
Math 55 - Spring 2004 - Lecture notes # 12 - Mar 2 (Tuesday)

Keep Reading Sections 3.1 - 3.5 (not 3.6)

(we will not cover 3.5 in detail, since it appears

elsewhere in EECS curriculum, but just do a few

examples; you don’t have to know sorting algorithms)

Homework, due Mar 10

(1) Let f(0)=0, f(1)=1, f(n)=f(n-1)+f(n-2) for n >= 2.

Let r1 = (1+sqrt(5))/2, r2 = (1-sqrt(5))/2.

Prove by induction that f(n) = (r1^n - r2^n)/sqrt(5)

(2) Let cost(n) be the number of additions needed to compute

f(n) by the following recursive algorithm:

func f(n)

if n=0 return(1)

else if n=1 return(1)

else return(f(n-1)+f(n-2))

Use induction to prove that cost(n) = f(n)-1, which means

that the cost of the recursive algorithm grows very fast,

O(r1^n), i.e. about O(1.62^n)

(3) Suppose g(1) = 7, g(2) = 8, and g(n)=2*g(n-1)-2*g(n-2) for n>2.

Derive a closed form formula for g(n).

(4) 3.3-16, 18, 50, 60, 62

(5) 3.4- 8, 14, 38, 48, 50, 62

Goals for today: Continue induction proofs

Recursive functions

EX: So far we have been doing induction on numbers, showing P(n)

is true if P(k) is true for numbers k smaller than n. But we

can also do induction on other structures besides numbers, such

as data structures that come up in programs. We illustrate with

a structure called a tree, which is a special case of a graph.

DEF A graph G = (V,E) consists of a nonempty set V of vertices,

and a set E of edges connecting them. More formally, if a in

V and b in V are vertices, then (a,b) in E means that there

is an edge connecting a,b

EX: G = (V,E), V = {a,b,c,d}, E = {(a,b),(b,c),(c,d),(d,a),(a,c)}

1

DEF a path from node a to node c is a set of edges connected

end to end starting at a and ending at c

EX: G as before, path from a to d consists of edges (a,c),(c,d)

Graph G
a

b c

a

b c

d d
A path from a to d

EX: Other common graphs, questions people ask about them

V = {cities}, E = {roads connecting them};

what are shortest paths from one city to another?

V = {computers}, E = {networks connecting them},

what is available bandwidth for any two computers to communicate?

V = {web pages}, E = {Whether one points to another}

what is best answer to a web search?

V = {people}, E = {Whether one person has met another}

what is likely path of spread of disease?

ASK&WAIT: Other examples?

DEF A tree is a graph with exactly one path between any two nodes.

A rooted tree is a tree with a distinguished node called a

root

ASK&WAIT: Is G a tree?

Tree 1 Tree 2
Root

ASK&WAIT: Where is the root of Tree 2 above?

Fact: if I remove the root from a tree T, and its k connecting edges,

I am left with k unconnected subtrees T1,...,Tk (ie there is no

path from any node in Ti to any node in Tj)

2

Tree 1

root and connecting edges removed root and connecting edges removed

Tree 2

ASK&WAIT: what are k connected subtrees in figure above?

Proof: let r1,...,rk be the nodes connected to the root.

I need to show 2 things: that each Ti is unconnected to

any other, and each Ti is a tree.

I use proof by contradiction: suppose node

a in Ti and node b in Tj were connected; I will find a

contradiction. Since a is connected to r and b is connected

to r in T, there must be two paths from a to r in T

(the one directly from a to r and the one via b);

this contradicts the fact that T is a tree.

Now suppose that Ti is not a tree; I will find another

contradiction. Ti not a tree means there are two nodes

c and d in Ti with either 0 or >1 paths connecting them.

If there are >1 paths connecting them in Ti, the same

paths exist in T, so T must not be a tree. If there are

no paths connecting them in Ti, then there are in

particular no paths connecting them both to ri, and hence

no paths in T connecting both to root; contradicting the

fact that T was a tree.

Thm: Let T be any tree. Let E be the number of edges of

T and N be the number of nodes. Then E = N-1.

Proof: We do two slightly different proofs.

First we do induction on trees,

or more precisely the height H of a tree,

the length of the longest path from the root to a leaf.

Base case: height H = 0 means that the tree consists of the

root by itself (N=1) and no edges (E=0). Clearly E = N-1.

Induction step: Assume the result is true for trees up to

a certain height H, and consider a tree T of height H+1.

By the lemma, if we remove the root r we get k unconnected

subtrees T1,...,Tk, whose roots are the vertices that

were directly connected to r. The heights of these trees

is at most H, so by the induction hypothesis

3

#nodes(Ti) = #edges(Ti) + 1

Thus

#nodes(T) = SUM_{i=1}^k #nodes(Ti) + 1

... the "+1" is to count the root r

= SUM_{i=1}^k (#edges(Ti)+1) + 1

... by induction hypothesis

= SUM_{i=1}^k #edges(Ti) + k + 1

= #edges(T) + 1

... since the edges in T include the

edges in T1,...,Tk and the k edges

connecting T1,...,Tk to r

In the second proof, we do induction on N, the number of nodes

in the tree.

Base case: N=1 means there is one node, and no edges, so

E=0 as desired. (This is the same base case as before.)

Induction step: Assume the result is true for trees of

up to N nodes, and consider a tree with N+1 nodes.

Remove any node r from T and its k adjacent edges, leaving

trees T1,...,Tk. The number of nodes in any Ti is at most N,

since we removed r, so the induction hypothesis applies, and

#nodes(Ti)-1=#edges(Ti). Also,

#nodes(T) = sum_{i=1}^k #nodes(Ti) + 1

... the "+1" is to count the node r

= sum_{i=1}^k (#edges(Ti) +1) +1

... by induction hypothesis

= sum_{i=1}^k #edges(Ti) +k+1

= #edges(E) + 1 as desired.

... since the edges in T include the

edges in T1,...,Tk and the k edges

connecting T1,...,Tk to r

Here is a Bogus proof: Why is it bogus?

"Thm": All Berkeley students have the same color eyes.

proof: We will use induction on n to prove that that if S

is a set of n Berkeley students, then all students

in S have the same color eyes.

Base case (n=1): then any set S={student} consisting

of one student has the property that all students

in S have the same color eyes

Induction step: Assume the result is true for n.

Let S be any set of n+1 students:

4

S = {s(1),s(2),...,s(n+1)}

= S1 U S2 where

S1 = {s(1),s(2),...,s(n)} and

S2 = {s(2),s(3),...,s(n+1)}

By induction all students in S1 have the same eye color,

since S1 has n members. Similarly all students in S2 have

the same eye color. In particular, they all have the same

eye color as s(2), say, since s(2) is in S1 and in S2.

So all students in S have the same eye color.

A function f(n) where n is a nonnegative integer is defined recursively if

1) we give the value of f(0)

2) we give a rule for computing f(n) from f(n-1), when n >= 1

EX: f(0) = 1, f(n) = n*f(n-1)

ASK&WAIT: what is a closed form formula for f(n)? proof by induction

Analogous program:

func f(n)

if n=0

return(1)

else

return n*f(n-1)

endif

What does it mean for a program to call itself?

Ex: if n=3, f(3) computes 3*f(2) = 3*(2*f(1)) = 3*(2*1) = 3*2 = 6

ASK&WAIT: how many times is f() called when you call f(10)?

EX: f(0) = 1, f(n) = a*f(n-1) = a^n, proof by induction

Analogous program: func f(n) if n=0 return(1) else return a*f(n-1)

We can also define f(n) recursively via

1) we give the value of f(0), f(1), ... , f(k)

2) for n>k, we give a rule for computing f(n) from f(0),...,f(n-1)

EX: Fibonacci numbers: f(0)=0, f(1) = 1, f(n)=f(n-1)+f(n-2)

n= 0 1 2 3 4 5 6 7 8 9 10 ...

f(n)= 0 1 1 2 3 5 8 13 21 34 55 ...

Analogous program:

func f(n)

if n=0 return(1)

else if n=1 return(1)

else return f(n-1)+f(n-2)

How much does it cost to compute f(n)?

5

Via loop:

array g(n)

g(0)=0, g(1)=1, for i=2 to n, g(i)=g(i-1)+g(i-2), end for

Then g(i) = f(i)

cost = # additions = n-1

Via recursive program above:

EX: what happens when you call f(4)? (show call tree)

cost(n) = # additions to compute f(n) using recursion

cost(0) = cost(1) = 0

Otherwise, cost(n) = cost(n-1) + cost(n-2) + 1

n = 0 1 2 3 4 5 6 7 8 9 ...

cost(n) = 0 0 1 2 4 7 12 20 33 54 ...

cost(n)+1 = 1 1 2 3 5 8 13 21 34 55 ... = f(n)

(you will prove this by induction in homework)

Just how big is f(n)? Is it O(n)? To decide we use formula for

f(n):

Via formula

Define r1 = (1+sqrt(5))/2 ~ 1.62 and

r2 = (1-sqrt(5))/2 ~ -.62

Then f(n) = (r1^n - r2^n)/sqrt(5)

(you will prove this on homework, by induction)

In other words, f(n) grow like O(1.62^n), exponentially

ASK&WAIT: How much does evaluating this formula cost, compared to other ways?

Evaluating formula cleverly MUCH cheaper than either O(n) or O(1.62^n)

Derivation of formula for f(n)

(1) "Guess" that there is a solution of f(n)=f(n-1)+f(n-2) of form r^n

for some constant r. We know there is, We only need to fine r.

Plug in to get r^n = r^(n-1) + r^(n-2), and solve for r.

r=0 is one possibility; otherwise divide by r^(n-2) to get

r^2 = r + 1, a quadratic equation with solutions

r1 = (1+sqrt(5))/2 and r2 = (1-sqrt(5))/2

(2) So r1^n and r2^n are solutions but neither satisfies f(0)=0,f(1)=1.

But note that alpha*r1^n and beta*r2^n are also solutions for any

alpha and beta, as is their sum alpha*r1^n + beta*r2^n.

So seek alpha and beta such that

alpha*r1^0 + beta*r2^0 = alpha + beta = 0 and

alpha*r1^1 + beta*r2^1 = 1

2 linear equations in 2 unknowns: solve them for alpha, beta to get

-r1*(alpha+beta) + (alpha*r1 + beta*r2) = beta*(r2 - r1) = 1,

so beta = 1/(r2 - r1) = -1/sqrt(5) and alpha = -beta = 1/sqrt(5)

and f(n) = (r1^n - r2^n)/sqrt(5)

6

Formulas like this exist for any linear recurrence like

h(n) = a*h(n-1) + b*h(n-2) + c*h(n-3),

where a,b,c are constants and h(0),h(1),h(2) known; see chapter 5

EX: We can also describe "well-formed formulas (WFF)" or

"arithmetic expressions" recursively:

Well-formed: a+b, (a+b)/c, (a+b)/c + a^d, ((a+b)/c + a^d)/(a-d), ...

Not well-formed: a- , (ab+*(, ...

(a-a)/(a-a) is "well-formed", since we only care about the "syntax",

not the value of the formula

We can define these recursively as follows:

(1) Any single variable (a,b,c,...) or number (7, 3.1416,...) is a WFF

(2) If E is a WFF, so is (E)

(3) If E is a WFF, so is -E

(4) If E1 and E2 are WFF, so is E1+E2

(5) If E1 and E2 are WFF, so is E1-E2

(6) If E1 and E2 are WFF, so is E1*E2

(7) If E1 and E2 are WFF, so is E1/E2

(8) If E1 and E2 are WFF, so is E1^E2

EX: Shorthand notation:

E -> variable | number | (E) | -E | E+E | E-E | E*E | E/E | E^E

This is called a "grammar", and is used by compilers (CS164)

EX: (a+b)/c is WFF because it is gotten by applying the rules

(1) to a, (1) to b, (4) to a+b, (2) to (a+b), (1) to c, (7) to (a+b)/c

Order in which we apply rules is usually represented by a "parse tree":

/(7)

/ \

/ \

/ \

()(2) c(1)

|

+(4)

/ \

/ \

a(1) b(1)

EX: 1 goal of the compiler (parser) is to take an expression (a+b)/c

and either

1) produce the parse tree, and the corrsponding rules for each part, or

2) decide there is no parse tree, and print a "syntax error" message

Use this to prove (by induction) that any WFF has as many "("s as ")"s.

Proof: Base case: a variable or number has 0 parentheses

7

Induction case: take each rule (2)-(8) and confirm that the

number of "("s and ")"s stays equal:

Rule (2): Number of "("s is number of "("s in E + 1, and

number of ")"s is number of ")"s in E + 1, so

if E had equal numbers of each, so does (E)

Rule (3): numbers of parentheses does not change

Rules (4)-(8): numbers of parentheses is the sum of

those in E1 and E2, so if there were equally many

"(" and ")" in E1 and E2, the same is true when

you combine them

EX: Analysis of Euclidean Algorithm:

x=a,y=b, ... assume x >= y, swap them otherwise

while y != 0

r = x mod y

x = y

y = r ... still true that x >= r

end while

return gcd = x

Recursive version of same algorithm:

func gcd(x,y)

if x<y, swap x and y

if y = 0 then return(x)

else return(gcd(y, x mod y))

How many times is the while loop executed?

Def: Let N(x) denote the number of bits needed to represent

the nonnegative integer x (N(x) = floor(log_2 x) + 1 for x>0, N(0)=1).

Theorem: The number of times the loop in the Euclidean Algorithm is

executed is bounded by N(a)+N(b) <= log_2 a + log_2 b + 2

Proof: We will use induction on N(x)+N(y), showing it decreases by

at least one after each pass through the loop,

so it must stop by the time N(x)+N(y)=2 if not sooner.

ASK&WAIT: Base case: What are x and y if N(x)+N(y) reaches 2?

Induction step:

Let xo and yo denote the (old) values of x and y at the beginning

of the loop, and xn and yn denote the (new) values of x and y at the end.

We need to show that N(xn)+N(yn) <= N(xo)+N(yo)-1, because then by

induction the number of passes through the loop to compute gcd(xo,yo) will

be bounded by

(N(xn)+N(yn)) + 1 = (N(xo)+N(yo)-1) + 1 = N(xo) + N(yo) as desired.

Case 1: Suppose that N(xo)=N(yo), neither xo nor yo = 0.

8

ASK&WAIT: When we divide xo = q*yo + r using the Division Algorithm, what is q?

Then r=xo-yo has at most N(xo)-1 bits since the leading bit cancels,

and so

N(xn) + N(yn) = N(yo) + N(r) <= N(yo) + N(xo)-1 as desired.

Case 2: Suppose that N(xo) > N(yo). Then r<yo has at most N(yo) bits, so

N(xn) + N(yn) = N(yo) + N(r) <= N(yo) + N(yo) < N(xo) + N(yo)

<= N(xo) + N(yo) -1 as desired.

Note: Lame’s Theorem in book has slightly different bound, but same idea

9

