Math 55 - Spring 2004 - Lecture notes # 9 - Feb 19 (Thursday)

Finish through end of Section 2.6 (not 2.7) if not yet done
Start reading Sections 3.1 - 3.4

Homework, due Feb 25
(1) Let a = ad4a3a2alal be a 5-bit 2s complement integer;
each ai is 0 or 1. Similarly let b = b4b3b2blb0, and
let s = atb = s4s3s2s1s0 be their sum in
2s complement arithmetic.
Interpreting a O bit as False and a 1 bit as True, write down
logical formulas for s4,s3,s2,s1,s0 using and, or, not, xor,
with the inputs a4,a3,a2,al,al0, b4,b3,b2,bl1,b0.
Hint: introduce new logical variables (bits) c4,c3,c2,cl,c0
where ci is the carry into the i-th bit from the i-1-st bit.
Your logical formulas for si and c(i+1l) in terms of ai, bi
and ci should look the same for all i
(you can let c0 = 0 = False so
that all the formulas look the same).
In particular, your formulas should express the facts that
c(i+1)=1 if the sum ai + bi + ci is at least 2, and
si =1if ai + bi + ci is 1 or 3 (i.e. odd).
Computers implement these formulas in hardware to perform
2s complement addition.
(2) Explain how to use nearly the same logical formulas as above
to compute the difference d = a-b
(3) The purpose of this question is to illustrate that
there are a lot of primes.
(a) Let n and d be integers, and x = n*107d
Use the prime number theorem to evaluate the
limit as d -> infinity of pi(x + 107°d) / pi(x)
where pi(x) is the number of primes less than or equal to x.
(in other words, n is fixed and d is growing)
(b) Use part(a) to show that given any arbitrary string of
decimal digits (representing the integer n),
then for all sufficiently large M, there is always a prime
p such that
1. p has an M-digit decimal expansion, and
2. p’s decimal expansion starts with the given string
(representing n).
2.4-46
2.5-18,36,38,40



2.6-20,24

Goals for today: Recall Euclidean algorithm for the gcd

Use it to solve a '"congruence equation"
a*xx=b mod m for x
how to do division in modular arithmetic
Use it to solve a system of congruence equations:
Chinese Remainder Theorem
Apply it to cyptography

Recall property of Euclidean algorithm for gcd: given a and m,
it computes

1) d = gcd(a,m)

2) integers s and t such that akxs+mkt=d

How to solve a*x == 1 mod m for x:
(analogy of reciprocal of a in modular arithmetic)

Theorem:

a*x ==1 mod m can be solved for x if and only if gcd(a,m)=1.

When it can be solved, x is unique mod m, i.e. the only one in
the range 0 to m-1, and is called "the inverse of a modulo m".
EX: Solve 2xx==1 mod 5: try x=0,1,2,3,4,

getting 2*xx=0,2,4,1,3,

so x=3 is the unique answer (gcd(2,5)=1)
EX: Solve 2xx==1 mod 4: try x=0,1,2,3,

getting 2*x=0,2,0,2,

so there is no solution (gcd(2,4)=2)

Proof:

If gcd(a,m)=1, we have to show that we can solve for x:
Use the Euclidean algorithm to find s and t such that
axs+tm*t=1. Thus a*s = 1-m*t == 1 mod m, so x=s is a solution.

If gcd(a,m) /= 1, we have to show that no x satisfies
axx==1 mod m: Recall that a*x == 1 mod m is equivalent to
a*x mod m = 1 mod m = 1, and that a*x mod m = a*xx+m*t

for some t. But if gcd(a,m)=d>1, then dla and dlm,

so d| (a*x+m*t) for any integer t, and in particular

d| (a*x mod m). Since d does not divide 1, a*x mod m /= 1.

To show that the solution x is unique mod m when it exists,

suppose both that a*xl == 1 mod m and a*x2 == 1 mod m, and
that 1 <= x1 < m and 1 <= x2 < m; we have to show that x1=x2.
Now a*xl-a*x2 == 0 mod m, so m| (a*x(x1-x2)).

Since gcd(a,m)=1, a and m have no common factors,



and thus m|(x1-x2). Now x1-x2 satisfies two properties:
1) m|(x1-x2), so x1-x2 is in the set
{..., =2*m,-m,0,m,2*m, ...}
2) -m < x1-x2 < m, since 1 <= x1 < m and 1 <= x2 < m;
The only value of x1-x2 satisfying these properties is
x1-x2=0, or x1=x2 as desired.

Corollary: a*y == b mod m has a solution y for any b if and only if
gcd(a,m) == 1 (analogy of dividing b/a in modular arithmetic)
proof: if gcd(a,m)=1, then the Theorem says we can solve

a*x == 1 mod m. Multiply through by b to get
ax(x*b) == b mod m, so we can take y = x*b

(b times "inverse of a") If gcd(a,m)>1,

then the Theorem tells us we cannot solve when b=1.

ASK&WAIT: under what conditions on b can we solve a*xy == b mod m for y?

Chinese Remainder Theorem: Let ml, m2,..., mn be pairwise
relatively prime numbers, ie gcd(mi,mj)=1 for all i and j.
Let m = ml*m2*...*mn. Then the n equations
x == al mod ml1 , x == a2 mod m2, ... , X == an mod mn
have a unique solution mod m for any al, a2,...,an, i.e. there is
only one solution in the range from O to m-1.
EX: x == 2 mod 3, x == 3 mod 5

X ==2 mod 3 7 ==3 mod 57
0

1

2 Yes

3 Yes

4

5 Yes

6

7

8 Yes Yes x=8 is unique solution mod 3*5=15
9

10

11 Yes

12

13 Yes

14 Yes

Proof: We give an algorithm for computing x, and leave uniqueness to



homework. Let Mi = m/mi, for i=1,...,n. Thus
Mi = product of all mj except for mi, so gcd(Mi,mi)=1, since
mj and mi have no common factors. By the last theorem, each
Mi has an inverse yi mod mi, i.e. Mi*yi == 1 mod mi.
We claim a solution is x = al*Ml*xyl + a2+M2xy2 + ... + an*Mn*yn.
To confirm this we have to verify that x == ai mod mi for all i:
x == (al*Mlxyl + a2*M2*xy2 + ... + an*Mn*yn) mod mi

== ( al*Ml*yl mod mi + ... + an*Mn*yn mod mi ) mod mi

== ( ai*Mi*yi mod mi

+ sum_{j /= i} aj*Mj*yj ) mod mi

== ai mod mi since Mi*yi == 1 mod mi
+ 0 since mi | Mj when j /= 1
== ai mod mi as desired

EX: x == 2 mod 3, x == 3 mod 5 again:

al=2, ml1=3, a2=3, m2=5, Mi1=5, M2=3,
y1=2 since 2%b==1 mod 3 and y2=2 since 2*3==1 mod 5
X = 2x5*%2 + 3%3%2 = 38 == 8 mod 15

Cryptography

EX:

Recall that a message (character string) is converted to a number M
What happens when a Sender wants to send a secret message to
a Receiver:
The Sender takes message M and encrypts it to get the
encrypted message C = f_enc(M)
The Sender sends C to the Receiver. Anyone may "intercept"
C on its way.
The Receiver decrypts C to get the original message M = f_dec(C).

For this to work as the Sender and Receiver desire:

f_enc and f_dec have to be one-to-one, onto functions and be
inverses of one another, i.e. M = f_dec(f_enc(M)) for all M

It is easy for the Sender to evaluate f_enc

It is easy for the Receiver to evaluate f_dec

It is very hard for anyone other than the Receiver to evaluate
f_dec. The harder it is, the better the secrecy.

Two kinds of cryptography:
Private key (traditional): need one "Key" for both f_enc and f_dec
where K=Key is a shared secret between Sender, Receiver
shift: C=f_enc(M) = M-K mod n, M = f_dec(C) = C+K mod n,



easy to break
ASK&WAIT: How?
EX: xor: C = f_enc(M) = M xor K (thinking of M, C, K as bit strings
of the same length)
M = f_dec(C) = C xor K
ASK&WAIT: Why are f_enc and f_dec inverses?
hard to break if K used once
EX: Original Washington/Moscow hotline worked this way
EX: crypt command in UNIX, uses algorithm from German Enigma machine
used in World War II, which was broken by Turing

Secrecy depends on keeping K a secret known only to Sender, Receiver
so only they can evaluate f_enc and f_dec

Disadvantage: if 1000 people want to talk to one another in secret,
need 999*1000 secret keys, so all pairs can talk; too many keys!

Public key: any Sender can do f_enc, but only one Receiver can do f_dec
Advantage: for 1000 people to talk in secret, each person has his/her
own secret f_dec, but can just publish the corresponding f_enc
EX: RSA (Rivest/Shamir/Adleman)
Need: 1) large number n that is product of two large primes p*qg=n
large means 200 to 400 decimal digits
2) integer e that is relatively prime to (p-1)*(gq-1)
3) integer d = inverse of e mod (p-1)*(g-1)
Everyone knows n and e, but only Receiver knows d
Then for message M, C = f_enc(M) = M"e mod n is the encryted message
For encrypted message C, M = f_dec(C) = C°d mod n is the decrypted
message
EX: Try 2537=n=p*q=43%59, e=13, message = STOP = (ST,0P)=(1819,1415)
using position of letters in alphabet. Then encrypted message
= ( 1819713 mod 2537 , 1415713 mod 2537 ) = ( 2081, 2182 ).
To decrypt we use d = 937 and compute
( 20817937 mod 2537 , 21827937 mod 2537 ) = (1819,1415)

We will show that f_enc and f_dec are inverses of one another shortly.
But first, why is f_enc() easy and f_dec() hard to evaluate?
f_enc() requires multiplying by M and taking the remainder mod n,
both of which are easy, even if M and n are large.
f_dec() equally easy if we know d, which only the Receiver knows.
Why is it hard to figure out d? All you have to do is
1) factor n=pxq
2) use Euclidean algorithm to compute d so d*e ==1 mod (p-1)*(q-1)



But 1) is very hard: Best algorithms would take billions of years
if n has 400 digits. And any other known algorithm to compute d
leads to computing p and q too. So quality of encryption depends on
large integers being very hard to factor. If you figure out an
algorithm to factor quickly, you can become rich or famous.

Proof that f_dec() is inverse of f_enc requires
Fermat’s Little Theorem (proof is questions 15-17 in section 2.6):
If p is prime and p /| a, then a"(p-1) == 1 mod p

Proof that f_dec(f_enc(M)) = M, where M < p,q
f_dec(f_enc(M)) = f_dec(M"e mod n) = (M"e)"d mod n = M~ (exd) mod n.
We need to show that M~ (exd) mod n = M mod n = M, since M < p*q = n.
Now exd == 1 mod (p-1)*(q-1) so e*d = 1+m*(p-1)*(q-1) for some m. Then
M~ (e*xd) mod n = M~ (1 + mx(p-1)*(q-1)) mod n
=M x M~ (m*x(p-1)*(gq-1)) mod n

Now since M < p and M < q, and p and q are prime, we must have
gcd(M,p) = gcd(M,q) = 1. Then Fermat’s Little Theorem implies that
M~ (p-1) == 1 mod p and M~ (g-1) == 1 mod q.
Thus M~ (exd) = M * (M"(p-1)) "~ (m*x(g-1))

== M * (1)~ (m*(g-1)) mod p

== M mod p
and M~ (exd) =M *x (M"(q-1))~ (m*x(p-1))

== M * (1)~ (m*(p-1)) mod q

== M mod q.
Finally, by the Chinese Remainder Theorem, M~ (exd) is the unique
solution mod p*q to

x == M mod p
x == M mod q

so M"(e*xd) mod n = M as desired.

For RSA to be useful, we need to find a lot of large primes.
We will not discuss the algorithm for finding them, but just
discuss the theorem that says there are a lot to be found:

Def: pi(n) = the number of primes <= n

Ex: pi(20) = 1{2,3,5,7,11,13,17,19}| = 8

Theorem (Prime Number Theorem): The limit as n -> infinity of
pi(n) / (n/ log_e n) =1

EX: n pi(n) n/log_e(n) pi(n)/ (n/log_e n)
1071 4 4.3 .92



R

1072 25 21.7 1.15
1073 168 144.8 1.16
1074 1229 1085.7 1.13
1075 9592 8685.9 1.10
1076 78498  72382.4 1.08
1077 664579 620420.7 1.07
1078 5761455 5428681.0 1.06

The point is that the ratio in the last column is slowly approaching 1

So about what fraction of 200 decimal digit numbers are prime?
# 200 digit primes / # 200 digit numbers
( pi(107200) - pi(107199) ) / (107200 - 107199 )
( 107200/1log_e(10°200) - 10°199/log_e(10°199) ) / (107200 - 107199)
.002 or about 1 out of 500
So if you pick 500 random 200 digit numbers,
there is a reasonable chance that one is prime



