Math 55 - Spring 2004 - Lecture notes \# 10 - Feb 25 (Tuesday)

Keep Reading Sections 3.1 - 3.4
Homework, due Mar 3
2.6-16
3.1-16, 30, 36, 44
3.2-6, 10, 12, 16, 20, 22

Goals for today: Finish cryptography from last time Begin Sequence, Summations, Induction

To finish cryptography, need proof of Fermat's Little Theorem:
Thm: IF p is prime and $p \backslash \mid a$, then $a^{\wedge}(p-1)==1 \bmod p$

Some "numerical experiments" to devise proof conjecture:
consider integers 1 <= $i<p$, for some prime p, say $p=7$.
Try multiplying them by any integer mod p, see what you get:
123456
*2 mod 7 => 246357
*3 mod 7 => 362514
*4 mod 7 => 415263
*5 mod 7 => 531642
*6 mod 7 => 654321
ASK\&WAIT: What is the pattern?
Can see same pattern for any prime p
Conjecture (proven shortly): given any prime p and any $1<=a<p$,
the numbers $a * 1 \bmod p, a * 2 \bmod p, \ldots a *(p-1) \bmod p$ are
all different, i.e. just a permutatation of $1, \ldots, p-1$

Now take there product:
$(\mathrm{p}-1)!=(\mathrm{a} * 1) \bmod \mathrm{p} *(\mathrm{a} * 2) \bmod \mathrm{p} * \ldots *(\mathrm{a} *(\mathrm{p}-1)) \bmod \mathrm{p}$
or

$$
(p-1)!==(a * 1 * a * 2 * \ldots a *(p-1)) \bmod p
$$

$$
==a^{\wedge}(p-1)(p-1)!\bmod p
$$

Suppose we could "divide by" (p-1)!;
would get 1 == $a^{\wedge}(p-1) \bmod p$ as desired

Now let's do proof carefully:
Proof of Conjecture: suppose $1<=x, y<p, x \backslash=y$

```
so -(p-1) <= x-y <= p-1, x \= y
so p \| x-y
so p \| a*(x-y)
so a*x mod p \= a*y mod p
In other words, a*1 mod p, a_2 mod p , ... , a*(p-1) mod p
all different as conjectured.
```

So now we have $(\mathrm{p}-1)!==\mathrm{a}^{\wedge}(\mathrm{p}-1) *(\mathrm{p}-1)!\bmod \mathrm{p}$, and want to conclude $1==a^{\wedge}(p-1) \bmod p$
ASK\&WAIT: What did we prove last time that lets us do this?
Thus ($\mathrm{p}-1$)!*x == 1 mod p has unique solution, multiply through to get
$(\mathrm{p}-1)!* \mathrm{x}==\mathrm{a}^{\wedge}(\mathrm{p}-1) *(\mathrm{p}-1)!* \mathrm{x} \bmod \mathrm{p}$
or

$$
1==a^{\wedge}(p-1) * 1 \bmod p
$$

as desired
For homework, you will show more, that ($\mathrm{p}-1$)! $==-1 \bmod \mathrm{p}$ (Wilson's Theorem)

