Cameras

EECS 442 - David Fouhey
Fall 2019, University of Michigan
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Let's Take a Picture!

Idea 1: Just use film Result: Junk

Let's Take a Picture!

Idea 2: add a barrier

Let's Take a Picture!

Idea 2: add a barrier

Let's Take a Picture!

Film captures all the rays going through a point (a pencil of rays). Result: good in theory!

Camera Obscura

- Basic principle known to Mozi (470-390 BCE), Aristotle (384-322 BCE)
- Drawing aid for artists: described by Leonardo da Vinci (1452-1519)

Camera Obscura

After scouting rooms and reserving one for at least a day, Morell masks the windows except for the aperture. He controls three elements: the size of the hole, with a smaller one yielding a sharper but dimmer image; the length of the exposure, usually eight hours; and the distance from the hole to the surface on which the outside image falls and which he will photograph. He used 4×5 and 8×10 view cameras and lenses ranging from 75 to 150 mm .

After he's done inside, it gets harder. "I leave the room and I am constantly checking the weather, I'm hoping the maid reads my note not to come in, I'm worrying that the sun will hit the plastic masking and it will fall down, or that I didn't trigger the lens."

From Grand Images Through a Tiny Opening, Photo District News, February 2005

Projection

How do we find the projection P of a point X ?
Form visual ray from X to camera center and intersect it with camera plane

Projection

Both X and X ' project to P. Which appears in the image?
Are there points for which projection is undefined?

Quick Aside: Remember This?

Projection Equations

Coordinate system: \mathbf{O} is origin, XY in image, Z sticks out. $X Y$ is image plane, Z is optical axis.
$(\mathrm{x}, \mathrm{y}, \mathrm{z})$ projects to (fx/z,fy/z) via similar triangles

Some Facts About Projection

3D lines project to 2D lines
The projection of any 3D parallel lines converge at a vanishing point

Distant objects are smaller

Some Facts About Projection

Let's try some fake images

Some Facts About Projection

Some Facts About Projection

Some Facts About Projection

What's Lost?

Is she shorter or further away?

Are the orange lines we see parallel / perpendicular / neither to the red line?

What's Lost?

Is she shorter or further

away?
Are the orange lines we see parallel / perpendicular / neither to the red line?

What's Lost?

Be careful of drawing conclusions:

- Projection of 3D line is 2D line; NOT 2D line is 3D line.
- Can you think of a counter-example (a 2D line that is not a 3D line)?
- Projections of parallel 3D lines converge at VP; NOT any pair of lines that converge are parallel in 3D.
- Can you think of a counter-example?

Do You Always Get Perspective?

Do You Always Get Perspective?

Y location of blue and red dots in image:

$$
\frac{\boldsymbol{f y}}{z_{2}} \quad \frac{\boldsymbol{f y}}{z_{1}}
$$

$$
\frac{f y}{z}
$$

$$
\frac{f y}{z}
$$

Do You Always Get Perspective?

When plane is fronto-parallel (parallel to camera plane), everything is:

- scaled by f/z
- otherwise is preserved.

What's This Useful For?

Things looking different when viewed from different angles seems like a nuisance. It's also a cue. Why?

Projection Equation

I promised you linear algebra: is this linear?
Nope: division by z is non-linear
Adapesed tom s. Sesirs slide (and risks division by 0)

Homogeneous Coordinates (2D)

Trick: add a dimension!
This also clears up lots of nasty special cases

What if $\mathbf{w}=\mathbf{0}$?

Homogeneous Coordinates

$$
\lambda[x, y, w]
$$

Triple /
Equivalent
Double /
Equals

$$
\lambda \neq 0
$$

Two homogeneous coordinates are equivalent if they are proportional to each other. Not $=$!

Benefits of Homogeneous Coords

General equation of 2D line:

$$
a x+b y+c=0
$$

Homogeneous Coordinates

$$
\boldsymbol{l}^{T} \boldsymbol{p}=0, \quad \boldsymbol{l}=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right], \boldsymbol{p}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Benefits of Homogeneous Coords

- Lines (3D) and points (2D \rightarrow 3D) are now the same dimension.
- Use the cross (x) and dot product for:
- Intersection of lines I and m:Ix m
- Line through two points \mathbf{p} and $\mathbf{q}: \mathbf{p} \times \mathbf{q}$
- Point \mathbf{p} on line $\mathbf{I}: \mathbf{I}^{\top} \mathbf{p}$
- Parallel lines, vertical lines become easy (compared to $\mathrm{y}=\mathrm{mx}+\mathrm{b}$)

Benefits of Homogeneous Coords

What's the intersection?

$$
\begin{gathered}
{[0,1,-2] \times[1,0,-1]=[-1,-2,-1]} \\
\text { Converting back (divide by }-1 \text {) }
\end{gathered}
$$

$$
(1,2)
$$

Cameras

EECS 442 - David Fouhey
Fall 2019, University of Michigan
http://web.eecs.umich.edu/~fouhey/teaching/EECS442_F19/

Recap: Homogeneous Coords

Recap: Homogeneous Coords

$$
\begin{gathered}
\left(a_{1}, b_{1}, c_{1}\right)=(0,1,-2) \\
\left(a_{2}, b_{2}, c_{2}\right)=(1,0,-1) \\
\text { Intersection: } I_{1} \times \mathrm{I}_{2} \\
\end{gathered}
$$

Benefits of Homogeneous Coords

Intersection of $\mathrm{y}=2, \mathrm{y}=1$
$[0,1,-2] \times[0,1,-1]=[1,0,0]$
Does it lie on $\mathbf{y}=\mathbf{3}$? Intuitively?

$$
[0,1,-3]^{\top}[1,0,0]=0
$$

Benefits of Homogeneous Coords

 Translation is now linear / matrix-multiply$$
\text { If } \mathbf{w}=1\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
1
\end{array}\right]=\left[\begin{array}{c}
u+t_{x} \\
v+t_{y} \\
1
\end{array}\right]
$$

Generically $\left[\begin{array}{c}u^{\prime} \\ v^{\prime} \\ w^{\prime}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}u \\ v \\ w\end{array}\right]=\left[\begin{array}{c}u+w t_{x} \\ v+w t_{y} \\ w\end{array}\right]$
Rigid body transforms (rot + trans) now linear

$$
\left[\begin{array}{c}
u^{\prime} \\
v^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & t_{x} \\
r_{21} & r_{22} & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]
$$

3D Homogeneous Coordinates

Same story: add a coordinate, things are equivalent if they're proportional

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \longrightarrow\left[\begin{array}{c}
u \\
v \\
w \\
t
\end{array}\right] \longrightarrow\left[\begin{array}{c}
u / t \\
v / t \\
w / t
\end{array}\right]
$$

Projection Matrix

Projection (fx/z, fy/z) is matrix multiplication

Projection Matrix

Projection ($\mathrm{fx} / \mathrm{z}, \mathrm{fy} / \mathrm{z}$) is matrix multiplication

Why $\equiv \neq=$

Project X and X ' to the image and compare them
$\operatorname{YES}\left[\begin{array}{c}f x \\ f y \\ z\end{array}\right] \equiv\left[\begin{array}{c}f x^{\prime} \\ f y^{\prime} \\ z^{\prime}\end{array}\right] \quad$ NO $\left[\begin{array}{c}f x \\ f y \\ z\end{array}\right]=\left[\begin{array}{c}f x^{\prime} \\ f y^{\prime} \\ z^{\prime}\end{array}\right]$

Typical Perspective Model

P: 2D homogeneous point (3D)

X: 3d homogeneous point (4D)

Typical Perspective Model

R: rotation between world system and camera

$$
P \equiv
$$

$$
\left[\boldsymbol{R}_{3 x 3}\right.
$$

t: translation
between world
system and camera
$\left.\boldsymbol{t}_{3 x 1}\right] \quad \boldsymbol{X}_{4 x 1}$

Typical Perspective Model

f focal length
$\boldsymbol{P} \equiv\left[\begin{array}{ll}f & f \\ 0 & f \\ 0 & 0\end{array}\right.$
u0,v0: principal point (image coords of camera origin on retina)
$\left[\begin{array}{ll}\boldsymbol{R}_{3 x 3} & \boldsymbol{t}_{3 x 1}\end{array}\right] \quad \boldsymbol{X}_{4 \times 1}$

Typical Perspective Model

$$
\begin{gathered}
\begin{array}{c}
\text { Intrinsic } \\
\text { Matrix K }
\end{array} \begin{array}{c}
\text { Extrinsic } \\
\text { Matrix [R,t] }
\end{array} \\
\begin{array}{|ccc}
{\left[\begin{array}{lll}
f & 0 & u_{0} \\
0 & f & v_{0} \\
0 & 0 & 1
\end{array}\right]} & \left.\begin{array}{ll}
{\left[\boldsymbol{R}_{3 \times 3}\right.} & \boldsymbol{t}_{3 \times 1}
\end{array}\right] \boldsymbol{X}_{4 x 1} \\
\boldsymbol{P} \equiv \boldsymbol{K}[\boldsymbol{R}, \boldsymbol{t}] \boldsymbol{X} \equiv \boldsymbol{M}_{3 \times 4} \boldsymbol{X}_{4 x 1}
\end{array} \\
\end{gathered}
$$

Other Cameras - Orthographic

Orthographic Camera (z infinite)

$$
\boldsymbol{P}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \boldsymbol{X}_{3 \times 1}
$$

Other Cameras - Orthographic

Why does this make things easy and why is this popular in old games?

$$
\boldsymbol{P}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

The Big Issue

Film captures all the rays going through a point (a pencil of rays). How big is a point?

Math vs. Reality

- Math: Any point projects to one point
- Reality (as pointed out by the class)
- Don't image points behind the camera / objects
- Don't have an infinite amount of sensor material
- Other issues
- Light is limited
- Spooky stuff happens with infinitely small holes

Limitations of Pinhole Model

Ideal Pinhole
-1 point generates 1 image
-Low-light levels

Finite Pinhole
-1 point generates region
-Blurry.
Why is it blurry?

Limitations of Pinhole Model

Adding a Lens

- A lens focuses light onto the film
- Thin lens model: rays passing through the center are not deviated (pinhole projection model still holds)

Adding a Lens

film

- All rays parallel to the optical axis pass through the focal point

What's The Catch?

- There's a distance where objects are "in focus"
- Other points project to a "circle of confusion"

Thin Lens Formula

We care about images that are in focus. When is this true? Discuss with your neighbor. When two paths from a point hit the same image location.
object

Thin Lens Formula

Let's derive the relationship between object distance D, image plane distance D', and focal length f.

Thin Lens Formula

$\begin{aligned} & \text { One set of similar } \\ & \text { triangles: }\end{aligned} \frac{y^{\prime}}{D^{\prime}-f}=\frac{y}{f} \rightarrow \frac{y^{\prime}}{y}=\frac{D^{\prime}-f}{f}$

Thin Lens Formula

Thin Lens Formula

Thin Lens Formula

Suppose I want to take a picture of a lion with D big? Which of D, D', f are fixed?

How do we take pictures of things at different distances?

Depth of Field

http://www.cambridgeincolour.com/tutorials/depth-of-field.htm

Controlling Depth of Field

Changing the aperture size affects depth of field A smaller aperture increases the range in which the object is approximately in focus

Controlling Depth of Field

If a smaller aperture makes everything focused, why don't we just always use it?

Varying the Aperture

Small aperture = large DOF

Large aperture = small DOF

Varying the Aperture

Field of View (FOV)

$\tan ^{-1}$ is monotonic increasing. How can I get the FOV bigger?

Field of View

Slide Credit: A. Efros

Field of View

Slide Credit: A. Efros

Field of View and Focal Length

Slide Credit: A. Efros, F. Durand

Large FOV, small f Camera close to car

Small FOV, large f Camera far from the car

Field of View and Focal Length

wide-angle

standard

telephoto

Dolly Zoom

Change f and distance at the same time

More Bad News!

- First a pinhole...
- Then a thin lens model....

Lens Flaws: Radial Distortion

Lens imperfections cause distortions as a function of distance from optical axis

Less common these days in consumer devices

Radial Distortion Correction

Ideal

$$
y^{\prime}=f \frac{y}{z} \quad y^{\prime}=\left(1+k_{1} r^{2}+\cdots\right) \frac{y}{z}
$$

Vignetting

What happens to the light between the black and red lines?

Vignetting

Lens Flaws: Spherical Abberation

Lenses don't focus light perfectly! Rays farther from the optical axis focus closer

Lens Flaws: Chromatic Abberation

Lens refraction index is a function of the wavelength. Colors "fringe" or bleed

Lens Flaws: Chromatic Abberation

Researchers tried teaching a network about objects by forcing it to assemble jigsaws.

Initial layout, with sampled patches in red
 is discarded

We can recover image layout automatically

From Photon to Photo

CCDs move photogenerated charge from pixel to pixel and convert it to voltage at an output node. CMOS imagers convert charge to voltage inside each pixel.

- Each cell in a sensor array is a light-sensitive diode that converts photons to electrons
- Dominant in the past: Charge Coupled Device (CCD)
- Dominant now: Complementary Metal Oxide Semiconductor (CMOS)

From Photon to Photo

Rolling Shutter: pixels read in sequence Can get global reading, but \$\$\$

Preview of What's Next

Bayer grid

Demosaicing:

Estimation of missing components from neighboring values

Human Luminance Sensitivity Function

Historic milestones

- Pinhole model: Mozi (470-390 BCE), Aristotle (384-322 BCE)
- Principles of optics (including lenses):

Alhacen (965-1039 CE)

- Camera obscura: Leonardo da Vinci (1452-1519), Johann Zahn (1631-1707)
- First photo: Joseph Nicephore Niepce (1822)
- Daguerréotypes (1839)
- Photographic film (Eastman, 1889)
- Cinema (Lumière Brothers, 1895)
- Color Photography (Lumière Brothers, 1908)
- Television (Baird, Farnsworth, Zworykin, 1920s)
- First consumer camera with CCD

Sony Mavica (1981)

- First fully digital camera: Kodak DCS100 (1990)

Alhacen's notes

Niepce, "La Table Servie," 1822

Old television camera

First digitally scanned photograph

- 1957, 176x176 pixels

Historic Milestone

Sergey Prokudin-Gorskii (1863-1944) Photographs of the Russian empire (1909-1916)

Historic Milestone

Future Milestone

Your job in homework 1: Make the left look like the right.

