
Math 55 - Spring 2004 - Lecture notes # 9 - Feb 19 (Thursday)

Finish through end of Section 2.6 (not 2.7) if not yet done

Start reading Sections 3.1 - 3.4

Homework, due Feb 25

(1) Let a = a4a3a2a1a0 be a 5-bit 2s complement integer;

each ai is 0 or 1. Similarly let b = b4b3b2b1b0, and

let s = a+b = s4s3s2s1s0 be their sum in

2s complement arithmetic.

Interpreting a 0 bit as False and a 1 bit as True, write down

logical formulas for s4,s3,s2,s1,s0 using and, or, not, xor,

with the inputs a4,a3,a2,a1,a0, b4,b3,b2,b1,b0.

Hint: introduce new logical variables (bits) c4,c3,c2,c1,c0

where ci is the carry into the i-th bit from the i-1-st bit.

Your logical formulas for si and c(i+1) in terms of ai, bi

and ci should look the same for all i

(you can let c0 = 0 = False so

that all the formulas look the same).

In particular, your formulas should express the facts that

c(i+1)=1 if the sum ai + bi + ci is at least 2, and

si = 1 if ai + bi + ci is 1 or 3 (i.e. odd).

Computers implement these formulas in hardware to perform

2s complement addition.

(2) Explain how to use nearly the same logical formulas as above

to compute the difference d = a-b

(3) The purpose of this question is to illustrate that

there are a lot of primes.

(a) Let n and d be integers, and x = n*10^d

Use the prime number theorem to evaluate the

limit as d -> infinity of pi(x + 10^d) / pi(x)

where pi(x) is the number of primes less than or equal to x.

(in other words, n is fixed and d is growing)

(b) Use part(a) to show that given any arbitrary string of

decimal digits (representing the integer n),

then for all sufficiently large M, there is always a prime

p such that

1. p has an M-digit decimal expansion, and

2. p’s decimal expansion starts with the given string

(representing n).

2.4-46

2.5-18,36,38,40
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2.6-20,24

Goals for today: Recall Euclidean algorithm for the gcd

Use it to solve a "congruence equation"

a*x=b mod m for x

how to do division in modular arithmetic

Use it to solve a system of congruence equations:

Chinese Remainder Theorem

Apply it to cyptography

Recall property of Euclidean algorithm for gcd: given a and m,

it computes

1) d = gcd(a,m)

2) integers s and t such that a*s+m*t=d

How to solve a*x == 1 mod m for x:

(analogy of reciprocal of a in modular arithmetic)

Theorem: a*x ==1 mod m can be solved for x if and only if gcd(a,m)=1.

When it can be solved, x is unique mod m, i.e. the only one in

the range 0 to m-1, and is called "the inverse of a modulo m".

EX: Solve 2*x==1 mod 5: try x=0,1,2,3,4,

getting 2*x=0,2,4,1,3,

so x=3 is the unique answer (gcd(2,5)=1)

EX: Solve 2*x==1 mod 4: try x=0,1,2,3,

getting 2*x=0,2,0,2,

so there is no solution (gcd(2,4)=2)

Proof: If gcd(a,m)=1, we have to show that we can solve for x:

Use the Euclidean algorithm to find s and t such that

a*s+m*t=1. Thus a*s = 1-m*t == 1 mod m, so x=s is a solution.

If gcd(a,m) /= 1, we have to show that no x satisfies

a*x==1 mod m: Recall that a*x == 1 mod m is equivalent to

a*x mod m = 1 mod m = 1, and that a*x mod m = a*x+m*t

for some t. But if gcd(a,m)=d>1, then d|a and d|m,

so d|(a*x+m*t) for any integer t, and in particular

d|(a*x mod m). Since d does not divide 1, a*x mod m /= 1.

To show that the solution x is unique mod m when it exists,

suppose both that a*x1 == 1 mod m and a*x2 == 1 mod m, and

that 1 <= x1 < m and 1 <= x2 < m; we have to show that x1=x2.

Now a*x1-a*x2 == 0 mod m, so m|(a*(x1-x2)).

Since gcd(a,m)=1, a and m have no common factors,
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and thus m|(x1-x2). Now x1-x2 satisfies two properties:

1) m|(x1-x2), so x1-x2 is in the set

{..., -2*m,-m,0,m,2*m,...}

2) -m < x1-x2 < m, since 1 <= x1 < m and 1 <= x2 < m;

The only value of x1-x2 satisfying these properties is

x1-x2=0, or x1=x2 as desired.

Corollary: a*y == b mod m has a solution y for any b if and only if

gcd(a,m) == 1 (analogy of dividing b/a in modular arithmetic)

proof: if gcd(a,m)=1, then the Theorem says we can solve

a*x == 1 mod m. Multiply through by b to get

a*(x*b) == b mod m, so we can take y = x*b

(b times "inverse of a") If gcd(a,m)>1,

then the Theorem tells us we cannot solve when b=1.

ASK&WAIT: under what conditions on b can we solve a*y == b mod m for y?

Chinese Remainder Theorem: Let m1, m2,..., mn be pairwise

relatively prime numbers, ie gcd(mi,mj)=1 for all i and j.

Let m = m1*m2*...*mn. Then the n equations

x == a1 mod m1 , x == a2 mod m2, ... , x == an mod mn

have a unique solution mod m for any a1, a2,...,an, i.e. there is

only one solution in the range from 0 to m-1.

EX: x == 2 mod 3, x == 3 mod 5

x x==2 mod 3 ? x==3 mod 5?

0

1

2 Yes

3 Yes

4

5 Yes

6

7

8 Yes Yes x=8 is unique solution mod 3*5=15

9

10

11 Yes

12

13 Yes

14 Yes

Proof: We give an algorithm for computing x, and leave uniqueness to
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homework. Let Mi = m/mi, for i=1,...,n. Thus

Mi = product of all mj except for mi, so gcd(Mi,mi)=1, since

mj and mi have no common factors. By the last theorem, each

Mi has an inverse yi mod mi, i.e. Mi*yi == 1 mod mi.

We claim a solution is x = a1*M1*y1 + a2*M2*y2 + ... + an*Mn*yn.

To confirm this we have to verify that x == ai mod mi for all i:

x == (a1*M1*y1 + a2*M2*y2 + ... + an*Mn*yn) mod mi

== ( a1*M1*y1 mod mi + ... + an*Mn*yn mod mi ) mod mi

== ( ai*Mi*yi mod mi

+ sum_{j /= i} aj*Mj*yj ) mod mi

== ai mod mi since Mi*yi == 1 mod mi

+ 0 since mi | Mj when j /= i

== ai mod mi as desired

EX: x == 2 mod 3, x == 3 mod 5 again:

a1=2, m1=3, a2=3, m2=5, M1=5, M2=3,

y1=2 since 2*5==1 mod 3 and y2=2 since 2*3==1 mod 5

x = 2*5*2 + 3*3*2 = 38 == 8 mod 15

Cryptography

Recall that a message (character string) is converted to a number M

What happens when a Sender wants to send a secret message to

a Receiver:

The Sender takes message M and encrypts it to get the

encrypted message C = f_enc(M)

The Sender sends C to the Receiver. Anyone may "intercept"

C on its way.

The Receiver decrypts C to get the original message M = f_dec(C).

For this to work as the Sender and Receiver desire:

f_enc and f_dec have to be one-to-one, onto functions and be

inverses of one another, i.e. M = f_dec(f_enc(M)) for all M

It is easy for the Sender to evaluate f_enc

It is easy for the Receiver to evaluate f_dec

It is very hard for anyone other than the Receiver to evaluate

f_dec. The harder it is, the better the secrecy.

Two kinds of cryptography:

Private key (traditional): need one "Key" for both f_enc and f_dec

where K=Key is a shared secret between Sender, Receiver

EX: shift: C = f_enc(M) = M-K mod n, M = f_dec(C) = C+K mod n,

4



easy to break

ASK&WAIT: How?

EX: xor: C = f_enc(M) = M xor K (thinking of M, C, K as bit strings

of the same length)

M = f_dec(C) = C xor K

ASK&WAIT: Why are f_enc and f_dec inverses?

hard to break if K used once

EX: Original Washington/Moscow hotline worked this way

EX: crypt command in UNIX, uses algorithm from German Enigma machine

used in World War II, which was broken by Turing

Secrecy depends on keeping K a secret known only to Sender, Receiver

so only they can evaluate f_enc and f_dec

Disadvantage: if 1000 people want to talk to one another in secret,

need 999*1000 secret keys, so all pairs can talk; too many keys!

Public key: any Sender can do f_enc, but only one Receiver can do f_dec

Advantage: for 1000 people to talk in secret, each person has his/her

own secret f_dec, but can just publish the corresponding f_enc

EX: RSA (Rivest/Shamir/Adleman)

Need: 1) large number n that is product of two large primes p*q=n

large means 200 to 400 decimal digits

2) integer e that is relatively prime to (p-1)*(q-1)

3) integer d = inverse of e mod (p-1)*(q-1)

Everyone knows n and e, but only Receiver knows d

Then for message M, C = f_enc(M) = M^e mod n is the encryted message

For encrypted message C, M = f_dec(C) = C^d mod n is the decrypted

message

EX: Try 2537=n=p*q=43*59, e=13, message = STOP = (ST,OP)=(1819,1415)

using position of letters in alphabet. Then encrypted message

= ( 1819^13 mod 2537 , 1415^13 mod 2537 ) = ( 2081, 2182 ).

To decrypt we use d = 937 and compute

( 2081^937 mod 2537 , 2182^937 mod 2537 ) = (1819,1415)

We will show that f_enc and f_dec are inverses of one another shortly.

But first, why is f_enc() easy and f_dec() hard to evaluate?

f_enc() requires multiplying by M and taking the remainder mod n,

both of which are easy, even if M and n are large.

f_dec() equally easy if we know d, which only the Receiver knows.

Why is it hard to figure out d? All you have to do is

1) factor n=p*q

2) use Euclidean algorithm to compute d so d*e ==1 mod (p-1)*(q-1)
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But 1) is very hard: Best algorithms would take billions of years

if n has 400 digits. And any other known algorithm to compute d

leads to computing p and q too. So quality of encryption depends on

large integers being very hard to factor. If you figure out an

algorithm to factor quickly, you can become rich or famous.

Proof that f_dec() is inverse of f_enc requires

Fermat’s Little Theorem (proof is questions 15-17 in section 2.6):

If p is prime and p /| a, then a^(p-1) == 1 mod p

Proof that f_dec(f_enc(M)) = M, where M < p,q

f_dec(f_enc(M)) = f_dec(M^e mod n) = (M^e)^d mod n = M^(e*d) mod n.

We need to show that M^(e*d) mod n = M mod n = M, since M < p*q = n.

Now e*d == 1 mod (p-1)*(q-1) so e*d = 1+m*(p-1)*(q-1) for some m. Then

M^(e*d) mod n = M^(1 + m*(p-1)*(q-1)) mod n

= M * M^(m*(p-1)*(q-1)) mod n

Now since M < p and M < q, and p and q are prime, we must have

gcd(M,p) = gcd(M,q) = 1. Then Fermat’s Little Theorem implies that

M^(p-1) == 1 mod p and M^(q-1) == 1 mod q.

Thus M^(e*d) = M * (M^(p-1))^(m*(q-1))

== M * (1)^(m*(q-1)) mod p

== M mod p

and M^(e*d) = M * (M^(q-1))^(m*(p-1))

== M * (1)^(m*(p-1)) mod q

== M mod q.

Finally, by the Chinese Remainder Theorem, M^(e*d) is the unique

solution mod p*q to

x == M mod p

x == M mod q

so M^(e*d) mod n = M as desired.

For RSA to be useful, we need to find a lot of large primes.

We will not discuss the algorithm for finding them, but just

discuss the theorem that says there are a lot to be found:

Def: pi(n) = the number of primes <= n

Ex: pi(20) = |{2,3,5,7,11,13,17,19}| = 8

Theorem (Prime Number Theorem): The limit as n -> infinity of

pi(n) / (n/ log_e n) = 1

EX: n pi(n) n/log_e(n) pi(n)/ (n/log_e n)

10^1 4 4.3 .92
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10^2 25 21.7 1.15

10^3 168 144.8 1.16

10^4 1229 1085.7 1.13

10^5 9592 8685.9 1.10

10^6 78498 72382.4 1.08

10^7 664579 620420.7 1.07

10^8 5761455 5428681.0 1.06

The point is that the ratio in the last column is slowly approaching 1

So about what fraction of 200 decimal digit numbers are prime?

# 200 digit primes / # 200 digit numbers

= ( pi(10^200) - pi(10^199) ) / (10^200 - 10^199 )

~ ( 10^200/log_e(10^200) - 10^199/log_e(10^199) ) / (10^200 - 10^199)

~ .002 or about 1 out of 500

So if you pick 500 random 200 digit numbers,

there is a reasonable chance that one is prime
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