Math 55 - Spring 2004- Lecture notes \# 8 - Feb 12 (Thursday)
Recall that there will be midterm Tuesday, Feb 17, covering up to section 2.3, plus definition of $a \bmod b$

Closed book, notes, computer, calculator, ...
To discourage cheating, we will have many versions of midterm

Goal for today: Recall definition of division algorithm, mod Application: Modular arithmetic Application: How computers do integer arithmetic

Theorem (division algorithm) given integers $a, d>0$ (divisor), there is a unique q (quotient) and r (remainder) such that $0<=r<d, a=q * d+r$
DEF if a and $d>0$ are integers as above, then $a \bmod d=r$, remainder after dividing a by d

Application of Division Algorithm: Modular Arithmetic
DEF We say "a is congruent to b mod d " (or "a $==\mathrm{b}$ mod d ") if $\mathrm{d} \mid(\mathrm{a}-\mathrm{b})$
Otherwise we say "a !== b mod d"
EX: 3 == 17 mod 7 because 7 | (17-3)
Thm 1: $\mathrm{a}==\mathrm{b}$ mod d if and only if there is an integer k such that
$\mathrm{a}=\mathrm{b}+\mathrm{k} * \mathrm{~d}$
proof (=>) a == b mod d -> $\mathrm{d} \mid(\mathrm{a}-\mathrm{b})$-> exists k : $\mathrm{a}-\mathrm{b}=\mathrm{k} * \mathrm{~d} \rightarrow \mathrm{a}=\mathrm{b}+\mathrm{k} * \mathrm{~d}$
proof (<=) a=b+k*d -> a-b = k*d -> d|(a-b) -> a == b mod d
EX: $3=17 \bmod 7 \ll 7 \mid(17-3) \quad<=>17=3+2 * 7$
Thm 2: $\mathrm{a}==\mathrm{b}$ mod d if and only if $\mathrm{a} \bmod \mathrm{d}=\mathrm{b} \bmod \mathrm{d}$:
proof (<=) a mod $d=b \bmod d->a=q a * d+r, b=q b * d+r, \quad>$ $(\mathrm{a}-\mathrm{b})=(\mathrm{qa}-\mathrm{qb}) * \mathrm{~d},->\mathrm{d} \mid(\mathrm{a}-\mathrm{b})$-> $\mathrm{a}==\mathrm{b} \bmod \mathrm{d}$
proof (=>) $\mathrm{a}==\mathrm{b} \bmod \mathrm{d}->\mathrm{a}=\mathrm{b}+\mathrm{k} * \mathrm{~d}$ by Thm 1, so when dividing a = qa*d+ra, b=qb*d+rb, with $0<=r a, r b<d$, we get ra-rb $=(a-q a * d)-(b-q b * d)=(a-b)+q b * d-q a * d=(k+q b-q a) * d$ now -d < ra-rb < d and ra-rb is also a multiple of d, so ra-rb=0
EX: $3=17 \bmod 7<=>3 \bmod 7=17 \bmod 7$
ASK\&WAIT: is $111==63 \bmod 3$? is $123==6789 \bmod 2$?
Thm 3: $a==b \bmod d$ and $c==e \bmod d=>a+c==b+e \bmod d$
proof: $\mathrm{a}=\mathrm{qa*d}+\mathrm{r} 1$ and $\mathrm{b}=\mathrm{qb} * \mathrm{~d}+\mathrm{r} 1$ and $\mathrm{c}=\mathrm{qc} * \mathrm{~d}+\mathrm{r} 2$ and $\mathrm{e}=\mathrm{qe} * \mathrm{~d}+\mathrm{r} 2$->

$$
\begin{aligned}
& (a+c)=(q a+q c) * d+r 1+r 2 \text { and } b+e=(q b+q e) * d+r 1+r 2-> \\
& (a+c)-(b+e)=d *(q a+q c-q b-q e)->d \mid(a+c-b-e)->a+c==b+e \bmod d
\end{aligned}
$$

EX: $3==17 \bmod 7$ and $11==4 \bmod 7=>3+11==17+4 \bmod 7(7 \mid(21-14)$, i.e. $7 \mid 7)$ ASK\&WAIT: Is $112+227==31+65 \bmod 3$?
Thm 4: $\mathrm{a}==\mathrm{b} \bmod \mathrm{d}$ and $\mathrm{c}==\mathrm{e} \bmod \mathrm{d}=>\mathrm{a} * \mathrm{c}==\mathrm{b} * \mathrm{e} \bmod \mathrm{d}$
(try to prove this yourself)
EX: $3==17 \bmod 7$ and $11==4 \bmod 7 \Rightarrow 3 * 11==17 * 4 \bmod 7(7 \mid(68-33)$, i.e. $7 \mid 35)$
ASK\&WAIT: Is $112 * 227==31 * 65 \bmod 3$?

DEF: "arithmetic modulo d" or "modular arithmetic with modulus d" means doing integer arithmetic (+,-,*) where any two a,b satisfying $\mathrm{a}==\mathrm{b}$ mod d are considered the same, because we only care what the answer equals mod d
Thm 3 means that if we want to add and subtract numbers mod d, we can take any number or intermediate result and add a multiple of d to it (replace it by its value mod d) without changing the final answer.
Thm 4 says the same thing about multiplication
Ex: $(13+15) *(2+8)$ mod 8 can be computed the following equivalent ways:
(1) $((13+15) *(2+8)) \bmod 8=280 \bmod 8=0 \bmod 8$
(2) $13+15==28 \bmod 8==4 \bmod 8$ and $2+8==10 \bmod 8==2 \bmod 8$ so $((13+15) *(2+8)) \bmod 8==4 * 2 \bmod 8==8 \bmod 8==0 \bmod 8$
ASK\&WAIT: Any other ways?

Here are several useful applications of modular arithmetic:
Thm: Let $x=d(n-1) d(n-2) . . . d(0)$ be an n-digit decimal integer. Then $3 \mid x$ if and only if $3 \mid d(n-1)+d(n-2)+. .+d(0)$, i.e. the sum of x 's decimal digits.
Proof. We want to show that x mod $3=0$ if and only if $d(n-1)+. .+d(0) \bmod 3=0$.
We will show more, namely that $x==d(n-1)+\ldots+d(0) \bmod 3$:
$\mathrm{x}==\operatorname{sum}_{-}\{\mathrm{i}=0$ to $\mathrm{n}-1\} \mathrm{d}(\mathrm{i}) * 10^{\wedge} \mathrm{i}$ mod $3 \ldots$ by def of decimal number
$==\operatorname{sum}_{-}\{i=0$ to $n-1\} d(i) *\left(10^{\wedge} i \bmod 3\right) \bmod 3$
$==\operatorname{sum}_{-}\{i=0$ to $n-1\} d(i) *(10 \bmod 3)^{\wedge} i \bmod 3$
$==\operatorname{sum}_{-}\{i=0$ to $n-1\} d(i) *(1)^{\wedge} i \bmod 3$
$==$ sum_\{i=0 to $n-1\} d(i) \bmod 3$
as desired
Thm: Let $x=d(n-1) d(n-2) \ldots d(0)$ be an n-digit decimal integer.
Then $9 \mid x$ if and only if $9 \mid d(n-1)+d(n-2)+\ldots+d(0)$, i.e. the sum of x 's decimal digits.
Proof: the same as above, substituting 9 for 3 ASK\&WAIT: What about a rule for deciding if 11 | x? ASK\&WAIT: what about a rule for deciding if 7 | x ?

EX: Simplest way to implement "arithmetic modulo 8" means
only use numbers in set $S=\{0,1,2,3,4,5,6,7\}$;
after every operation (like $3 * 4$) take result modulo 8 to get number (4) in S
EX: Take a disk with d=8 equispaced points on circumference, labelled 0 (at top), 1 (to right) and around to $d-1=7$. Take another similar disk with same center. to add a+b, align 0 of second disk with a of first disk, and see where b of second disk hits first disk, namely at a=b mod d ("circular slide rule").
Multiplication can be thought of as repeated addition.

EX: Computer Implementation of arithmetic mod 8:
"Unsigned Integers" in C, C++
represent numbers in base 2 (with 3 binary digits, or bits):
Addition is done as in elementary school: add bits from right to left, where you get a "carry" from one column of bits to the next if the sum in the column is at least 2 (10 in decimal), as indicated below. If there is a carry out of the last column, we ignore it, since there is no place to "carry it to". This discarded carry represents an 8, so the final sum is 8 smaller than the true value, eg $12-8=4$ instead of 12 , which is the answer mod 8.

carries: 000	100	110	000
001_2 = 1	010_2 = 2	101_2 = 5	100_2 = 4
+ 010_2 = 2	+ 011_2 $=3$	+ 111_2 = 7	$+101 _2=5$
011_2 = 3	$101 _2=5$	100_2 = 4	001_2 = 1
		$=12 \mathrm{mod} 8$	$=9 \bmod 8$

EX: 2's complement arithmetic: how computers do integer arithmetic with positive and negative integers.

Suppose computer words had just 3 bits, representing $2 \wedge 3=8$ numbers. (A real computer would use 32 bits, representing $2^{\wedge} 32$ numbers, but it is the same idea.). Then instead of doing modular arithmetic on the set $S=\{0,1,2,3,4,5,6,7\}$, we use the set $S=\{-4,-3,-2,-1,0,1,2,3\}$. I.e. after each operation, we add a multiple of 8 (or $2 \wedge 32$) to the result to get an answer in S.

The way you tell positive from negative numbers among the 8 bit patterns on our 3-bit computer is to look at the leftmost bit, the "sign bit": it is 0 for nonnegative numbers, and 1 for negative.

Rule to interpret bit pattern as 2's complement number:
if leading bit ("sign bit") is 0
the number is positive, with the same value as the unsigned integer else if the sign bit is 1
the number is negative, with the value of unsigned integer minus 8
Here are circular slide rules for unsigned (left) and
2 s complement (right) integer arithmetic:

With 3 bits, numbers range from -2^2 $=100 _2=-4$

With 32 bits, numbers range from $-2^{\wedge} 31=10 \ldots 0 _2=-2147483648$
to $2 \wedge 31-1=011 . .1 _2=2147483647$
Arithmetic is done the same way, whether unsigned or 2's complement:

carries: 000	100	110	000
001_2 = 1	010_2 = 2	101_2 = -3	100_2 = -4
+ 010_2 = 2	+ 011_2 = 3	$+111 _2=-1$	$+101 _2=-3$
011_2 = 3	$\begin{aligned} & 101 _2=-3 \\ & =2+3-8 \end{aligned}$	$100 _2=-4$	$\begin{aligned} & 001 _2=1 \\ & =-7+8 \end{aligned}$

ASK: int a, b, c, d, e, f on 3 bit machine
$\mathrm{a}=3$
b $=\mathrm{a}+1$
... what is b ?
c $=\mathrm{a}+2$
... what is c?
d $=2$
e $=2 *$ d
... what is e?
$f=2 * e \quad .$. what is f ?
ASK: int $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}$ on 32 bit machine (like most)
$\mathrm{a}=\left(2^{\wedge} 30-1\right)+2^{\wedge} 30 \quad \ldots$ what is a ?
$\mathrm{b}=\mathrm{a}+1 \quad \ldots$ what is b ?
$c=a+2 \quad . .$. what is c ?
$d=2 \wedge 30 \quad .$. what is d ?
e $=2 *$ d $\quad .$. what is e?
$f=2 * e \quad .$. what is f ?
Try running above program on your own machine

