Math 55 - Spring 2004 - Lecture notes \# 9 - Feb 19 (Thursday)
Finish through end of Section 2.6 (not 2.7) if not yet done Start reading Sections 3.1 - 3.4

Homework, due Feb 25
(1) Let $a=a 4 a 3 a 2 a 1 a 0$ be a 5-bit 2s complement integer;
each ai is 0 or 1. Similarly let b = b4b3b2b1b0, and
let $s=a+b=s 4 s 3 s 2 s 1 s 0$ be their sum in
2s complement arithmetic.
Interpreting a 0 bit as False and a 1 bit as True, write down logical formulas for $s 4, s 3, s 2, s 1, s 0$ using and, or, not, xor, with the inputs $\mathrm{a} 4, \mathrm{a} 3, \mathrm{a} 2, \mathrm{a} 1, \mathrm{a} 0, \mathrm{~b} 4, \mathrm{~b} 3, \mathrm{~b} 2, \mathrm{~b} 1, \mathrm{~b} 0$.
Hint: introduce new logical variables (bits) c4,c3,c2,c1,c0 where ci is the carry into the i-th bit from the i-1-st bit. Your logical formulas for si and c(i+1) in terms of ai, bi and ci should look the same for all i (you can let c0 = $0=$ False so
that all the formulas look the same).
In particular, your formulas should express the facts that $\mathrm{c}(\mathrm{i}+1)=1$ if the sum ai $+\mathrm{bi}+\mathrm{ci}$ is at least 2 , and si = 1 if ai + bi + ci is 1 or 3 (i.e. odd).
Computers implement these formulas in hardware to perform 2s complement addition.
(2) Explain how to use nearly the same logical formulas as above to compute the difference $d=a-b$
(3) The purpose of this question is to illustrate that there are a lot of primes.
(a) Let n and d be integers, and $\mathrm{x}=\mathrm{n} * 10^{\wedge} \mathrm{d}$ Use the prime number theorem to evaluate the limit as d -> infinity of pi(x + 10^d) / pi(x) where pi(x) is the number of primes less than or equal to x. (in other words, n is fixed and d is growing)
(b) Use part(a) to show that given any arbitrary string of decimal digits (representing the integer n), then for all sufficiently large M, there is always a prime p such that

1. p has an M-digit decimal expansion, and
2. p's decimal expansion starts with the given string (representing n).
2.4-46
$2.5-18,36,38,40$

Goals for today: Recall Euclidean algorithm for the gcd
Use it to solve a "congruence equation"
$\mathrm{a} * \mathrm{x}=\mathrm{b}$ mod m for x
how to do division in modular arithmetic
Use it to solve a system of congruence equations:
Chinese Remainder Theorem
Apply it to cyptography
Recall property of Euclidean algorithm for gcd: given a and m, it computes

1) $d=\operatorname{gcd}(a, m)$
2) integers s and t such that $a * s+m * t=d$

How to solve $a * x==1 \bmod m$ for x :
(analogy of reciprocal of a in modular arithmetic)
Theorem: $a * x==1 \bmod m$ can be solved for x if and only if $\operatorname{gcd}(a, m)=1$.
When it can be solved, x is unique mod m, i.e. the only one in
the range 0 to $\mathrm{m}-1$, and is called "the inverse of a modulo m".
EX: Solve $2 * x==1 \bmod 5: \operatorname{try} x=0,1,2,3,4$,
getting $2 * x=0,2,4,1,3$,
so $\mathrm{x}=3$ is the unique answer $(\operatorname{gcd}(2,5)=1)$
EX: Solve $2 * x==1 \bmod 4:$ try $x=0,1,2,3$,
getting $2 * x=0,2,0,2$,
so there is no solution $(\operatorname{gcd}(2,4)=2)$
Proof: If $\operatorname{gcd}(a, m)=1$, we have to show that we can solve for x : Use the Euclidean algorithm to find s and t such that $a * s+m * t=1$. Thus $a * s=1-m * t==1 \bmod m$, $s o x=s$ is a solution.

If $\operatorname{gcd}(a, m) /=1$, we have to show that no x satisfies $a * x==1 \bmod m$: Recall that $a * x==1 \bmod m$ is equivalent to $a * x \bmod m=1 \bmod m=1$, and that $a * x \bmod m=a * x+m * t$ for some t. But if $\operatorname{gcd}(a, m)=d>1$, then $d \mid a$ and $d \mid m$, so $d(a * x+m * t)$ for any integer t, and in particular $\mathrm{d} \mid(\mathrm{a} * \mathrm{x} \bmod \mathrm{m})$. Since d does not divide 1, $\mathrm{a} * \mathrm{x} \bmod \mathrm{m} /=1$.

To show that the solution x is unique mod m when it exists, suppose both that $\mathrm{a} * \mathrm{x} 1 \mathrm{=}=1 \mathrm{mod} \mathrm{m}$ and $\mathrm{a} * \mathrm{x} 2==1 \bmod \mathrm{~m}$, and that $1<=\mathrm{x} 1<\mathrm{m}$ and $1<=\mathrm{x} 2<\mathrm{m}$; we have to show that $\mathrm{x} 1=\mathrm{x} 2$. Now $a * x 1-a * x 2==0 \bmod m$, so $m(a *(x 1-x 2))$.
Since $\operatorname{gcd}(a, m)=1, a$ and m have no common factors,
and thus $\mathrm{m} \mid(\mathrm{x} 1-\mathrm{x} 2)$. Now $\mathrm{x} 1-\mathrm{x} 2$ satisfies two properties:

1) $m \mid(x 1-x 2)$, so $x 1-x 2$ is in the set $\{\ldots,-2 * m,-m, 0, m, 2 * m, \ldots\}$
2) $-\mathrm{m}<\mathrm{x} 1-\mathrm{x} 2<\mathrm{m}$, since $1<=\mathrm{x} 1<\mathrm{m}$ and $1<=\mathrm{x} 2<\mathrm{m}$; The only value of $x 1-x 2$ satisfying these properties is $x 1-x 2=0$, or $x 1=x 2$ as desired.

Corollary: $a * y==b$ mod m has a solution y for any b if and only if $\operatorname{gcd}(a, m)==1$ (analogy of dividing b / a in modular arithmetic) proof: if $\operatorname{gcd}(a, m)=1$, then the Theorem says we can solve $\mathrm{a} * \mathrm{x}==1 \bmod \mathrm{~m}$. Multiply through by b to get $\mathrm{a} *(\mathrm{x} * \mathrm{~b})==\mathrm{b} \bmod \mathrm{m}$, so we can take $\mathrm{y}=\mathrm{x} * \mathrm{~b}$
(b times "inverse of a") If gcd(a,m)>1, then the Theorem tells us we cannot solve when $b=1$.

ASK\&WAIT: under what conditions on b can we solve $a * y==b \bmod m$ for $y ?$
Chinese Remainder Theorem: Let m1, m2,..., mn be pairwise relatively prime numbers, ie $\operatorname{gcd}(\mathrm{mi}, \mathrm{mj})=1$ for all i and j. Let $\mathrm{m}=\mathrm{m} 1 * \mathrm{~m} 2 * \ldots * \mathrm{mn}$. Then the n equations
$\mathrm{x}==\mathrm{a} 1 \bmod \mathrm{~m} 1$, $\mathrm{x}==\mathrm{a} 2 \bmod \mathrm{~m} 2, \ldots$, $\mathrm{x}==\mathrm{an} \bmod \mathrm{mn}$ have a unique solution mod m for any $a 1, a 2, \ldots, a n$, i.e. there is only one solution in the range from 0 to $\mathrm{m}-1$.
EX: $x==2 \bmod 3, x==3 \bmod 5$

x	$\mathrm{x}==2 \bmod 3 ?$	$\mathrm{x}==3 \bmod 5 ?$
0		
1		
2	Yes	
3		
4		
5	Yes	
6		
7		
8	Yes	Yes $\mathrm{x}=8$ is unique solution mod $3 * 5=15$
9		
10		
11	Yes	
12		
13		
14	Yes	

Proof: We give an algorithm for computing x, and leave uniqueness to
homework. Let $\mathrm{Mi}=\mathrm{m} / \mathrm{mi}$, for $\mathrm{i}=1, \ldots, \mathrm{n}$. Thus
Mi = product of all mjexcept for mi, so gcd(Mi,mi)=1, since
mj and mi have no common factors. By the last theorem, each
Mi has an inverse yi mod mi, i.e. Mi*yi == $1 \bmod \mathrm{mi}$.
We claim a solution is $\mathrm{x}=\mathrm{a} 1 * \mathrm{M} 1 * \mathrm{y} 1+\mathrm{a} 2 * \mathrm{M} 2 * \mathrm{y} 2+\ldots+\mathrm{an} * \mathrm{Mn} * \mathrm{yn}$.
To confirm this we have to verify that $\mathrm{x}==$ ai mod mi for all i:
$\mathrm{x}==(\mathrm{a} 1 * \mathrm{M} 1 * \mathrm{y} 1+\mathrm{a} 2 * \mathrm{M} 2 * \mathrm{y} 2+\ldots+\mathrm{an} * \mathrm{Mn} * \mathrm{yn}) \bmod \mathrm{mi}$
$==(\mathrm{a} 1 * \mathrm{M} 1 * \mathrm{y} 1 \bmod \mathrm{mi}+\ldots+\mathrm{an} * \mathrm{Mn} * \mathrm{yn} \bmod \mathrm{mi}) \bmod \mathrm{mi}$
$==$ (ai*Mi*yi mod mi + sum_\{j/= i\} aj*Mj*yj) mod mi
$==$ ai mod mi since Mi*yi == $1 \bmod \mathrm{mi}$ $+0 \quad$ since mi | Mj when j /= i
$==$ ai mod mi as desired

EX: $x==2 \bmod 3, x==3 \bmod 5$ again:
$\mathrm{a} 1=2, \mathrm{~m} 1=3, \mathrm{a} 2=3, \mathrm{~m} 2=5, \mathrm{M} 1=5, \mathrm{M} 2=3$,
$\mathrm{y} 1=2$ since $2 * 5==1 \bmod 3$ and $\mathrm{y} 2=2$ since $2 * 3==1 \bmod 5$
$\mathrm{x}=2 * 5 * 2+3 * 3 * 2=38==8 \bmod 15$

Cryptography
Recall that a message (character string) is converted to a number M What happens when a Sender wants to send a secret message to
a Receiver:
The Sender takes message M and encrypts it to get the encrypted message $C=f_{\text {_enc }}(M)$
The Sender sends C to the Receiver. Anyone may "intercept" C on its way.
The Receiver decrypts C to get the original message $M=f _d e c(C)$.

For this to work as the Sender and Receiver desire:
f_enc and f_dec have to be one-to-one, onto functions and be inverses of one another, i.e. $M=f_{\text {_ }}$ dec (f_enc(M)) for all M
It is easy for the Sender to evaluate f_enc
It is easy for the Receiver to evaluate f_dec
It is very hard for anyone other than the Receiver to evaluate f_dec. The harder it is, the better the secrecy.

Two kinds of cryptography:
Private key (traditional): need one "Key" for both f_enc and f_dec where K=Key is a shared secret between Sender, Receiver
EX: shift: $C=f_{\text {_enc }}(M)=M-K \bmod n, M=f _d e c(C)=C+K \bmod n$,
easy to break
ASK\&WAIT: How?
EX: xor: $C=f_{\text {_enc }}(M)=M$ xor K (thinking of M, C, K as bit strings of the same length) $\mathrm{M}=\mathrm{f} _\mathrm{dec}(\mathrm{C})=\mathrm{C}$ xor K
ASK\&WAIT: Why are f_enc and f_dec inverses? hard to break if K used once
EX: Original Washington/Moscow hotline worked this way
EX: crypt command in UNIX, uses algorithm from German Enigma machine used in World War II, which was broken by Turing

Secrecy depends on keeping K a secret known only to Sender, Receiver so only they can evaluate f_enc and f_dec
Disadvantage: if 1000 people want to talk to one another in secret, need $999 * 1000$ secret keys, so all pairs can talk; too many keys!

Public key: any Sender can do f_enc, but only one Receiver can do f_dec
Advantage: for 1000 people to talk in secret, each person has his/her own secret f_dec, but can just publish the corresponding f_enc
EX: RSA (Rivest/Shamir/Adleman)
Need: 1) large number n that is product of two large primes $p * q=n$ large means 200 to 400 decimal digits
2) integer e that is relatively prime to (p-1)*(q-1)
3) integer $d=$ inverse of $e \bmod (p-1) *(q-1)$

Everyone knows n and e, but only Receiver knows d
Then for message $M, C=f _e n c(M)=M^{\wedge} e \bmod n$ is the encryted message
For encrypted message $C, M=f _d e c(C)=C \wedge d \bmod n$ is the decrypted message
EX: Try $2537=\mathrm{n}=\mathrm{p} * \mathrm{q}=43 * 59$, $\mathrm{e}=13$, message $=\mathrm{STOP}=(\mathrm{ST}, \mathrm{OP})=(1819,1415)$ using position of letters in alphabet. Then encrypted message $=\left(1819^{\wedge} 13 \bmod 2537,1415^{\wedge} 13 \bmod 2537\right)=(2081,2182)$.
To decrypt we use d $=937$ and compute (2081 ^937 $\bmod 2537$, $2182 \wedge 937 \bmod 2537$) = $(1819,1415)$

We will show that f_enc and f_dec are inverses of one another shortly. But first, why is f_enc() easy and f_dec() hard to evaluate?
f_enc() requires multiplying by M and taking the remainder mod n, both of which are easy, even if M and n are large.
f_dec() equally easy if we know d, which only the Receiver knows. Why is it hard to figure out d? All you have to do is

1) factor $n=p * q$
2) use Euclidean algorithm to compute d so $\mathrm{d} * \mathrm{e}==1 \bmod (\mathrm{p}-1) *(\mathrm{q}-1)$

But 1) is very hard: Best algorithms would take billions of years if n has 400 digits. And any other known algorithm to compute d leads to computing p and q too. So quality of encryption depends on large integers being very hard to factor. If you figure out an algorithm to factor quickly, you can become rich or famous.

Proof that f_dec() is inverse of f_enc requires
Fermat's Little Theorem (proof is questions 15-17 in section 2.6):
If p is prime and $p / \mid a$, then $a^{\wedge}(p-1)==1 \bmod p$

Proof that f_dec (f_enc (M)) $=M$, where $M<p, q$
$f_{_} \operatorname{dec}\left(f _e n c(M)\right)=f _d e c\left(M^{\wedge} e \bmod n\right)=\left(M^{\wedge} e\right)^{\wedge} d \bmod n=M^{\wedge}(e * d) \bmod n$.
We need to show that $M^{\wedge}(e * d) \bmod n=M \bmod n=M$, since $M<p * q=n$.
Now $e * d==1 \bmod (p-1) *(q-1)$ so $e * d=1+m *(p-1) *(q-1)$ for some m. Then
$M^{\wedge}(e * d) \bmod n=M^{\wedge}(1+m *(p-1) *(q-1)) \bmod n$
$=M * M^{\wedge}(m *(p-1) *(q-1)) \bmod n$
Now since $M<p$ and $M<q$, and p and q are prime, we must have $\operatorname{gcd}(M, p)=\operatorname{gcd}(M, q)=1$. Then Fermat's Little Theorem implies that $M^{\wedge}(p-1)==1 \bmod p$ and $M^{\wedge}(q-1)==1 \bmod q$.
Thus $M^{\wedge}(e * d)=M *\left(M^{\wedge}(p-1)\right)^{\wedge}(m *(q-1))$
$==M *(1)^{\wedge}(m *(q-1)) \bmod p$
$==M \bmod p$
and $\quad M^{\wedge}(e * d)=M *\left(M^{\wedge}(q-1)\right)^{\wedge}(m *(p-1))$
$==M *(1)^{\wedge}(m *(p-1)) \bmod q$
$==M \bmod q$.
Finally, by the Chinese Remainder Theorem, $M^{\wedge}(e * d)$ is the unique solution $\bmod p * q$ to
$x==M \bmod p$
$x==M \bmod q$
so $M^{\wedge}(e * d) \bmod n=M$ as desired.

For RSA to be useful, we need to find a lot of large primes.
We will not discuss the algorithm for finding them, but just
discuss the theorem that says there are a lot to be found:

Def: pi(n) = the number of primes <= n
Ex: $\operatorname{pi}(20)=|\{2,3,5,7,11,13,17,19\}|=8$
Theorem (Prime Number Theorem): The limit as $n \rightarrow$ infinity of pi $(\mathrm{n}) /\left(\mathrm{n} / \log _{-} \mathrm{e} \mathrm{n}\right)=1$

EX: $\begin{array}{cccc}\mathrm{n} & \mathrm{pi}(\mathrm{n}) & \mathrm{n} / \log _{-} \mathrm{e}(\mathrm{n}) & \mathrm{pi}(\mathrm{n}) /\left(\mathrm{n} / \log _{-} \mathrm{e} \mathrm{n}\right) \\ 10^{\wedge} 1 & 4 & 4.3 & .92\end{array}$

$10^{\wedge} 2$	25	21.7	1.15
$10^{\wedge} 3$	168	144.8	1.16
$10^{\wedge} 4$	1229	1085.7	1.13
$10^{\wedge} 5$	9592	8685.9	1.10
$10^{\wedge} 6$	78498	72382.4	1.08
$10^{\wedge} 7$	664579	620420.7	1.07
$10^{\wedge} 8$	5761455	5428681.0	1.06

The point is that the ratio in the last column is slowly approaching 1
So about what fraction of 200 decimal digit numbers are prime?
\# 200 digit primes / \# 200 digit numbers
$=\left(\mathrm{pi}\left(10^{\wedge} 200\right)-\mathrm{pi}(10 \wedge 199)\right) /\left(10^{\wedge} 200-10 \wedge 199\right)$
~ ($\left.10 \wedge 200 / \log _{-} e\left(10^{\wedge} 200\right)-10 \wedge 199 / \log _{-} e(10 \wedge 199)\right) /\left(10^{\wedge} 200-10^{\wedge} 199\right)$
~ . 002 or about 1 out of 500
So if you pick 500 random 200 digit numbers,
there is a reasonable chance that one is prime

