx_1 + b \\ mx_2 + b \end{bmatrix}$$

We know how to solve this – invert **A** and find **v** (i.e., (m,b) that fits points)



The sum of squared differences between the actual value of y and what the model says y should be.



Suppose there are n > 2 points

$$y = Av$$

$$\begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix} = \begin{bmatrix} x_1 & 1 \\ \vdots & \vdots \\ x_N & 1 \end{bmatrix} \begin{bmatrix} m \\ b \end{bmatrix}$$

Compute  $||y - Ax||^2$  again

$$\|\mathbf{y} - A\mathbf{v}\|^2 = \sum_{i=1}^n (\mathbf{y}_i - (m\mathbf{x}_i + \mathbf{b}))^2$$

Given y, A, and v with y = Av overdetermined (A tall / more equations than unknowns)

We want to minimize  $||y - Av||^2$ , or find:

$$|\mathbf{v} - \mathbf{A}\mathbf{v}|^2$$

(The value of x that makes the expression smallest)

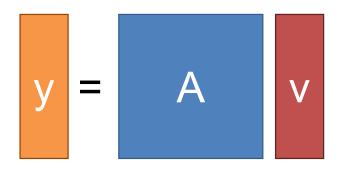
Solution satisfies  $(A^TA)v^* = A^Ty$ 

$$\mathbf{v}^* = \left(A^T A\right)^{-1} A^T \mathbf{y}$$

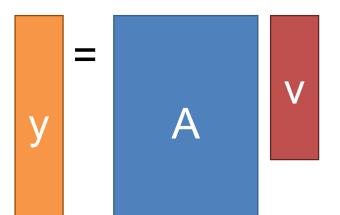
(Don't actually compute the inverse!)

# When is Least-Squares Possible?

Given y, A, and v. Want y = Av



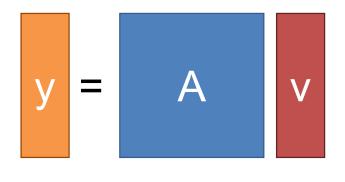
Want n outputs, have n knobs to fiddle with, every knob is useful if A is full rank.



A: rows (outputs) > columns (knobs). Thus can't get precise output you want (not enough knobs). So settle for "closest" knob setting.

## When is Least-Squares Possible?

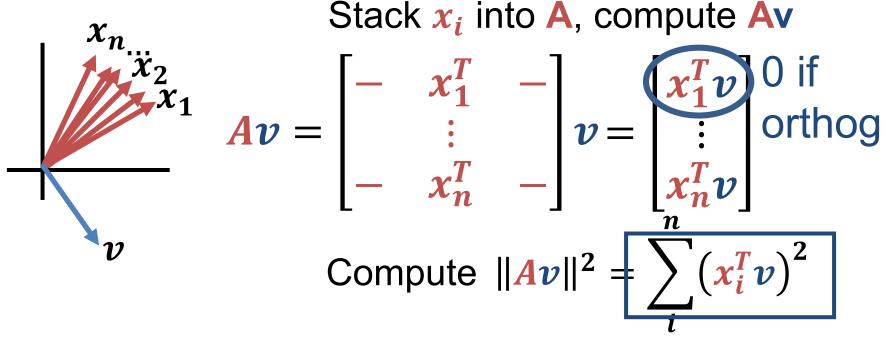
Given y, A, and v. Want y = Av



Want n outputs, have n knobs to fiddle with, every knob is useful if A is full rank.

A: columns (knobs) > rows (outputs). Thus, any output can be expressed in infinite ways.

Given a set of unit vectors (aka directions)  $x_1, ..., x_n$  and I want vector v that is as orthogonal to all the  $x_i$  as possible (for some definition of orthogonal)



Sum of how orthog. v is to each x

- A lot of times, given a matrix **A** we want to find the **v** that minimizes  $||Av||^2$ .
- I.e., want  $\mathbf{v}^* = \arg\min_{\mathbf{v}} ||\mathbf{A}\mathbf{v}||_2^2$
- What's a trivial solution?
- Set  $\mathbf{v} = \mathbf{0} \rightarrow \mathbf{A}\mathbf{v} = \mathbf{0}$
- Exclude this by forcing v to have unit norm

Let's look at  $||Av||_2^2$ 

$$||Av||_2^2 =$$
 Rewrite as dot product  $||Av||_2^2 = (Av)^T(Av)$  Distribute transpose  $||Av||_2^2 = v^TA^TAv = v^T(A^TA)v$ 

We want the vector minimizing this quadratic form Where have we seen this?

Ubiquitious tool in vision:

$$\arg\min_{\|\boldsymbol{v}\|^2=1} \|\boldsymbol{A}\boldsymbol{v}\|^2$$

- $\blacksquare$  (1) "Smallest"\* eigenvector of  $A^TA$ 
  - (2) "Smallest" right singular vector of A

For min → max, switch smallest → largest

\*Note:  $A^TA$  is positive semi-definite so it has all non-negative eigenvalues

#### **Derivatives**

Remember derivatives?

Derivative: rate at which a function f(x) changes at a point as well as the direction that increases the function

#### Given quadratic function f(x)

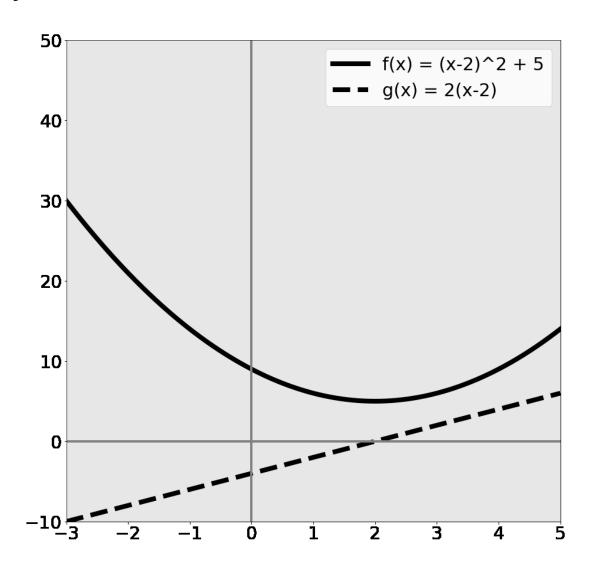
$$f(x,y) = (x-2)^2 + 5$$

f(x) is function

$$g(x) = f'(x)$$

aka

$$g(x) = \frac{d}{dx}f(x)$$



#### Given quadratic function f(x)

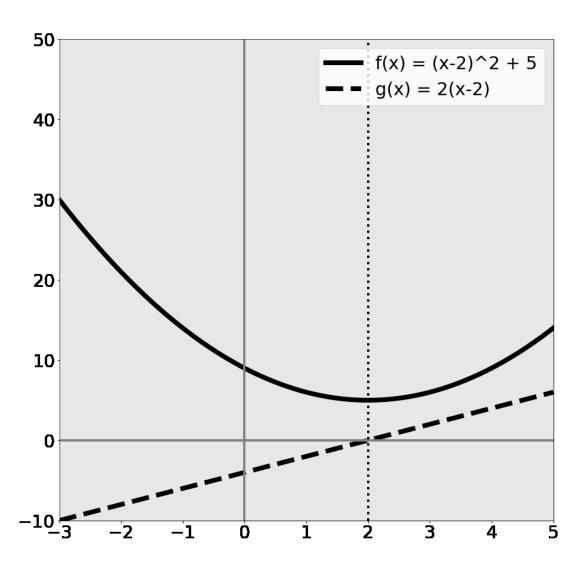
$$f(x,y) = (x-2)^2 + 5$$

## What's special about x=2?

$$f(x)$$
 minim. at 2  $g(x) = 0$  at 2

$$a = minimum of f \rightarrow$$
  
 $g(a) = 0$ 

Reverse is *not true* 



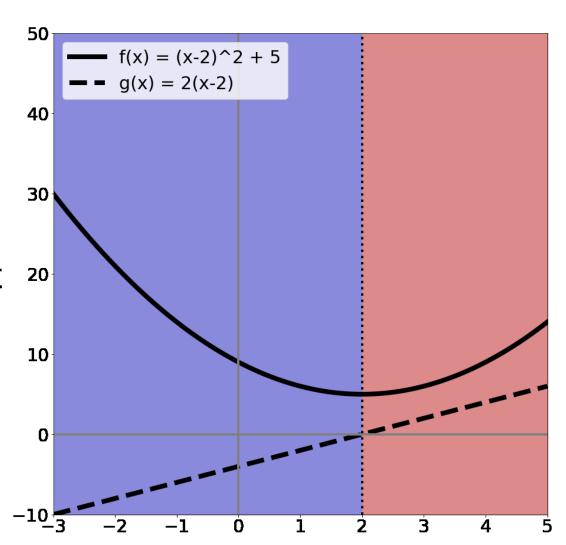
#### Rates of change

$$f(x,y) = (x-2)^2 + 5$$

Suppose I want to increase f(x) by changing x:

Blue area: move left Red area: move right

Derivative tells you direction of ascent and rate



#### What Calculus Should I Know

- Really need intuition
- Need chain rule
- Rest you should look up / use a computer algebra system / use a cookbook
- Partial derivatives (and that's it from multivariable calculus)

#### **Partial Derivatives**

- Pretend other variables are constant, take a derivative. That's it.
- Make our function a function of two variables

$$f(x) = (x-2)^2 + 5$$

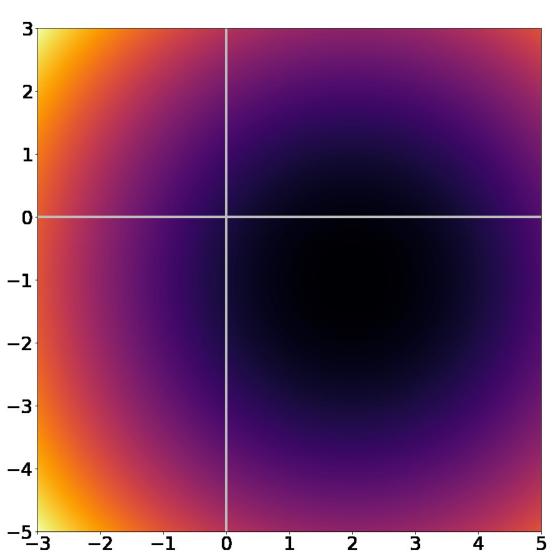
$$\frac{\partial}{\partial x} f(x) = 2(x-2) * 1 = 2(x-2)$$

$$f_2(x,y) = (x-2)^2 + 5 + (y+1)^2$$
Pretend it's constant  $\rightarrow$  derivative = 0
$$\frac{\partial}{\partial x} f_2(x) = 2(x-2)$$

#### **Zooming Out**

$$f_2(x,y) = (x-2)^2 + 5 + (y+1)^2$$

Dark = f(x,y) low Bright = f(x,y) high



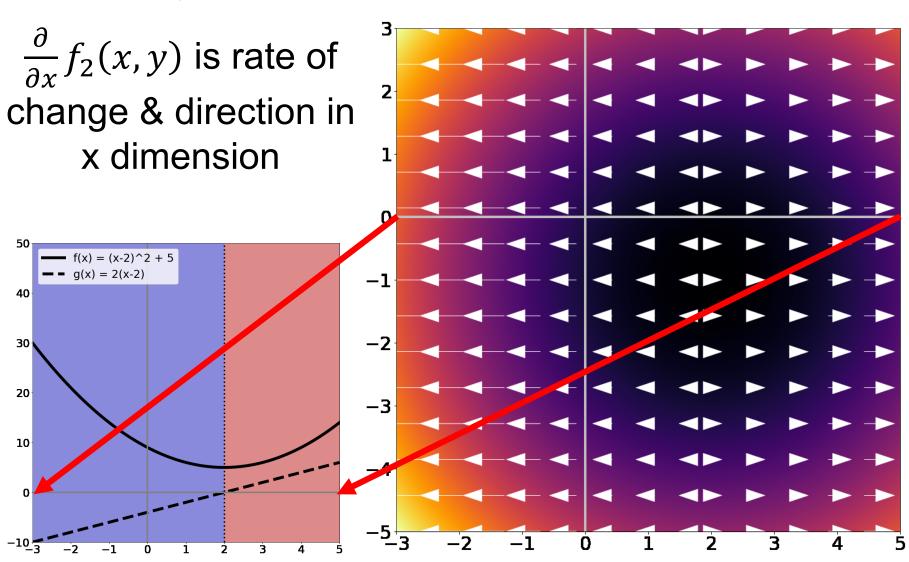
#### Taking a slice of

$$f_2(x,y) = (x-2)^2 + 5 + (y+1)^2$$

Slice of y=0 is the function from before:  $f(x) = (x-2)^2 + 5$ f'(x) = 2(x-2) $f(x) = (x-2)^2 + 5$ - = g(x) = 2(x-2)40 20 10

#### Taking a slice of

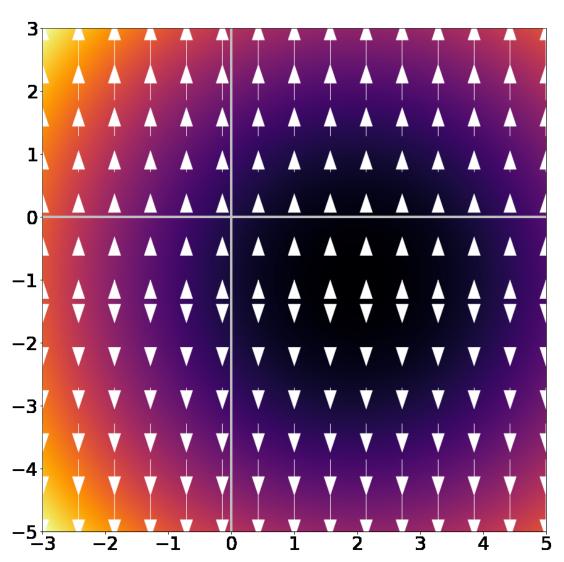
$$f_2(x,y) = (x-2)^2 + 5 + (y+1)^2$$



#### **Zooming Out**

$$f_2(x,y) = (x-2)^2 + 5 + (y+1)^2$$

 $\frac{\partial}{\partial y} f_2(x,y)$  is 2(y+1) and is the rate of change & direction in y dimension



#### **Zooming Out**

$$f_2(x,y) = (x-2)^2 + 5 + (y+1)^2$$

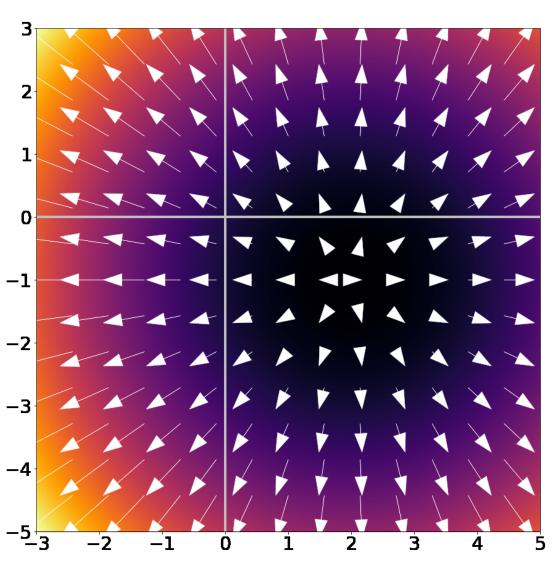
#### **Gradient/Jacobian:**

Making a vector of

$$\nabla_f = \left[ \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

gives rate and direction of change.

Arrows point OUT of minimum / basin.



#### What Should I Know?

- Gradients are simply partial derivatives perdimension: if x in f(x) has n dimensions,  $\nabla_f(x)$  has n dimensions
- Gradients point in direction of ascent and tell the rate of ascent
- If a is minimum of  $f(x) \rightarrow \nabla_f(a) = \mathbf{0}$
- Reverse is not true, especially in highdimensional spaces