Math 55 - Spring 2004 - Lecture notes \#20 - Apr 8 (Tuesday)
Goals for today: random variables
expection (average, mean) of random variables
DEF: Let S be the sample space of a given experiment, with probability function P. A _random variable_ is a function f:S -> Reals.

EX: Flip a biased coin once, $\mathrm{S} 1=\{\mathrm{H}, \mathrm{T}\}, \mathrm{P} 1(\mathrm{H})=\mathrm{p}$, $f 1(x)=\{1$ if $x=H,-1$ if $x=T\}$
f1 = amount you win (if f1>0) (or lose, if f1<0) if you bet $\$ 1$ on H.
EX: Flip a biased coin n times, $\mathrm{S} 2=$ \{all sequences of H, T of length n$\}$
ASK\&WAIT: What is P2(x), if x has i Heads?
$\mathrm{f} 2(\mathrm{x})=\# \mathrm{H}-\# \mathrm{~T}=\# \mathrm{H}-(\mathrm{n}-\# \mathrm{H})=2 * \# \mathrm{H}-\mathrm{n}$
f2 = amount you win (or lose) if you bet $\$ 1$ on H on each flip
EX: Let S 3 = result of rolling a die once, $\mathrm{P} 3($ any face) $=1 / 6$
Let $f 3$ (outcome e) = value on top of die (an integer from 1 to 6)
EX: Let $S 4=$ result of rolling a pair of red and blue dice 24 times

$$
\begin{aligned}
&=\{ ((1,1),(1,1), \ldots,(1,1)), \ldots, \\
&<----24 \text { times }---->\ll-\infty),(6,6), \ldots,(6,6))\} \\
&<---24 \text { times }----->
\end{aligned}
$$

ASK\&WAIT: What is P4(any outcome x in S4)?
Let $f 4$ (outcome x in $S 4$) $=\{+1$ if a pair of sixes appears in e \}
\{ -1 otherwise \}
We can interpret $f 4$ as the amount of money we win (or lose) by betting on getting a pair of sixes

EX: $S 5=$ \{US population\}, P5(person x in S) $=1 /|S 5|$,
Let $f 5($ person x in $S)=\{+1$ if x has a particular disease $\}$

$$
\{0 \text { if } x \text { does not }\}
$$

EX: $\mathrm{S} 6=$ \{all permutations of 1 to n$\}$, P 6 (any permutation) $=1 / \mathrm{n}$! f6(any permutation x) = time for your sorting algorithm to sort x

EX: Suppose you flip a fair coin, and win $\$ 1$ if it comes up H, lose $\$ 1$ if it comes up T
ASK\&WAIT: What is the "average" amount you expect to win after N flips?
DEF: Given S, P and random variable f, the _Expected Value_ (also called Mean or Average) of f is $E(f)=\operatorname{sum}_{-}\{$all outcomes x in $S\} P(x) * f(x)$

This is the "average" value of f ones gets if one repeats the experiment
a great number of times.
EX: With S1, P1, f1 as before,

$$
\begin{aligned}
E(f 1) & =(+1) *(p)+(-1) *(1-p)=2 * p-1 \\
& =0 \text { if coin fair }(p=1 / 2)
\end{aligned}
$$

Imagine betting $\$ 1$ on getting H. Then $E(f 1)$ is the amount you expect to win (if $E(f 1)>0$) or lose $(E(f 1)<0)$ on the bet. If $E(f 1)=0$, you break even

EX: With S2, P2 and f2 as before,
If we flip a coin N times, we expect $E(f 2)$ to be the amount we win betting $\$ 1$ on flip to get H; and intuititively this should be $\mathrm{N} * \mathrm{E}(\mathrm{f} 1)=\mathrm{N} *(2 * \mathrm{p}-1)$
Formally, we get
$\mathrm{E}(\mathrm{f} 2)=$ sum_\{sequences x of n Hs and Ts\} $\mathrm{f} 2(\mathrm{x}) * \mathrm{P} 2(\mathrm{x})$
$=$ sum_\{sequences x of n Hs and Ts\} (\#H in $x) * P 2(x)$
looks complicated, but later we will see that our intuition was right, and there is an easier way to do it that matches our intuitive approach

EX: With S3, P3, f3 as before,

$$
E(f 3)=(1 / 6) * 1+(1 / 6) * 2+\ldots+(1 / 6) * 6=21 / 6=7 / 2
$$

EX: With S5, P5, f5 as before,
$E(f 5)=$ sum_\{persons $x\} f 5(x) * P 5(x)$
$=$ sum_\{sick persons $x\} f 5(x) * P 5(x)+$ sum_\{healthy persons $x\} f 5(x) * P 5(x)$ $=$ sum_\{sick persons $x\} 1 *(1 /|S 5|)+$ sum_\{healthy persons $x\} 0 *(1 /|S 5|)$ $=P(r a n d o m$ person is sick)

EX: S6, P6, f6 as before, then $\mathrm{E}(\mathrm{f} 6)=$ average time for your algorithm to sort
EX: With S4, P4, f4, seem like you need to sum over all 6^48 sequences,
We need a simpler way:
DEF: $P(f=r)=$ sum_\{all outcomes x in S such that $f(x)=r\} P(x)$

EX: With S1, P1 and f1 as before $P 1(f 1=1)=P 1(H)=p, P 1(f 1=-1)=P 1(T)=1-p$
EX: With S2, P2 and f2 as before
ASK\&WAIT: What is P2(f2=i)?
EX: With S3, P3 and f3 as before $P 3(f 3=k)=1 / 6$ for $k=1,2, \ldots, 6$ and $P 3(f 3=k)=0$ otherwise

EX: With S4, P4 and f4 as before,
P4(f4=1) = sum_\{all outcomes x in which a pair of sixes appears\} $P 4(x)$ $=P 4$ (a pair of sixes appears)
ASK\&\&WAIT: What is $P 4(f 4=-1)$?

EX: With S5, P5 and f5 as above, ASK\&WAIT: what is P5 $(f 5=1)$? P5 $(f 5=0)$?

Thm: $E(f)=$ sum_\{numbers r in range of $f\} r * P(f=r)$
Proof: Write down proof for S finite, but same for S countable Let $\{r 1, r 2, \ldots, r k\}$ be numbers in range of f, and write S = S1 U S2 U ... U Sk where
Si $=$ \{outcomes x in S such that $f(x)=r i\}$
and so $P(S i)=P(f=r i)$
Note that all Si are pairwise disjoint, so we can write $E(f)=\operatorname{sum}_{-}\{x$ in $S\} f(x) * P(x)$
$=\operatorname{sum}_{-}\{x$ in $S 1\} f(x) * P(x)+\operatorname{sum}_{-}\{x$ in $S 2\} f(x) * P(x)$ $+\ldots+\operatorname{sum}_{-}\{\mathrm{x}$ in $\operatorname{Sk}\} \mathrm{f}(\mathrm{x}) * \mathrm{P}(\mathrm{x})$
$=\operatorname{sum}_{-}\left\{x\right.$ in S1\} $r 1 * P(x)+\operatorname{sum}_{-}\{x$ in $S 2\} r 2 * P(x)$
$+\ldots+\operatorname{sum}_{-}\{\mathrm{x}$ in $\operatorname{Sk}\}$ rk*P(x$)$
Look at one term:
sum_ $\left\{x\right.$ in Si\} ri*P(x) = ri $* \operatorname{sum}_{-}\{x$ in $\operatorname{Si}\} P(x)$
$=r i * P(S i)$
$=r i * P(f=r i)$
so $E(f)=r 1 * P(f=r 1)+r 2 * P(f=r 2)+\ldots+r k * P(f=r 3)$
$=$ sum_\{number r in range of $f\} r * P(f=r)$
as desired.
EX: With S3, P3 and f3 as above, $E(f 3)=\operatorname{sum}_{-}\{k=1$ to 6$\} k * P(f=k)=\operatorname{sum}_{-}\{k=1$ to 6$\} k *(1 / 6)=7 / 2$ as before

EX: With S4, P4, f4 as above,
$E(f 4)$ is the average amount one wins (if $E(f 4)>0$) or loses (if $E(f 4)<0)$
every time one plays.
$E(f 4)=$ sum_\{numbers r in range of $f\} r * P(f 4=r)$
$=+1 * \mathrm{P} 4$ (getting pair of sixes) $+(-1) * \mathrm{P} 4$ (not getting pair of sixes)
$=P 4$ (getting pair of sixes) - P4 (not getting pair of sixes)
ASK\&WAIT: What is P4(not getting pair of sixes)?
P4(getting pair of sixes) = 1 - P4 (not getting pait of sixes)

$$
\sim 1-.5086=.4914
$$

and $E(f 4)=.4914-.5086=-.0172$, so you lose in the long run

Note: In 1654 the gambler Gombaud asked Fermat and Pascal whether this was a good bet, inadvertently starting the field of probability theory
Note: If we do 25 rolls instead of 24 ,
P4(not getting a pair of sixes) drops to (35/36)~25 ~. 4945
P4 (getting pair of sixes) grows to . 5055, so it is a good bet.

EX: Let S5, P5, f5 be as above. Then
$E(f 5)=(+1) * P(f 5=1)+0 * P(f 5=0)$
$=P(f 5=1)=P($ person sick $)$
This is a special case of the following lemma:
Lemma: Let S be a sample space, E subset S any event, and $f(x)=\{1$ if x in $E \quad\}$
$\{0$ if x not in $E\}$
Then $E(f)=P(E)$
ASK\&WAIT: proof?

EX: S2, P2, f2 as above:
$E(f 2)=$ expected win betting $\$ 1$ on a coin N times
$=\operatorname{sum}_{-}\{i=0$ to $N\} i * P 2$ (getting i heads)
$=\operatorname{sum}_{-}\{i=0$ to $N\} i * C(N, i) * p^{\wedge} i^{\wedge}(1-p)^{\wedge}(N-i)$
still isn't simple, so need a new idea:

Thm: Let S and P be a sample space and probability function, and let f and g be two random variables. Then

$$
E(f+g)=E(f)+E(g)
$$

Proof: Let $h=f+g$ be a new random variable.
Then $E(h)=$ sum_\{outcomes x in $S\} h(x) * P(x)$

$$
\begin{aligned}
& =\operatorname{sum}_{-}\{\text {outcomes } x \text { in } S\}(f(x)+g(x)) * P(x) \\
& =\operatorname{sum}_{-}\{x\} f(x) * P(x)+\operatorname{sum}_{-}\{x\} g(x) * P(x) \\
& =E(f) \quad+E(g)
\end{aligned}
$$

Corollary: Let S and P be as above, and $h=f 1+f 2+\ldots+f n$ Then $E(h)=E(f 1)+E(f 2)+\ldots+E(f n)$

EX: Let $\mathrm{S} 2, \mathrm{P} 2, \mathrm{f} 2 \mathrm{be}$ as before. Then we can write

$$
\mathrm{f} 2=\mathrm{g} 1+\mathrm{g} 2+\ldots+\mathrm{gN} \text { where }
$$

gi $(x)=\{+1$ if i-th flip $=H\}$
\{ -1 if i-th flip $=\mathrm{T}\}$
and $E(f 2)=E(g 1)+E(g 2)+\ldots+E(g N)$

For any i $\mathrm{E}(\mathrm{gi})=(+1) * \mathrm{P}(\mathrm{H})+(-1) * \mathrm{P}(\mathrm{T})=\mathrm{p}-(1-\mathrm{p})=2 * \mathrm{p}-1$ so $E(f 2)=N *(2 * p-1)$
which matches our original intuition about making N independent bets in a row (whew!)

EX: Let $\mathrm{S} 4, \mathrm{P} 4$, and $f 4$ be as before. Suppose you also make the side bet that you win 2 if at least 8 fives come up, and lose 2.5 if fewer than 8 fives come up. Is this joint bet worth making? Answer: Let $\mathrm{g}(\mathrm{x})=\{+2$ if at least 8 fives come up in x$\}$

$$
\{-2.5 \text { if at most } 7 \text { fives come up in } x\}
$$

$P(g=+2)=P($ at least 8 fives)
$=\operatorname{sum}_{-}\{i=8$ to 48$\} C(48, i) *(1 / 6)^{\wedge} i *(5 / 6)^{\wedge}(48-i)$
~ .55992
$P(g=-2.5)=P($ at most 7 fives $)$
$=1-P($ at least 8 fives) = 1 - . 55992 = . 44008
$\mathrm{E}(\mathrm{g}) ~ \sim ~+2 * .55992-2.5 * .44008$ ~ .0196
Then the value of the joint bet $f 4+\mathrm{g}$ is

$$
E(f 4+g)=E(f 4)+E(g) \sim-.0172+.0196=.0024
$$

and being positive, is worth making.

EX: Suppose you shoot at a target, and miss it with probability p each time you try. What is the expected number of times you have to try before getting a hit?
S = \{ H, MH, MMH, MMMH, \}
P(MM...MH) = ${ }^{\wedge} \# M$ * (1-p)
f(MM...MH) = \#shots = \#M + 1
We want $E(f)=$ sum_ $\{m=0\}^{\wedge}$ infinity $(m+1) * p^{\wedge} m *(1-p)$
Recal sum_\{m=0\}^infinity $p^{\wedge} m=1 /(1-p)$
so d/dp (sum_\{m=0\}^infinity p^m) = d/dp ($1 /(1-p)$)
or \quad sum_ $\{m=0\}^{\wedge}$ infinity $m * p *\{m-1\}=1 /(1-p)^{\wedge} 2$
or \quad sum_ $\{m=0\}^{\wedge}$ infinity $m * p \wedge m *(1-p)=p /(1-p)$
so sum_\{m=0\}^infinity ($\mathrm{m}+1$) *p^m*(1-p) =
$p /(1-p)+(1-p) /(1-p)=1 /(1-p)$
so $E(f)=1 / P$ (hit)
So if $P(M)=.99$, you need to take $1 /(1-.99)=100$ shots on average to hit

EX: Suppose homework from 350 students is collected, graded, randomly shuffled, and handed back. What is the expected number of students who get their own homework back?
$S=\{$ permutations of 1 to 350\}, P (any permutation) $=1 / 350!\sim 8 e-741$ f(permutation x) = \#homeworks returned to right students,

We want $E(f)$
Let $f i(x)=\{1$ if student i gets right homework back \} \{ 0 otherwise \}
Then $f(x)=f 1(x)+f 2(x)+\ldots+f 350(x)$
and $E(f)=E(f 1)+\ldots+E(f 350)$
Now $E(f i)=P($ student i gets right homework)
= (\# permutations where student i gets right homework)/350!
= (\# permutations of other 349 homeworks)/350!
$=349$! / 350 ! = $1 / 350$
so $E(f)=350 *(1 / 350)=1$
Result would be true for any number of students!

EX: Recall definition of independent sets:
$\mathrm{P}(\mathrm{A}$ inter B$)=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B})$; intuitively, this means that knowing whether or not you are a member of A tells you nothing about whether you are a member of B

EX: $S=\{2$ coin flips $\}=\{H H, H T, T H, T T\}$ with $P(H)=p, P(T)=q=1-p$
$A=\{H H, H T\}, B=\{H H, T H\}$
Then $\mathrm{P}(\mathrm{A}$ inter B$)=\mathrm{P}(\mathrm{HH})=\mathrm{p}^{\wedge} 2=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B})$
Let $f 1(e)=\{1$ if first coin $H \quad f 2(e)=\{1$ if second coin H
\{ 0 otherwise $\{0$ otherwise
Then $P(A$ inter $B)=P(f 1=1$ and $f 2=1)=P(A) * P(B)=P(f 1=1) * P(f 2=1)$
Can also check that both A and complement(A) are independent with B and complement(B), i.e.
$P(f 1=r 1$ and $f 2=r 2)=P(f 1=r 1) * P(f 2=r 2)$ for $r 1, r 2=0,1$
(this was homework due yesterday!)
DEF Let f, g be random variables. Then we call
f and g _independent_ if for all values of r and s
$P(\{x: f(x)=r$ and $g(x)=s\})=P(\{x: f(x)=r\}) * P(\{x: g(x)=s\})$

This generalizes situation where $f, g=1$ or 0 only. It still means intuitively that knowing about the value of f says nothing about the value of g . In this case, the result $\mathrm{P}(\mathrm{A}$ inter B$)=\mathrm{P}(\mathrm{A}) * \mathrm{P}(\mathrm{B})$ generalizes as follows:

Thm 1: If f and g are independent, then $E(f * g)=E(f) * E(g)$

$$
\begin{aligned}
& \text { proof: } \mathrm{E}(\mathrm{f} * \mathrm{~g})=\operatorname{sum}_{\mathrm{L}}\{\mathrm{x} \text { in } \mathrm{S}\} \mathrm{f}(\mathrm{x}) * \mathrm{~g}(\mathrm{x}) * \mathrm{P}(\mathrm{x}) \\
& \left.\left.=\text { sum_ }_{\text {_ }} \text { pairs (} r, s\right)\right\} \text { sum_ }\{x \text { such that } f(x)=r \text { and } g(x)=s\} \\
& \mathrm{f}(\mathrm{x}) * \mathrm{~g}(\mathrm{x}) * \mathrm{P}(\mathrm{x}) \\
& \text { because we do the same sum over } x \text {, just grouping }
\end{aligned}
$$

together those x where $f(x)=r$ and $g(x)=s$
$=\operatorname{sum}_{-}\{$pairs $(r, s)\} \operatorname{sum}_{-}\{x$ such that $f(x)=r$ and $g(x)=s\} r * s * P(x)$
$=\operatorname{sum}_{-}\{$pairs $(r, s)\} r * s *$ sum_ $\{x$ such that $f(x)=r$ and $g(x)=s\} P(x)$
$=\operatorname{sum}_{-}\{$pairs $(r, s)\} r * s * P(f=r$ and $g=s)$
$=\operatorname{sum}_{-}\{$pairs $(r, s)\} r * s * P(f=r) * P(g=s)$
by independence
$=\operatorname{sum}_{-}\{r\}$ sum_\{s\} r*s*P(f=r)*P(g=s)
just a different way of summing over all pairs (r,s)
$=\operatorname{sum}_{-}\{r\} r * P(f=r) * u_{-}\{s\} \quad s * P(g=s)$
$=E(f) \quad * E(g)$
as desired.

EX: Flip a biased coin 10 times
$S=\{a l l$ sequences of 10 Hs and Ts$\}, P(x)=1 / 2^{\wedge} 10$
Let $f=\# H-\# T$ in first 5 flips
Let $g=$ "turn last 5 flips into binary number b, via $1=H$ and $0=T "$
Then f and g are independent, because they depend on independent
events (first 5 flips vs last 5 flips) so $E(f * g)=E(f) * E(g)$
What are $E(f) ? E(g) ? E(f * g)$?
$E(f)=E(\# H)-E(\# T)=5 * p-5 *(1-p)=10 * p-5$
To compute $\mathrm{E}(\mathrm{g})$, let $\mathrm{b} 4=\{1$ if coin $6=\mathrm{H}, 0$ otherwise $\}$
$\mathrm{b} 3=\{1$ if coin $7=\mathrm{H}, 0$ otherwise $\}$
$\mathrm{b} 0=\{1$ if coin $10=\mathrm{H}, 0$ otherwise $\}$
Then $\mathrm{b}=\mathrm{b} 4 * 2^{\wedge} 4+\mathrm{b} 3 * 2^{\wedge} 3+\mathrm{b} 2 * 2^{\wedge} 2+\mathrm{b} 1 * 2+\mathrm{b} 0$ so $E(g)=E(b)=E(b 4) * 2^{\wedge} 4+\ldots+E(b 0)$
$=p * 2 \wedge 4+\ldots+p$
$=p * 31$
Finally, $E(f * g)=E(f) * E(g)=(10 * p-5) * p * 31$

