
Math 55 - Spring 2004- Lecture notes # 8 - Feb 12 (Thursday)

Recall that there will be midterm Tuesday, Feb 17, covering

up to section 2.3, plus definition of a mod b

Closed book, notes, computer, calculator, ...

To discourage cheating, we will have many versions of midterm

Goal for today: Recall definition of division algorithm, mod

Application: Modular arithmetic

Application: How computers do integer arithmetic

Theorem (division algorithm) given integers a, d>0 (divisor), there is a

unique q (quotient) and r (remainder) such that 0<=r<d, a=q*d+r

DEF if a and d>0 are integers as above, then a mod d = r,

remainder after dividing a by d

Application of Division Algorithm: Modular Arithmetic

DEF We say "a is congruent to b mod d" (or "a == b mod d") if d|(a-b)

Otherwise we say "a !== b mod d"

EX: 3 == 17 mod 7 because 7 | (17-3)

Thm 1: a == b mod d if and only if there is an integer k such that

a = b + k*d

proof (=>) a == b mod d -> d|(a-b) -> exists k: a-b=k*d -> a=b+k*d

proof (<=) a=b+k*d -> a-b = k*d -> d|(a-b) -> a == b mod d

EX: 3 == 17 mod 7 <=> 7 | (17-3) <=> 17=3+2*7

Thm 2: a == b mod d if and only if a mod d = b mod d:

proof (<=) a mod d = b mod d -> a=qa*d+r, b=qb*d+r, ->

(a-b)=(qa-qb)*d, -> d|(a-b) -> a == b mod d

proof (=>) a == b mod d -> a = b + k*d by Thm 1, so when dividing

a = qa*d+ra, b=qb*d+rb, with 0 <= ra,rb < d, we get

ra-rb = (a-qa*d)-(b-qb*d) = (a-b)+qb*d-qa*d = (k+qb-qa)*d

now -d < ra-rb < d and ra-rb is also a multiple of d,

so ra-rb=0

EX: 3 == 17 mod 7 <=> 3 mod 7 = 17 mod 7

ASK&WAIT: is 111 == 63 mod 3? is 123 == 6789 mod 2?

Thm 3: a==b mod d and c==e mod d => a+c == b+e mod d

proof: a = qa*d+r1 and b = qb*d+r1 and c = qc*d+r2 and e = qe*d+r2 ->

(a+c)=(qa+qc)*d+r1+r2 and b+e=(qb+qe)*d+r1+r2 ->

(a+c)-(b+e) = d*(qa+qc-qb-qe) -> d|(a+c-b-e) -> a+c == b+e mod d

1

EX: 3==17 mod 7 and 11==4 mod 7 => 3+11 == 17+4 mod 7 (7|(21-14), i.e. 7|7)

ASK&WAIT: Is 112+227 == 31+65 mod 3?

Thm 4: a==b mod d and c==e mod d => a*c == b*e mod d

(try to prove this yourself)

EX: 3==17 mod 7 and 11==4 mod 7 => 3*11 == 17*4 mod 7 (7|(68-33), i.e. 7|35)

ASK&WAIT: Is 112*227 == 31*65 mod 3?

DEF: "arithmetic modulo d" or "modular arithmetic with modulus d" means

doing integer arithmetic (+,-,*) where any two a,b satisfying

a == b mod d are considered the same, because we only care what

the answer equals mod d

Thm 3 means that if we want to add and subtract numbers mod d, we can

take any number or intermediate result and add a multiple of d to it

(replace it by its value mod d) without changing the final answer.

Thm 4 says the same thing about multiplication

Ex: (13+15)*(2+8) mod 8 can be computed the following equivalent ways:

(1) ((13+15)*(2+8)) mod 8 = 280 mod 8 = 0 mod 8

(2) 13+15==28 mod 8 == 4 mod 8 and 2+8==10 mod 8 ==2 mod 8 so

((13+15)*(2+8)) mod 8 == 4*2 mod 8 == 8 mod 8 == 0 mod 8

ASK&WAIT: Any other ways?

Here are several useful applications of modular arithmetic:

Thm: Let x = d(n-1)d(n-2)...d(0) be an n-digit decimal integer.

Then 3|x if and only if 3 | d(n-1)+d(n-2)+...+d(0), i.e. the

sum of x’s decimal digits.

Proof. We want to show that x mod 3 = 0 if and only if

d(n-1)+...+d(0) mod 3 = 0.

We will show more, namely that x == d(n-1)+...+d(0) mod 3:

x == sum_{i=0 to n-1} d(i)*10^i mod 3 ... by def of decimal number

== sum_{i=0 to n-1} d(i)*(10^i mod 3) mod 3

== sum_{i=0 to n-1} d(i)*(10 mod 3)^i mod 3

== sum_{i=0 to n-1} d(i)*(1)^i mod 3

== sum_{i=0 to n-1} d(i) mod 3

as desired

Thm: Let x = d(n-1)d(n-2)...d(0) be an n-digit decimal integer.

Then 9|x if and only if 9| d(n-1)+d(n-2)+...+d(0), i.e. the

sum of x’s decimal digits.

Proof: the same as above, substituting 9 for 3

ASK&WAIT: What about a rule for deciding if 11 | x?

ASK&WAIT: what about a rule for deciding if 7 | x?

EX: Simplest way to implement "arithmetic modulo 8" means

2

only use numbers in set S={0,1,2,3,4,5,6,7};

after every operation (like 3*4) take result modulo 8 to get

number (4) in S

EX: Take a disk with d=8 equispaced points on circumference, labelled

0 (at top), 1 (to right) and around to d-1 = 7. Take another similar

disk with same center. to add a+b, align 0 of second disk

with a of first disk, and see where b of second disk hits

first disk, namely at a=b mod d ("circular slide rule").

Multiplication can be thought of as repeated addition.

0

1

2

3

4

5

6

7
0

1

2

3

6

5
4

7

110=6

000=0

001=1

010=2

011=3101=5

111=7

100=4

EX: Computer Implementation of arithmetic mod 8:

"Unsigned Integers" in C, C++

represent numbers in base 2 (with 3 binary digits, or bits):

Addition is done as in elementary school: add bits from right

to left, where you get a "carry" from one column of bits to the

next if the sum in the column is at least 2 (10 in decimal), as

indicated below. If there is a carry out of the last column, we

ignore it, since there is no place to "carry it to".

This discarded carry represents an 8, so the final sum is 8 smaller

than the true value, eg 12-8=4 instead of 12, which is the

answer mod 8.

carries: 000 100 110 000

001_2 = 1 010_2 = 2 101_2 = 5 100_2 = 4

+ 010_2 = 2 + 011_2 = 3 + 111_2 = 7 + 101_2 = 5

----------- ----------- ----------- -----------

011_2 = 3 101_2 = 5 100_2 = 4 001_2 = 1

= 12 mod 8 = 9 mod 8

EX: 2’s complement arithmetic: how computers do integer arithmetic

with positive and negative integers.

3

Suppose computer words had just 3 bits, representing 2^3=8 numbers.

(A real computer would use 32 bits, representing 2^32 numbers, but

it is the same idea.). Then instead of doing modular arithmetic on

the set S={0,1,2,3,4,5,6,7}, we use the set S={-4,-3,-2,-1,0,1,2,3}.

I.e. after each operation, we add a multiple of 8 (or 2^32) to the

result to get an answer in S.

The way you tell positive from negative numbers among the 8 bit

patterns on our 3-bit computer is to look at the leftmost bit,

the "sign bit": it is 0 for nonnegative numbers, and 1 for negative.

bit pattern unsigned integer 2’s complement integer

----------- ---------------- ----------------------

000 0 0

001 1 1

010 2 2

011 3 3

100 4 -4 = 4-8

101 5 -3 = 5-8

110 6 -2 = 6-8

111 7 -1 = 7-8

Rule to interpret bit pattern as 2’s complement number:

if leading bit ("sign bit") is 0

the number is positive, with the same value as the unsigned integer

else if the sign bit is 1

the number is negative, with the value of unsigned integer minus 8

Here are circular slide rules for unsigned (left) and

2s complement (right) integer arithmetic:

110=6

000=0

001=1

010=2

011=3101=5

111=7

100=4

110=−2

100=−4

011=3

001=1

000=0

101=−3

010=2

111=−1

With 3 bits, numbers range from -2^2 = 100_2 = -4

4

to 2^2-1 = 011_2 = 3

With 32 bits, numbers range from -2^31 = 10...0_2 = -2147483648

to 2^31 - 1 = 011..1_2 = 2147483647

Arithmetic is done the same way, whether unsigned or 2’s complement:

carries: 000 100 110 000

001_2 = 1 010_2 = 2 101_2 = -3 100_2 = -4

+ 010_2 = 2 + 011_2 = 3 + 111_2 = -1 + 101_2 = -3

----------- ----------- ----------- -----------

011_2 = 3 101_2 = -3 100_2 = -4 001_2 = 1

= 2+3 - 8 = -7 + 8

ASK: int a,b,c,d,e,f on 3 bit machine

a = 3

b = a+1 ... what is b?

c = a+2 ... what is c?

d = 2

e = 2*d ... what is e?

f = 2*e ... what is f?

ASK: int a,b,c,d,e,f on 32 bit machine (like most)

a = (2^30-1) + 2^30 ... what is a?

b = a+1 ... what is b?

c = a+2 ... what is c?

d = 2^30 ... what is d?

e = 2*d ... what is e?

f = 2*e ... what is f?

Try running above program on your own machine

5

