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Abstract

We show how features can easily be added
to standard generative models for unsuper-
vised learning, without requiring complex
new training methods. In particular, each
component multinomial of a generative model
can be turned into a miniature logistic regres-
sion model if feature locality permits. The in-
tuitive EM algorithm still applies, but with a
gradient-based M-step familiar from discrim-
inative training of logistic regression mod-
els. We apply this technique to part-of-speech
induction, grammar induction, word align-
ment, and word segmentation, incorporating
a few linguistically-motivated features into
the standard generative model for each task.
These feature-enhanced models each outper-
form their basic counterparts by a substantial
margin, and even compete with and surpass
more complex state-of-the-art models.

1 Introduction

Unsupervised learning methods have been increas-
ingly successful in recent NLP research. The rea-
sons are varied: increased supplies of unlabeled
data, improved understanding of modeling methods,
additional choices of optimization algorithms, and,
perhaps most importantly for the present work, in-
corporation of richer domain knowledge into struc-
tured models. Unfortunately, that knowledge has
generally been encoded in the form of conditional
independence structure, which means that injecting
it is both tricky (because the connection between
independence and knowledge is subtle) and time-
consuming (because new structure often necessitates
new inference algorithms).

In this paper, we present a range of experiments
wherein we improve existing unsupervised models
by declaratively adding richer features. In particu-
lar, we parameterize the local multinomials of exist-

ing generative models using features, in a way which
does not require complex new machinery but which
still provides substantial flexibility. In the feature-
engineering paradigm, one can worry less about the
backbone structure and instead use hand-designed
features to declaratively inject domain knowledge
into a model. While feature engineering has his-
torically been associated with discriminative, super-
vised learning settings, we argue that it can and
should be applied more broadly to the unsupervised
setting.

The idea of using features in unsupervised learn-
ing is neither new nor even controversial. Many
top unsupervised results use feature-based mod-
els (Smith and Eisner, 2005; Haghighi and Klein,
2006). However, such approaches have presented
their own barriers, from challenging normalization
problems, to neighborhood design, to the need for
complex optimization procedures. As a result, most
work still focuses on the stable and intuitive ap-
proach of using the EM algorithm to optimize data
likelihood in locally normalized, generative models.

The primary contribution of this paper is to
demonstrate the clear empirical success of a sim-
ple and accessible approach to unsupervised learn-
ing with features, which can be optimized by us-
ing standard NLP building blocks. We consider
the same generative, locally-normalized models that
dominate past work on a range of tasks. However,
we follow Chen (2003), Bisani and Ney (2008), and
Bouchard-Côté et al. (2008), and allow each com-
ponent multinomial of the model to be a miniature
multi-class logistic regression model. In this case,
the EM algorithm still applies with the E-step un-
changed. The M-step involves gradient-based train-
ing familiar from standard supervised logistic re-
gression (i.e., maximum entropy models). By inte-
grating these two familiar learning techniques, we
add features to unsupervised models without any



specialized learning or inference.
A second contribution of this work is to show that

further gains can be achieved by directly optimiz-
ing data likelihood with LBFGS (Liu et al., 1989).
This alternative optimization procedure requires no
additional machinery beyond what EM uses. This
approach is still very simple to implement, and we
found that it empirically outperforms EM.

This paper is largely empirical; the underlying op-
timization techniques are known, even if the overall
approach will be novel to many readers. As an em-
pirical demonstration, our results span an array of
unsupervised learning tasks: part-of-speech induc-
tion, grammar induction, word alignment, and word
segmentation. In each task, we show that declaring a
few linguistically motivated feature templates yields
state-of-the-art results.

2 Models

We start by explaining our feature-enhanced model
for part-of-speech (POS) induction. This particular
example illustrates our approach to adding features
to unsupervised models in a well-known NLP task.
We then explain how the technique applies more
generally.

2.1 Example: Part-of-Speech Induction

POS induction consists of labeling words in text
with POS tags. A hidden Markov model (HMM) is a
standard model for this task, used in both a frequen-
tist setting (Merialdo, 1994; Elworthy, 1994) and in
a Bayesian setting (Goldwater and Griffiths, 2007;
Johnson, 2007).

A POS HMM generates a sequence of words in
order. In each generation step, an observed word
emission yi and a hidden successor POS tag zi+1 are
generated independently, conditioned on the current
POS tag zi . This process continues until an absorb-
ing stop state is generated by the transition model.

There are two types of conditional distributions in
the model—emission and transition probabilities—
that are both multinomial probability distributions.
The joint likelihood factors into these distributions:

Pθ(Y = y,Z = z) = Pθ(Z1 = z1) ·
|z|�

i=1

Pθ(Yi = yi|Zi = zi) · Pθ(Zi+1 = zi+1|Zi = zi)

The emission distribution Pθ(Yi = yi|Zi = zi) is
parameterized by conditional probabilities θy,z,EMIT

for each word y given tag z. Alternatively, we can
express this emission distribution as the output of a
logistic regression model, replacing the explicit con-
ditional probability table by a logistic function pa-
rameterized by weights and features:

θy,z,EMIT(w) =
exp �w, f(y, z, EMIT)��
y� exp �w, f(y�, z, EMIT)�

This feature-based logistic expression is equivalent
to the flat multinomial in the case that the feature
function f(y, z, EMIT) consists of all indicator fea-
tures on tuples (y, z, EMIT), which we call BASIC
features. The equivalence follows by setting weight
wy,z,EMIT = log(θy,z,EMIT).1 This formulation is
known as the natural parameterization of the multi-
nomial distribution.

In order to enhance this emission distribution, we
include coarse features in f(y, z, EMIT), in addi-
tion to the BASIC features. Crucially, these features
can be active across multiple (y, z) values. In this
way, the model can abstract general patterns, such
as a POS tag co-occurring with an inflectional mor-
pheme. We discuss specific POS features in Sec-
tion 4.

2.2 General Directed Models

Like the HMM, all of the models we propose are
based on locally normalized generative decisions
that condition on some context. In general, let X =
(Z,Y) denote the sequence of generation steps (ran-
dom variables) where Z contains all hidden random
variables and Y contains all observed random vari-
ables. The joint probability of this directed model
factors as:

Pw(X = x) =
�

i∈I

Pw

�
Xi = xi

��Xπ(i) = xπ(i)

�
,

where Xπ(i) denotes the parents of Xi and I is the
index set of the variables in X.

In the models that we use, each factor in the above
expression is the output of a local logistic regression

1As long as no transition or emission probabilities are equal
to zero. When zeros are present, for instance to model that an
absorbing stop state can only transition to itself, it is often possi-
ble to absorb these zeros into a base measure. All the arguments
in this paper carry with a structured base measure; we drop it for
simplicity.



model parameterized by w:

Pw

`
Xi = d

˛̨
Xπ(i) = c

´
=

exp�w, f(d, c, t)�P
d� exp�w, f(d�, c, t)�

Above, d is the generative decision value for Xi

picked by the model, c is the conditioning context
tuple of values for the parents of Xi, and t is the
type of decision being made. For instance, the POS
HMM has two types of decisions: transitions and
emissions. In the emission model, the type t is EMIT,
the decision d is a word and the context c is a tag.
The denominator normalizes the factor to be a prob-
ability distribution over decisions.

The objective function we derive from this model
is the marginal likelihood of the observations y,
along with a regularization term:

L(w) = log Pw(Y = y)− κ||w||22 (1)

This model has two advantages over the more preva-
lent form of a feature-rich unsupervised model, the
globally normalized Markov random field.2 First,
as we explain in Section 3, optimizing our objec-
tive does not require computing expectations over
the joint distribution. In the case of the POS HMM,
for example, we do not need to enumerate an in-
finite sum of products of potentials when optimiz-
ing, in contrast to Haghighi and Klein (2006). Sec-
ond, we found that locally normalized models em-
pirically outperform their globally normalized coun-
terparts, despite their efficiency and simplicity.

3 Optimization

3.1 Optimizing with Expectation Maximization

In this section, we describe the EM algorithm ap-
plied to our feature-rich, locally normalized models.
For models parameterized by standard multinomi-
als, EM optimizes L(θ) = log Pθ(Y = y) (Demp-
ster et al., 1977). The E-step computes expected
counts for each tuple of decision d, context c, and
multinomial type t:

ed,c,t←Eθ

�
�

i∈I

(Xi =d, Xπ(i) =c, t)
����Y = y

�
(2)

2The locally normalized model class is actually equivalent
to its globally normalized counterpart when the former meets
the following three conditions: (1) The graphical model is a
directed tree. (2) The BASIC features are included in f . (3) We
do not include regularization in the model (κ = 0). This follows
from Smith and Johnson (2007).

These expected counts are then normalized in the
M-step to re-estimate θ:

θd,c,t ←
ed,c,t�
d� ed�,c,t

Normalizing expected counts in this way maximizes
the expected complete log likelihood with respect to
the current model parameters.

EM can likewise optimize L(w) for our locally
normalized models with logistic parameterizations.
The E-step first precomputes multinomial parame-
ters from w for each decision, context, and type:

θd,c,t(w) ← exp�w, f(d, c, t)��
d� exp�w, f(d�, c, t)�

Then, expected counts e are computed accord-
ing to Equation 2. In the case of POS induction,
expected counts are computed with the forward-
backward algorithm in both the standard and logistic
parameterizations. The only change is that the con-
ditional probabilities θ are now functions of w.

The M-step changes more substantially, but still
relies on canonical NLP learning methods. We wish
to choose w to optimize the regularized expected
complete log likelihood:

�(w, e) =
�

d,c,t

ed,c,t log θd,c,t(w)− κ||w||22 (3)

We optimize this objective via a gradient-based
search algorithm like LBFGS. The gradient with re-
spect to w takes the form

∇�(w, e) =
�

d,c,t

ed,c,t · ∆d,c,t(w)− 2κ · w (4)

∆d,c,t(w) = f(d, c, t)−
�

d�

θd�,c,t(w)f(d�, c, t)

This gradient matches that of regularized logis-
tic regression in a supervised model: the differ-
ence ∆ between the observed and expected features,
summed over every decision and context. In the su-
pervised case, we would observe the count of occur-
rences of (d, c, t), but in the unsupervised M-step,
we instead substitute expected counts ed,c,t.

This gradient-based M-step is an iterative proce-
dure. For each different value of w considered dur-
ing the search, we must recompute θ(w), which re-
quires computation in proportion to the size of the



parameter space. However, e stays fixed throughout
the M-step. Algorithm 1 outlines EM in its entirety.
The subroutine climb(·, ·, ·) represents a generic op-
timization step such as an LBFGS iteration.

Algorithm 1 Feature-enhanced EM
repeat

Compute expected counts e ✄ Eq. 2
repeat

Compute �(w, e) ✄ Eq. 3
Compute ∇�(w, e) ✄ Eq. 4
w ← climb(w, �(w, e),∇�(w, e))

until convergence
until convergence

3.2 Direct Marginal Likelihood Optimization

Another approach to optimizing Equation 1 is to
compute the gradient of the log marginal likelihood
directly (Salakhutdinov et al., 2003). The gradient
turns out to have the same form as Equation 4, with
the key difference that ed,c,t is recomputed for every
different value of w. Algorithm 2 outlines the proce-
dure. Justification for this algorithm appears in the
Appendix.

Algorithm 2 Feature-enhanced direct gradient
repeat

Compute expected counts e ✄ Eq. 2
Compute L(w) ✄ Eq. 1
Compute ∇�(w, e) ✄ Eq. 4
w ← climb(w, L(w),∇�(w, e))

until convergence

In practice, we find that this optimization ap-
proach leads to higher task accuracy for several
models. However, in cases where computing ed,c,t

is expensive, EM can be a more efficient alternative.

4 Part-of-Speech Induction

We now describe experiments that demonstrate the
effectiveness of locally normalized logistic models.
We first use the bigram HMM described in Sec-
tion 2.1 for POS induction, which has two types of
multinomials. For type EMIT, the decisions d are
words and contexts c are tags. For type TRANS, the
decisions and contexts are both tags.

4.1 POS Induction Features

We use the same set of features used by Haghighi
and Klein (2006) in their baseline globally normal-
ized Markov random field (MRF) model. These are
all coarse features on emission contexts that activate
for words with certain orthographic properties. We
use only the BASIC features for transitions. For
an emission with word y and tag z, we use the
following feature templates:

BASIC: (y = ·, z = ·)
CONTAINS-DIGIT: Check if y contains digit and conjoin

with z:
(containsDigit(y) = ·, z = ·)

CONTAINS-HYPHEN: (containsHyphen(x) = ·, z = ·)
INITIAL-CAP: Check if the first letter of y is

capitalized: (isCap(y) = ·, z = ·)
N-GRAM: Indicator functions for character n-

grams of up to length 3 present in y.

4.2 POS Induction Data and Evaluation

We train and test on the entire WSJ tag corpus (Mar-
cus et al., 1993). We attempt the most difficult ver-
sion of this task where the only information our sys-
tem can make use of is the unlabeled text itself. In
particular, we do not make use of a tagging dictio-
nary. We use 45 tag clusters, the number of POS tags
that appear in the WSJ corpus. There is an identifi-
ability issue when evaluating inferred tags. In or-
der to measure accuracy on the hand-labeled corpus,
we map each cluster to the tag that gives the highest
accuracy, the many-1 evaluation approach (Johnson,
2007). We run all POS induction models for 1000
iterations, with 10 random initializations. The mean
and standard deviation of many-1 accuracy appears
in Table 1.

4.3 POS Induction Results

We compare our model to the basic HMM and a bi-
gram version of the feature-enhanced MRF model of
Haghighi and Klein (2006). Using EM, we achieve
a many-1 accuracy of 68.1. This outperforms the
basic HMM baseline by a 5.0 margin. The same
model, trained using the direct gradient approach,
achieves a many-1 accuracy of 75.5, outperforming
the basic HMM baseline by a margin of 12.4. These
results show that the direct gradient approach can of-
fer additional boosts in performance when used with
a feature-enhanced model. We also outperform the



globally normalized MRF, which uses the same set
of features and which we train using a direct gradi-
ent approach.

To the best of our knowledge, our system achieves
the best performance to date on the WSJ corpus for
totally unsupervised POS tagging.3

5 Grammar Induction

We next apply our technique to a grammar induction
task: the unsupervised learning of dependency parse
trees via the dependency model with valence (DMV)
(Klein and Manning, 2004). A dependency parse is
a directed tree over tokens in a sentence. Each edge
of the tree specifies a directed dependency from a
head token to a dependent, or argument token. Thus,
the number of dependencies in a parse is exactly the
number of tokens in the sentence, not counting the
artificial root token.

5.1 Dependency Model with Valence

The DMV defines a probability distribution over de-
pendency parse trees. In this head-outward attach-
ment model, a parse and the word tokens are derived
together through a recursive generative process. For
each token generated so far, starting with the root, a
set of left dependents is generated, followed by a set
of right dependents.

There are two types of multinomial distributions
in this model. The Bernoulli STOP probabilities
θd,c,STOP capture the valence of a particular head. For
this type, the decision d is whether or not to stop
generating arguments, and the context c contains the
current head h, direction δ and adjacency adj. If
a head’s stop probability is high, it will be encour-
aged to accept few arguments. The ATTACH multi-
nomial probability distributions θd,c,ATTACH capture
attachment preferences of heads. For this type, a de-
cision d is an argument token a, and the context c
consists of a head h and a direction δ.

We take the same approach as previous work
(Klein and Manning, 2004; Cohen and Smith, 2009)
and use gold POS tags in place of words.

3Haghighi and Klein (2006) achieve higher accuracies by
making use of labeled prototypes. We do not use any external
information.

5.2 Grammar Induction Features

One way to inject knowledge into a dependency
model is to encode the similarity between the vari-
ous morphological variants of nouns and verbs. We
encode this similarity by incorporating features into
both the STOP and the ATTACH probabilities. The
attachment features appear below; the stop feature
templates are similar and are therefore omitted.

BASIC: (a = ·, h = ·, δ = ·)
NOUN: Generalize the morphological variants of

nouns by using isNoun(·):
(a = ·, isNoun(h) = ·, δ = ·)
(isNoun(a) = ·, h = ·, δ = ·)
(isNoun(a) = ·, isNoun(h) = ·, δ = ·)

VERB: Same as above, generalizing verbs instead
of nouns by using isVerb(·)

NOUN-VERB: Same as above, generalizing with
isVerbOrNoun(·) = isVerb(·)∨ isNoun(·)

BACK-OFF: We add versions of all other features that
ignore direction or adjacency.

While the model has the expressive power to al-
low specific morphological variants to have their
own behaviors, the existence of coarse features en-
courages uniform analyses, which in turn gives bet-
ter accuracies.

Cohen and Smith’s (2009) method has similar
characteristics. They add a shared logistic-normal
prior (SLN) to the DMV in order to tie multinomial
parameters across related derivation events. They
achieve their best results by only tying parame-
ters between different multinomials when the cor-
responding contexts are headed by nouns and verbs.
This observation motivates the features we choose to
incorporate into the DMV.

5.3 Grammar Induction Data and Evaluation

For our English experiments we train and report di-
rected attachment accuracy on portions of the WSJ
corpus. We work with a standard, reduced version of
WSJ, WSJ10, that contains only sentences of length
10 or less after punctuation has been removed. We
train on sections 2-21, and use section 22 as a de-
velopment set. We report accuracy on section 23.
These are the same training, development, and test
sets used by Cohen and Smith (2009). The regular-
ization parameter (κ) is tuned on the development
set to maximize accuracy.

For our Chinese experiments, we use the same
corpus and training/test split as Cohen and Smith



(2009). We train on sections 1-270 of the Penn Chi-
nese Treebank (Xue et al., 2002), similarly reduced
(CTB10). We test on sections 271-300 of CTB10,
and use sections 400-454 as a development set.

The DMV is known to be sensitive to initializa-
tion. We use the deterministic harmonic initializer
from Klein and Manning (2004). We ran each op-
timization procedure for 100 iterations. The results
are reported in Table 1.

5.4 Grammar Induction Results

We are able to outperform Cohen and Smith’s (2009)
best system, which requires a more complicated
variational inference method, on both English and
Chinese data sets. Their system achieves an accu-
racy of 61.3 for English and an accuracy of 51.9 for
Chinese.4 Our feature-enhanced model, trained us-
ing the direct gradient approach, achieves an accu-
racy of 63.0 for English, and an accuracy of 53.6 for
Chinese. To our knowledge, our method for feature-
based dependency parse induction outperforms all
existing methods that make the same set of condi-
tional independence assumptions as the DMV.

6 Word Alignment

Word alignment is a core machine learning com-
ponent of statistical machine translation systems,
and one of the few NLP tasks that is dominantly
solved using unsupervised techniques. The pur-
pose of word alignment models is to induce a cor-
respondence between the words of a sentence and
the words of its translation.

6.1 Word Alignment Models

We consider two classic generative alignment mod-
els that are both used heavily today, IBM Model 1
(Brown et al., 1994) and the HMM alignment model
(Ney and Vogel, 1996). These models generate a
hidden alignment vector z and an observed foreign
sentence y, all conditioned on an observed English
sentence e. The likelihood of both models takes the
form:

P (y, z|e) =
�

j

p(zj = i|zj−1) · θyj ,ei,ALIGN

4Using additional bilingual data, Cohen and Smith (2009)
achieve an accuracy of 62.0 for English, and an accuracy of
52.0 for Chinese, still below our results.

Model Inference Reg Eval

POS Induction κ Many-1

W
SJ

Basic-HMM EM – 63.1 (1.3)
Feature-MRF LBFGS 0.1 59.6 (6.9)
Feature-HMM EM 1.0 68.1 (1.7)

LBFGS 1.0 75.5 (1.1)
Grammar Induction κ Dir

W
SJ

10

Basic-DMV EM – 47.8
Feature-DMV EM 0.05 48.3

LBFGS 10.0 63.0

(Cohen and Smith, 2009) 61.3

C
TB

10

Basic-DMV EM – 42.5
Feature-DMV EM 1.0 49.9

LBFGS 5.0 53.6

(Cohen and Smith, 2009) 51.9
Word Alignment κ AER

N
IS

T
C

hE
n Basic-Model 1 EM – 38.0

Feature-Model 1 EM – 35.6

Basic-HMM EM – 33.8
Feature-HMM EM – 30.0

Word Segmentation κ F1

B
R

Basic-Unigram EM – 76.9 (0.1)
Feature-Unigram EM 0.2 84.5 (0.5)

LBFGS 0.2 88.0 (0.1)
(Johnson and Goldwater, 2009) 87

Table 1: Locally normalized feature-based models outperform
all proposed baselines for all four tasks. LBFGS outperformed
EM in all cases where the algorithm was sufficiently fast to run.
Details of each experiment appear in the main text.

The distortion term p(zj = i|zj−1) is uniform in
Model 1, and Markovian in the HMM. See Liang et
al. (2006) for details on the specific variant of the
distortion model of the HMM that we used. We use
these standard distortion models in both the baseline
and feature-enhanced word alignment systems.

The bilexical emission model θy,e,ALIGN differen-
tiates our feature-enhanced system from the base-
line system. In the former, the emission model is a
standard conditional multinomial that represents the
probability that decision word y is generated from
context word e, while in our system, the emission
model is re-parameterized as a logistic regression
model and feature-enhanced.

Many supervised feature-based alignment models
have been developed. In fact, this logistic parame-
terization of the HMM has been proposed before and
yielded alignment improvements, but was trained
using supervised estimation techniques (Varea et al.,
2002).5 However, most full translation systems to-

5Varea et al. (2002) describes unsupervised EM optimiza-
tion with logistic regression models at a high level—their dy-
namic training approach—but provides no experiments.



day rely on unsupervised learning so that the models
may be applied easily to many language pairs. Our
approach provides efficient and consistent unsuper-
vised estimation for feature-rich alignment models.

6.2 Word Alignment Features

The BASIC features on pairs of lexical items
provide strong baseline performance. We add
coarse features to the model in order to inject
prior knowledge and tie together lexical items with
similar characteristics.

BASIC: (e = ·, y = ·)
EDIT-DISTANCE: (dist(y, e) = ·)
DICTIONARY: ((y, e) ∈ D) for dictionary D.
STEM: (stem(e) = ·, y = ·) for Porter stemmer.
PREFIX: (prefix(e) = ·, y = ·) for prefixes of

length 4.
CHARACTER: (e = ·, charAt(y, i) = ·) for index i in

the Chinese word.

These features correspond to several common
augmentations of word alignment models, such as
adding dictionary priors and truncating long words,
but here we integrate them all coherently into a sin-
gle model.

6.3 Word Alignment Data and Evaluation

We evaluate on the standard hand-aligned portion
of the NIST 2002 Chinese-English development set
(Ayan et al., 2005). The set is annotated with sure S
and possible P alignments. We measure alignment
quality using alignment error rate (AER) (Och and
Ney, 2000).

We train the models on 10,000 sentences of FBIS
Chinese-English newswire. This is not a large-scale
experiment, but large enough to be relevant for low-
resource languages. LBFGS experiments are not
provided because computing expectations in these
models is too computationally intensive to run for
many iterations. Hence, EM training is a more ap-
propriate optimization approach: computing the M-
step gradient requires only summing over word type
pairs, while the marginal likelihood gradient needed
for LBFGS requires summing over training sentence
alignments. The final alignments, in both the base-
line and the feature-enhanced models, are computed
by training the generative models in both directions,
combining the result with hard union competitive
thresholding (DeNero and Klein, 2007), and us-

ing agreement training for the HMM (Liang et al.,
2006). The combination of these techniques yields
a state-of-the-art unsupervised baseline for Chinese-
English.

6.4 Word Alignment Results

For both IBM Model 1 and the HMM alignment
model, EM training with feature-enhanced models
outperforms the standard multinomial models, by
2.4 and 3.8 AER respectively.6 As expected, large
positive weights are assigned to both the dictionary
and edit distance features. Stem and character fea-
tures also contribute to the performance gain.

7 Word Segmentation

Finally, we show that it is possible to improve upon
the simple and effective word segmentation model
presented in Liang and Klein (2009) by adding
phonological features. Unsupervised word segmen-
tation is the task of identifying word boundaries in
sentences where spaces have been removed. For a
sequence of characters y = (y1, ..., yn), a segmen-
tation is a sequence of segments z = (z1, ..., z|z|)
such that z is a partition of y and each zi is a con-
tiguous subsequence of y. Unsupervised models for
this task infer word boundaries from corpora of sen-
tences of characters without ever seeing examples of
well-formed words.

7.1 Unigram Double-Exponential Model

Liang and Klein’s (2009) unigram double-
exponential model corresponds to a simple
derivational process where sentences of characters
x are generated a word at a time, drawn from a
multinomial over all possible strings θz,SEGMENT.
For this type, there is no context and the decision is
the particular string generated. In order to avoid the
degenerate MLE that assigns mass only to single
segment sentences it is helpful to independently
generate a length for each segment from a fixed
distribution. Liang and Klein (2009) constrain in-
dividual segments to have maximum length 10 and
generate lengths from the following distribution:
θl,LENGTH = exp(−l1.6) when 1 ≤ l ≤ 10. Their
model is deficient since it is possible to generate

6The best published results for this dataset are supervised,
and trained on 17 times more data (Haghighi et al., 2009).



lengths that are inconsistent with the actual lengths
of the generated segments. The likelihood equation
is given by:

P (Y = y,Z = z) =

θSTOP

|z|�

i=1

�
(1− θSTOP) θzi,SEGMENT exp(−|zi|1.6)

�

7.2 Segmentation Data and Evaluation

We train and test on the phonetic version of the
Bernstein-Ratner corpus (1987). This is the same
set-up used by Liang and Klein (2009), Goldwater
et al. (2006), and Johnson and Goldwater (2009).
This corpus consists of 9790 child-directed utter-
ances transcribed using a phonetic representation.
We measure segment F1 score on the entire corpus.

We run all word segmentation models for 300 iter-
ations with 10 random initializations and report the
mean and standard deviation of F1 in Table 1.

7.3 Segmentation Features

The SEGMENT multinomial is the important distri-
bution in this model. We use the following features:

BASIC: (z = ·)
LENGTH: (length(z) = ·)
NUMBER-VOWELS: (numVowels(z) = ·)
PHONO-CLASS-PREF: (prefix(coarsePhonemes(z)) = ·)
PHONO-CLASS-PREF: (suffix(coarsePhonemes(z)) = ·)

The phonological class prefix and suffix features
project each phoneme of a string to a coarser class
and then take prefix and suffix indicators on the
string of projected characters. We include two ver-
sions of these features that use projections with dif-
ferent levels of coarseness. The goal of these fea-
tures is to help the model learn general phonetic
shapes that correspond to well-formed word bound-
aries.

As is the case in general for our method, the
feature-enhanced unigram model still respects the
conditional independence assumptions that the stan-
dard unigram model makes, and inference is still
performed using a simple dynamic program to com-
pute expected sufficient statistics, which are just seg-
ment counts.

7.4 Segmentation Results

To our knowledge our system achieves the best per-
formance to date on the Bernstein-Ratner corpus,
with an F1 of 88.0. It is substantially simpler than
the non-parametric Bayesian models proposed by
Johnson et al. (2007), which require sampling pro-
cedures to perform inference and achieve an F1 of
87 (Johnson and Goldwater, 2009). Similar to our
other results, the direct gradient approach outper-
forms EM for feature-enhanced models, and both
approaches outperform the baseline, which achieves
an F1 of 76.9.

8 Conclusion

We have shown that simple, locally normalized
models can effectively incorporate features into un-
supervised models. These enriched models can
be easily optimized using standard NLP build-
ing blocks. Beyond the four tasks explored in
this paper—POS tagging, DMV grammar induc-
tion, word alignment, and word segmentation—the
method can be applied to many other tasks, for ex-
ample grounded semantics, unsupervised PCFG in-
duction, document clustering, and anaphora resolu-
tion.

Acknowledgements

We thank Percy Liang for making his word segmen-
tation code available to us, and the anonymous re-
viewers for their comments.

Appendix: Optimization

In this section, we derive the gradient of the log marginal likeli-
hood needed for the direct gradient approach. Let w0 be the cur-
rent weights in Algorithm 2 and e = e(w0) be the expectations
under these weights as computed in Equation 2. In order to jus-
tify Algorithm 2, we need to prove that∇L(w0) = ∇�(w0, e).

We use the following simple lemma: if φ, ψ are real-valued
functions such that: (1) φ(w0) = ψ(w0) for some w0; (2)
φ(w) ≤ ψ(w) on an open set containing w0; and (3), φ and ψ
are differentiable at w0; then ∇ψ(w0) = ∇φ(w0).

We set ψ(w) = L(w) and φ(w) = �(w, e)−
P

z Pw0(Z =
z|Y = y) log Pw0(Z = z|Y = y). If we can show that ψ, φ
satisfy the conditions of the lemma we are done since the second
term of φ depends on w0, but not on w.

Property (3) can be easily checked, and property (2) follows
from Jensen’s inequality. Finally, property (1) follows from
Lemma 2 of Neal and Hinton (1998).
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