Math 55 - Spring 2004 - Lecture notes \#18 - March 30 (Tuesday)
Goals for today: Continue discrete probability theory Conditional probability
Independence
Bernoulli trials

Now we start discussing conditional probability.
Here is an example that we would like to understand:
A pharmaceutical company is marketing a new test for a certain medical condition. According to clinical trials, the test has the following properties:

1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10% ("False negatives")
2. When applied to a healthy person, the test comes up negative in 80% of cases and positive in 20% ("False positives")
Suppose that 5% of the US population has the condition.
In other words, a random person has a 5% chance of being affected. When a random person is tested and comes up positive, what is the probability that the person actually has the condition?

This is an example of conditional probability: what is the probability of event A (person is affected) given that we know event B occurs (the person tests positive). We write this P(A|B), the probability of A given B.

Def: $P(A \mid B)=P(A$ inter $B) / P(B)$

Justification: Let S be the original sample space, and P() the original probabilty function on S. Since we know B occurs, we have a new sample space, namely B subset S. What is the new probability function? If x in B, then $P(x \mid B)$ must satisfy

1 = sum_ $\{x$ in $B\} P(x \mid B)$, so
the obvious choice is $P(x \mid B)=P(x) / P(B)$.
So if A subset B is any event in the new sample space B, then $P(A \mid B)=\operatorname{sum}_{-}\{x$ in $A\} P(x \mid B)=\operatorname{sum}_{-}\{x$ in $A\} P(x) / P(B)$ $=P(A) / P(B)$
What if A is not a subset of B ? If x in A but x not in B, then clearly $\mathrm{P}(\mathrm{x} \mid \mathrm{B})=0$; if B occurs then x cannot occur. Thus we finally get $P(A \mid B)=P(A$ inter $B) / P(B)$.

Let $\mathrm{N}=\mathrm{US}$ population.
Returning to medical testing, the population consists of 4 groups:

1) TP (true positives) $|\mathrm{TP}|=90 \%$ of 5% of $\mathrm{N}=(9 / 200) * \mathrm{~N}, \mathrm{P}(\mathrm{TP})=9 / 200$
2) FP (false positives) $|\mathrm{FP}|=20 \%$ of 95% of $\mathrm{N}=(19 / 100) * \mathrm{~N}, \mathrm{P}(\mathrm{FP})=19 / 100$
3) TN (true negatives) $|\mathrm{TN}|=80 \%$ of 95% of $\mathrm{N}=(76 / 100) * \mathrm{~N}, \mathrm{P}(\mathrm{TN})=76 / 100$
4) FN (false negatives) $|\mathrm{FN}|=10 \%$ of 5% of $N=(1 / 200) * N, P(F N)=1 / 200$

Now let $A=\{p e r s o n$ is affected $\}=T P U$ FN
$B=$ \{person tests positive\} $=T P U F P$
A inter $B=T P$
and finally $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{TP}) / \mathrm{P}(\mathrm{TP} \mathrm{U}$ FP)
$=(9 / 200) /(9 / 200+19 / 100)=9 / 47$ ~ .19
So if a random person tests positive, there is only a 19% chance that they really have it.

ASK\&WAIT: What is $P(B \mid A)=P($ person tests positive \mid person is affected)?
ASK\&WAIT: What is P (test correct when given to random person)?
ASK\&WAIT: Let a "phony test" simply declare everyone healthy what is P (phony test correct when given to a random person)?

Ex: Suppose we toss 3 balls into 3 bins
ASK\&WAIT: What is P (first bin empty)?
ASK\&WAIT: What is P (second bin empty | first bin empty)?
Ex: Roll two fair dice, what is $P($ rolling a 6 | sum of dice is 10)?
Ex: Roll two fair coins, what is P (second is head | first is head)

Def: Two events A and B are independent if $P(A$ inter $B)=P(A) * P(B)$
EX: flip two coins, $A=\{H H, T H\}, B=\{H H, H T\}, A$ inter $B=\{H H\}$
$P(A)=1 / 2=P(B), P(A$ inter $B)=1 / 4$

Prop: If A and B are independent, then $P(A \mid B)=P(A)$ and $P(B \mid A)=P(B)$
Proof: $P(A \mid B)=P(A$ inter $B) / P(B)=P(A) * P(B) / P(B)=P(A)$
$P(B \mid A)=P(A$ inter $B) / P(A)=P(A) * P(B) / P(A)=P(B)$

ASK\&WAIT: Throw 3 balls into 3 bins, are
$A=\{f i r s t$ bin empty\} and $B=$ \{second bin empty\} independent?
ASK\&WAIT: Throw 2 dice, are

$$
A=\{r o l l i n g \text { a } 6\} \text { and } B=\{\text { sum=10\} independent? }
$$

ASK\&WAIT: Throw 2 dice, are

```
A = {sum even}, B = {first die even} independent?
```

Def: Events A1, A2, ... , An are mutually independent if for every i and every subset J of $\{1,2, \ldots, n\}-\{i\}$ then $P\left(A i \mid i n t e r _\{j \text { in } J\} A j\right)=\operatorname{Pr}(A i)$
i.e. Ai does not depend on any combination of the other events

Thm: $P(B$ inter $A)=P(B) * P(A \mid B)$
Proof: follows from definition of $P(A \mid B)$

Thm: $P(A 1$ inter $A 2$ inter ... inter An) $=$

$$
\begin{aligned}
P(A 1) & * P(A 2 \mid A 1) * P(A 3 \mid A 1 \text { inter } A 2) * P(A 4 \mid A 1 \text { inter A2 inter A3) } \\
& * \ldots * P(A n \mid A 1 \text { inter } A 2 \text { inter } \ldots \text { inter } A n-1)
\end{aligned}
$$

Proof: induction on n :
Base case: $\mathrm{n}=1$: $\mathrm{P}(\mathrm{A} 1)=\mathrm{P}(\mathrm{A} 1)$
Induction step: Assume
P(A1 inter ... inter An-1)

$$
=P(A 1) * \ldots * P(A n-1 \mid A 1 \text { inter } \ldots \text { inter } A n-2)
$$

Then $P(A 1$ inter ... inter An)
$=P(A 1$ inter \ldots inter $A n-1) * P(A n \mid A 1$ inter \ldots inter $A n-1)$
$=P(A 1) * \ldots * P(A n-1 \mid A 1$ inter \ldots inter $A n-2) *$ P(An | A1 inter ... inter An-1) (by induction, as desired)

Corollary: Suppose A1, A2, ... , An are mutually independent. Then
$P(A 1$ inter $A 2$ inter \ldots inter $A n)=P(A 1) * P(A 2) * \ldots * P(A n)$
Proof: in above proof, each
$P(A i \mid A 1$ inter ... inter $A i-1)=P(A i)$ by mutual independence

EX: Toss a fair coin 3 times. Let $A=\{H H H\}, A 1=\{H x x\}, A 2=\{x H x\}, A 3=\{x x H\}$
$\mathrm{A}=\mathrm{A} 1$ inter A 2 inter A 3
$P(A)=P(A 1) * P(A 2 \mid A 1) * P(A 3 \mid A 1$ inter $A 2)$
$=P(A 1) * P(A 2) \quad * P(A 3)$
$=1 / 2 * 1 / 2 \quad * 1 / 2$
$=1 / 8$ as expected
EX: Toss a biased coin 3 times, with $P(H)=p$
ASK\&WAIT: what is $P(A) ?$

Def: a Bernoulli trial is a (sequence) of (independent, identical)
experiments, each of which has two outcomes

EX: Suppose we flip a fair coin 100 times. What is $P(50$ Heads)?
sample space $S=$ \{all sequences of 100 H's and T's\}, each with $P(x)=1 / 2^{\wedge} 100$ because

$$
P(H T H . . .)=P(1 \text { st }=H) * P(2 n d=T) * P(3 r d=H) * \ldots=1 / 2^{\wedge} 100
$$

(or because it's a uniform distribution over $2 \wedge 100$ possibilities)
$\mathrm{E}=$ \{all sequences with 50 heads, 50 tails $\}$
ASK\&WAIT: What is |E|? $\mathrm{P}(\mathrm{E})$?
ASK\&WAIT: Let $E(i)=$ \{i Heads out of n flips \} What is $|E(i)| ? ~ P(E(i)) ?$
Note that $E(i)$ and $E(j)$ are disjoint, and
$S=E(0) U E(1) U \ldots E(n)$, so $P(S)=P(E(0))+\ldots+P(E(n))=1$
Check this: sum_\{i=0 to n\} $P(E(i))=s u m _\{i=0 \text { to } n\} C(n, i) / 2^{\wedge} n$
$=2^{\wedge}(-n) *$ sum_\{i=0 to $\left.n\right\} C(n, i)$
$=2^{\wedge}(-n) *(1+1)^{\wedge} n \ldots$ by the Binomial Theorem
= 1 as desired

EX; Now flip a biased coin, with $\mathrm{P}(\mathrm{H})=\mathrm{p}$ and $\mathrm{P}(\mathrm{T})=1-\mathrm{p}, 100$ times
The sample space is the same as above.
But not all $\mathrm{P}(\mathrm{x})$ are the same
ASK\&WAIT: What is $\mathrm{P}(50 \mathrm{Hs}$ followed by 50 Ts$)$?
ASK\&WAIT: What is $P(50 \mathrm{Hs}$ and 50 Ts , in some fixed order)?
ASK\&WAIT: What is $\mathrm{P}(50 \mathrm{Hs}$ and 50 Ts , in any order)?
Now flip a biased coin n times
ASK\&WAIT: What is P (i Hs and n-i Ts, in any order)?

Theorem: If you flip a biased coin n times, with $\mathrm{P}(\mathrm{H})=\mathrm{p}$, the probability of getting i Heads is C(n,i)*p^i*(1-p)^(n-i)

What does P (getting i heads out of n flips) look like as a function of i ? Let's look for $\mathrm{n}=100, \mathrm{p}=.5$, and for $\mathrm{n}=100, \mathrm{p}=.7$
Comments on the plots:
when $p=.5$, the probability is largest at $i=50$ (equal numbers of heads and tails), and quickly gets smaller for larger or smaller i.
It gets so small that it is easier to look at a logarithmic scale (second plot), where the probability of getting 30 Hs and 70 Ts (or 70 Hs and 30 Ts), is about $10^{\wedge}(-5)$, and the probability of getting 10 Hs (or 10Ts) is down to $10^{\wedge}(-17)$.
when $p=.7$, then most noticeable feature of the 3rd plot is that it look very much like the first plot, except slid over to have its peak at 70 Hs instead of $50 \mathrm{Hs}$. This makes sense because with $\mathrm{P}(\mathrm{H})=.7$, one expects close to 70 Hs out of 100 . We will return later to explain the remarkable resemblance of these two plots when we discusse the Central Limit Theorem.

Probability of i Heads out of 100

Probability of i Head out of $100, \mathrm{p}=.7$

Probability of i Head out of $100, \mathrm{p}=.7$

EX: Probability of \{a flush in poker\} (5 cards of same suit)
$P(f l u s h)=4 * P(A), A=\{f l u s h$ in hearts $\}$
$\mathrm{A}=\mathrm{A} 1$ inter A 2 inter ... inter A 5
Ai $=$ \{ith card is a heart $\}$
By Theorem: $\mathrm{P}(\mathrm{A})=\mathrm{P}(\mathrm{A} 1) * \mathrm{P}(\mathrm{A} 2 \mid \mathrm{A} 1) * \mathrm{P}(\mathrm{A} 3 \mid \mathrm{A} 1$ inter A 2$) * \ldots$
ASK\&WAIT: What is P (flush)?

EX: You go to a casino, which advertises the following game:
You pick a number from 1 to 6 . Then they role 3 die, and you win if your number comes up at least once.
ASK\&WAIT: The casino claims that your chance of winning is 50%, since it is $1 / 6$ for each die, each die is independent, so the probability is $3 *(1 / 6)=1 / 2$. Is this argument reasonable?
Let's figure out the real probability of winning at this game.
Let Ai = \{your number comes up on die i\}, and A = A1 U A2 U A3.
We want $P(A)$. The casino said $P(A)=P(A 1)+P(A 2)+P(A 3)=3 *(1 / 6)=1 / 2$
But this is only true if the Ai are disjoint, which they are not
(your number can come up twice). So we need inclusion/exclusion:
Recall: $\mathrm{P}(\mathrm{A} 1 \mathrm{U}$ A2) $=\mathrm{P}(\mathrm{A} 1) \mathrm{U} P(\mathrm{~A} 2)-\mathrm{P}(\mathrm{A} 1$ inter A 2$)$
ASK\&WAIT: what is $P(A 1 U$ A2 U A3)?
ASK\&WAIT: What is $\mathrm{P}(\mathrm{Ai}$ inter Aj$)$?
ASK\&WAIT: What is P (A1 inter A 2 inter A 3)?
ASK\&WAIT: What is $P(A)=P($ winning $)$? Should you play an even bet?

