
Math 55 - Spring 2004 - Lecture notes #26 - April 29 (Thursday)

Goals for today: Generating functions

This material is covered by Lenstra and Rosen section 6.4.

We will not cover any other sections of chapter 6 of Rosen.

Def: Let P=(p(0), p(1), p(2), ...) be a (finite or infinite) sequence

of real numbers. The generating function G of P is the

(finite or infinite) series

G(x) = p(0) + p(1)*x + p(2)*x^2 + ... + p(i)*x^i + ...

Note: if P is a finite sequence, G(x) is just a polynomial.

But sometimes it is convenient to write

G(x) = sum_{k=0 to infinity} p(k)*x^k

with the understanding that all p(k) = 0 for k large enough.

Note: if we have two sequences P and Q=(q(0),q(1),...), we will

distinguish their generating functions by writing G_P(x)

and G_Q(x)

G(x) can be used to compute useful properties of the sequence P.

EX: Let P = (p(0), p(1), ...) where

p(i) = probability of element i in a sample space.

In other words each p(i) >= 0 and their sum is one.

Then

G(1) = sum_{k=0 to infinity} p(k)*1^k

= sum_{k=0 to infinity} p(k)

= 1

Now let f be a random variable such that P(f=i)=p(i)

(in particular f() is only allowed to have nonnegative

integer values).

We can compute its expectation E(f) and variance V(f) using

G(x) as follows:

G’(x) = sum_{k=0 to infinity} p(k)*k*x^(k-1)

so

1

G’(1) = sum_{k=0 to infinity} p(k)*k*1^(k-1)

= sum_{k=0 to infinity} p(k)*k

= sum_{k=0 to infinity} P(f=k)*k

= E(f) ... by a Theorem about expectation

Similarly

G’’(x) = sum_{k=0 to infinity} p(k)*k*(k-1)*x^(k-2)

so

G’’(1) = sum_{k=0 to infinity} p(k)*k*(k-1)

= sum_{k=0 to infinity} p(k)*(k^2 - k)

= sum_{k=0 to infinity} p(k)*(k^2)

- sum_{k=0 to infinity} p(k)*(k)

= sum_{k=0 to infinity} P(f=k)*(k^2)

- sum_{k=0 to infinity} P(f=k)*k

= E(f^2) - E(f)

= E(f^2) - G’(1)

so

V(f) = E(f^2) - (E(f))^2

= G’’(1) + G’(1) - (G’(1))^2

EX: Suppose we toss a biased coin n times, with P(Head) = p,

and let p(i) = P(getting i Heads) = C(n,i)*p^i*(1-p)^(n-i).

Then

G(x) = sum_{i=0 to n} p(i)*x^i

= sum_{i=0 to n} C(n,i)*(p*x)^i*(1-p)^(n-i)

= (p*x+1-p)^n ... by the Binomial Theorem

so if f = number of Heads in n tosses

E(f) = G’(1) = n*p*(p*x+1-p)^(n-1) at x=1

= n*p ... as expected

ASK&WAIT: How else can we compute E(f)?

V(f) = G’’(1) + G’(1) - (G’(1))^2

= n*(n-1)*p^2*(p*x+1-p)^(n-2) at x=1 + n*p - (n*p)^2

= n*(n-1)*p^2 + n*p - (n*p)^2

= n*p*(1-p) ... as expected

ASK&WAIT: How else can we compute V(f)?

Theorem 1: Let G_P(x) = sum_{k=0 to infinity} p(k)*x^k and

G_Q(x) = sum_{k=0 to infinity} q(k)*x^k

Then

G_P(x) * G_Q(x)

= sum_{k=0 to infinity} c(k)*x^k

where

2

c(k) = sum_{j=0 to k} p(j)*q(k-j)

proof: just multiplying polynomials (or power series)

Theorem 2: suppose f(x) and g(x) are independent random variables

with Prob(f=i) = p(i) and Prob(g=i) = q(i).

Let G_P(x) = sum_{k=0 to infinity} p(k)*x^k and

Let G_Q(x) = sum_{k=0 to infinity} q(k)*x^k

denote their generating functions.

Then the generating function of f(x)+g(x) is

G_P(x)*G_Q(x)

proof: Prob(f(x)+g(x)=k) = sum_{j=0 to k} Prob(f(x)=j and g(x)=k-j)

= sum_{j=0 to k} Prob(f(x)=j)*Prob(g(x)=k-j)

... by independence of f and g

= sum_{j=0 to k} p(j)*q(k-j)

= c(k) ... as defined above

so the generating function of f+g is

sum_{k=0 to infinity} c(k)*x^k

= G_P(x)*G_Q(x) ... by Theorem 1

Ex: Let f(x) be the random variable that = 1 if a

biased coin comes up H, and =0 if it comes up T.

Then its generating function is G(x) = (1-p) + p*x.

Now flip a coin n times, and let f_i(x) = 1 if the i-th flip

comes up H and 0 otherwise. Then the generating function of

f = f_1 + f_2 + ... + f_n

= total number of Heads

is

G(x) * G(x) * ... * G(x)

... by Theorem 2, since each coin flip is independent

= (1-p + p*x)^n

This is the same answer as before, gotten by the binomial theorem.

But Theorem 2 is more general, since we could use a different

coin for each flip with a different probability p(i) of coming up H.

The generating function of each f_i(x) would then be

G_i(x) = (1-p(i) + p(i)*x)

and the generating function of

f = f_1 + ... + f_n = total number of Heads

would be

G_1(x) * ... * G_n(x) = prod_{i=1 to n} (1-p(i) + p(i)*x)

3

Ex: Recall the pictures from Lecture 23, of the probabilities of i heads

after tossing a coin n times, or of getting a total of i after rolling

a die n times and adding the results. These plots were computed

using Theorem 2 as follows.

For tossing a fair coin n times, I computed the generating function

after 1 toss G(x) = .5 + .5*x, and then multiplied this polynomial

times itself n times to get

(G(x))^2 = 1/2^2 + 2/2^2 * x + 1/2^2 * x^2

(G(x))^3 = 1/2^3 + 3/2^3 * x + 3/2^3 * x^2 + 1/2^3 * x^3

...

(G(x))^n = 1/2^n + ...

from which I extracted the coefficients for plotting:

[1/4 2/4 1/4]

[1/8 3/8 6/8 3/8 1/8]

...

The point is that polynomial multiplication is a simple and

systematic method to solve lots of probability problems.

Polynomial multiplication is a built-in command in several programming

environments (Matlab, Mathematica, Maple, ...). In Matlab the name

of the command is "conv" which is short for "convolution".

(If you have taken EECS 20 or similar course, you have probably

encountered convolutions before. The same idea - computing

probabilities of f+g, polynomial multiplication, convolution -

comes up in many places!)

Now we turn to the use of generating functions for counting problems.

The coefficients of the generating function will be integers, which will

represent the number of objects of certain kinds.

Ex: The problem is to find the number of solutions to

e1 + e2 + e3 = 16

where e1 can take on values from the set E1={2,3,5,6}

e2 can take on values from the set E2={3,5,6,7}, and

e3 can take on values from the set E3={2,5,8,9}, and

For example, e1+e2+e3 = 2+6+8 = 3+5+8 = 16 are two solutions.

How many solutions are there? We solve this by generating

functions as follows. We represent

e1 by p1(x) = x^2 + x^3 + x^5 + x^6

e2 by p2(x) = x^3 + x^5 + x^6 + x^7

4

e3 by p3(x) = x^2 + x^5 + x^8 + x^9

and multiply these polynomials together to get a bigger polynomial

G(x) = p1(x)*p2(x)*p3(x)

Let c*x^16 be one term from G(x). It turns out that the

integer c is the answer to our problem.

Here is why. When you multiply these three polynomials out, you

get a contribution

x^e1 * x^e2 * x^e3 = x^(e1 + e2 + e3)

for every e1 in E1, e2 in E2 and e3 in E3, corresponding to one

power of x from each polynomial p1(x), p2(x), p3(x). When e1+e2+e3=16,

you get a contribution of 1 to the constant c in c*x^16.

You get such a contribution for each triple (e1,e2,e3) that adds up

to 16, so that c counts the number of such triples, as desired.

It turns out that

G(x) = x^22 + 3*x^21 + 4*x^20 + 4*x^19 + 6*x^18 + 8*x^17 +

6*x^16 + ... + x^7

so the answer to our question is c=6. But in fact G(x) tells us

more: the coefficient of any x^k tell us the number of solutions

of e1+e2+e3 = k, i.e. it is the generating function for the number

of solutions to e1+e2+e3=k with e1 in E1, e2 in E2 and e3 in E3.

So for example, there is one solution to e1+e2+e3 = 22,

namely e1,e2,e3 all equalling their maximum values.

Similarly there is one solution to e1+e2+e3 = 7, when they all equal

their minimum values. This example obviously generalizes to the sum

of any number of ei lying in any sets Ei.

EX: How many ways can 8 cookies be distributed among 3 children, so that

each child gets between 2 and 4 cookies? This is the same setup as

above: We represent each child by the polynomial p(x) = x^2 + x^3 + x^4,

since each child can get 2, 3 or 4 cookies, compute

G(x) = (p(x))^3

since there are 3 children, and look at the coefficient c of x^8 in G(x).

c is the answer. In fact

G(x) = x^12 + 3*x^11 + ... + 6*x^8 + ... + x^6

so there are 6 ways to distribute 8 cookies.

EX: In the last two examples, the generating functions have been

polynomials. Now we have an example were it is an infinite series.

Our goal is to compute the number of r-combinations from a set

with n-objects, where repetition is allowed. For example, from the

set {1,2,3} with n=3 objects, the set of all 2-combinations with

5

repetition is

{{1,1}, {2,2}, {3,3}, {1,2}, {2,3}, {1,3}}

i.e. there are 6 possibilities.

Since the first item in the set may be chosen 1, 2, 3, ... times

we represent these choices by the infinite series

p(x) = 1+x+x^2+x^3+...

Since each of the n items in the set may be chosen, the complete

generating function is G(x) = (p(x))^n.

For example, with n=3 we get

G(x) = (1+x+x^2+x^3+...)^3

= 1 + 3*x + 6*x^2 + 10*x^3 + ...

But there is a much simpler way to write down G(x).

since p(x) is a geometric series we can sum it getting

p(x) = 1 + x + x^2 + ... = 1/(1-x) when |x| < 1

so in fact

G(x) = (p(x))^n = 1/(1-x)^n

which is a simple function.

Here is another way to get the answer, one that we figured out

before using "stars and bars". The way to represent all the

ways of choosing r items from n with repeated copies allowed is

to write down r stars and n-1 bars in any order. The bars

separate the stars into n groups, each with r1, r2, ... rn stars

such that r1+r2+...+rn = r. For example with

n=3 and r=2

|| represents {1,2}

|**| represents {2,2} etc.

As we showed in Chapter 4, the number of sequences of r stars and n-1

bars is C(r+n-1,r). Thus we have shown that

G(x) = 1/(1-x)^n

= sum_{r=0 to infinity} C(r+n-1,r)*x^r

which is the Taylor expansion of G(x) around 0.

EX: In our last example we choose a famous counting problem,

computing the "partition function", traditionally written p(n).

p(n) is the number of ways n can be written as a sum of

positive integers, where order doesn’t matter.

For example

p(1) = 1 since 1 = 1 is the only way to do it

p(2) = 2 since 2 = 2 = 1+1

p(3) = 3 since 3 = 3 = 2+1 = 1+1+1

6

p(4) = 5 since 4 = 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1

p(5) = 7 since 5 = 5 = 4+1 = 3+2 = 3+1+1

= 2+1+1+1 = 2+2+1 = 1+1+1+1+1

p(10) = 42

p(100) = 190,569,292

p(200) ~ 4 * 10^12

It turns out that p(n) has a simple generating function

Theorem (Euler) 1 + sum_{n=1 to infinity} p(n)*x^n

= G(x) = prod_{m=1 to infinity} 1/(1-x^m)

Proof:

Note that

(1-x)^(-1) = 1 + x + x^2 + x^3 + ...

and

(1-x^m)^(-1) = 1 + x^m + x^2m + x^3m + ...

The factor (1-x^m)^(-1) in G(x) represents choosing the

integer m once, twice, 3 times, ... in making up the

sum for n. For example, to sum up to 5 or less, we’ll

only have 1,2,3,4 or 5 appearing in the sum. Thus

p(5) is the coefficient of x^5 in

(1-x)^(-1)*(1-x^2)^(-1)*(1-x^3)^(-1)*(1-x^4)^(-1)*(1-x^5)^(-1)*...

= (1+x+x^2+x^3+x^4+x^5+...) *

(1+x^2+x^4+...) *

(1+x^3+...) *

(1+x^4+...) *

(1+x^5+...) * ...

= 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 7*x^5 + ...

The "..." in the above expression represents terms like x^6 or

higher, which don’t contribute to the x^5 or lower terms.

The same idea works for any n, so the coefficient of x^n in

prod_{m=1 to infinity} 1/(1-x^m)

= (1-x)^(-1) * (1-x^2)^(-1) * (1-x^3)^(-1) * ...

= (1 + x + x^2 + x^3 + ...) * (1 + x^2 + x^4 + x^6 + ...) *

(1 + x^3 + x^6 + x^9 + ...) * ...

is p(n).

The partition function grows rapidly, and many formulas and relationships

have been studied for it (see problems 6.4-51 through 6.4-56 in Rosen.)

In particular, in analogy to Stirling’s Formula, it is known that

for n large

p(n) ~ exp(pi*sqrt(2/3)*sqrt(n))/(4*sqrt(3)*n)

7

i.e. the ratio between these two expressions approaches 1 as n grows.

This is hard to prove (Hardy and Ramanujan, 1917), but we will

show a weaker version, namely that p(n) <= exp(K*sqrt(n))

for some constant K.

By using the remarkable fact (without proof) that

1/1^2 + 1/2^2 + 1/3^2 + 1/4^2 + ... = pi^2/6

we will in fact show that K = pi*sqrt(2/3)

We start with the generating function G(x) for p(n) defined above.

and consider just 0 < x < 1. Then

G(x) = 1 + p(1)*x + ... + p(n)*x^n

> p(n)*x^n

Taking logs gets us

log G(x) > log p(n) + log(x^n)

or

log p(n) < log G(x) + n*log(1/x)

We estimate the two terms log G(x) and n*log(1/x) separately,

and then choose 0 < x < 1 to minimize the upper bound.

log G(x) = log prod_{m=1 to infinity} (1-x^m)^(-1)

= sum_{m=1 to infinity} log (1-x^m)^(-1)

= - sum_{m=1 to infinity} log (1-x^m)

= sum_{m=1 to infinity} sum_{n=1 to infinity} x^(mn)/n

... substituting the Taylor expansion

... log(1-z) = -z - z^2/2 - z^3/3 - z^4/4 + ...

... with z = x^m

= sum_{n=1 to infinity} sum_{m=1 to infinity} x^(mn)/n

... summing in a different order

= sum_{n=1 to infinity} 1/n * sum_{m=1 to infinity} x^(mn)

... since n is a constant in the inner sum

= sum_{n=1 to infinity} 1/n * x^n/(1-x^n)

... geometric sum

We want to get a simple upper bound for the summand that we can sum.

Note that

(1-x^n)/(1-x) = 1 + x + x^2 + ... + x^(n-1)

... geometric sum

> n * x^(n-1)

... since 0 < x < 1 means x^(n-1) is the

... smallest of the n terms

so

x/(n^2*(1-x)) > x^n/(n*(1-x^n))

... multiplying both sides by x/(n^2*(1-x^n))

Thus

8

log G(x) = sum_{n=1 to infinity} 1/n * x^n/(1-x^n)

< sum_{n=1 to infinity} 1/n^2 * x/(1-x)

= x/(1-x) * sum_{n=1 to infinity} 1/n^2

Now sum_{n=1 to infinity} 1/n^2 is just a constant.

We’ll call it K for now, and substitute K = pi^2/6 at the end.

Thus log p(n) < log G(x) + n log(1/x)

< K*x/(1-x) + n log(1/x)

< K*x/(1-x) + n * (1/x -1)

... since log z < z-1 for all z > 1

... to see why, look at the plots of log z and z-1

... or at the Taylor expansion

... log(z) = log(1-(1-z)) = z-1 - (z-1)^2/2 ...

= K*[x/(1-x)] + n*[(1-x)/x]

= K*t + n/t

... where t = x/(1-x)

Finally we can minimize this as a function of t (or x).

Differentiating with respect to t and setting the derivative to 0

gets us

0 = K - n/t^2

or

t = sqrt(n/K)

or

log p(n) < 2*sqrt(K)*sqrt(n)

or

p(n) < exp(2*sqrt(K)*sqrt(n))

as desired. Finally, substituting K = pi^2/6 means

p(n) < exp(pi * sqrt(2/3) * sqrt(n))

Here is an intuitive argument that K = 1/1^2 + 1/2^2 + 1/3^2 + ... = pi^2/6.

Consider the polynomial with roots r1,r2,...,rn and constant term = 1:

(1-x/r1)*(1-x/r2)*(1-x/r3)*...*(1/x/rn)

= 1 - x*(1/r1 + 1/r2 + 1/r3 + ... + 1/rn) + x^2*(.) + ...

In other words, the coefficient of x is

the negative of the sum of the reciprocals of the roots r1,..,rn.

Now (making a mathematical leap) assume

that this idea work not just for a polynomial, but for a function

like f(x) = sin(sqrt(x))/sqrt(x). Note that f(x) has roots at

x = pi^2 , (2*pi)^2 , (3*pi)^2 , ...

so the sum of reciprocals of the roots is

1/pi^2 + 1/(2*pi)^2 + 1/(3*pi)^2 + ...

= (1/pi^2) * (1/1^2 + 1/2^2 + 1/3^2 + ...)

9

= (1/pi^2) * K

Also by starting with the Taylor expansion

sin x = x - x^3/3! + ...

we get

sin(sqrt(x))/sqrt(x) = 1 - x/3! + ...

so equating the coefficient of x, namely -1/3! = -1/6, and

the negative of the sum of reciprocals of the roots, -(1/pi^2)*K,

we get -1/6 = -(1/pi^2)*K or K = pi^2/6 as desired.

10

