Math 55 - Spring 2004 - Lecture notes \# 6 - Feb 5 (Thursday)

Keep reading Chapter 2:
Goals of chapter 2: Integer algorithms and number theory, basis for:
how to generate hash tables
how to generate random numbers
how computer arithmetic works (hardware or software) how to do encryption/decryption

Goal for today: Basic properties of primes, greatest common divisor $\operatorname{gcd}(a, b)$
division algorithm hash tables
random numbers

Primes
DEF: if a and b are integers, $a \quad!=0$, say $a \mid b$ if a divides $b, i e$. exists integer f such that $b=a * f$; else say $a / / b$
EX: 2|2, 2|100, 1| anything, anything | 0, 2 /| 1001, 3 | 111111, 9 | 72252
(reminder of rules for whether 3|a, 9|b, proofs later)
Thm: $\mathrm{a} \mid \mathrm{b}$ and $\mathrm{a}|\mathrm{c}=>\mathrm{a}|(\mathrm{b}+\mathrm{c})$
Proof: $\mathrm{a} \mid \mathrm{b}$ <=> $\mathrm{b}=\mathrm{a} * \mathrm{f} 1$ for some $\mathrm{f} 1, \mathrm{a} \mid \mathrm{c}$ <=> $\mathrm{c}=\mathrm{a} * \mathrm{f} 2$ for some f2, so $a \mid b$ and $a|c ~->~ b+c=a *(f 1+f 2) ~->~ a| b+c$
Thm: $\mathrm{a}|\mathrm{b}=>\mathrm{a}| \mathrm{b} * \mathrm{c} ; \mathrm{a} \mid \mathrm{b}$ and $\mathrm{b}|c=>\mathrm{a}| \mathrm{c}$ ASK\&WAIT: why?

DEF a positive integer p is a prime if the only positive integers which divide it are 1 and p; else composite
EX: 2,3,5,7,11,13,... are prime
Theorem (Fundamental Theoremm of Arithmetic): every positive integer has a unique prime factorization, where the factors are written in increasing order.
Proof: wait till we learn induction in Chapter 3
EX: $100=2 * 2 * 5 * 5=2 \wedge 2 * 5 \wedge 2 ; 1024=2 \wedge 10$
ASK\&WAIT: how many primes are there? Why?
DEF a,b, integer, not both 0 .
$\operatorname{gcd}(a, b)=$ greatest common divisor of a and b, is largest integer d such that $d|a, d| b$
ASK\&WAIT: why exclude $\mathrm{a}=\mathrm{b}=0$?
ASK\&WAIT: $\operatorname{gcd}(6,9) ?, \operatorname{gcd}(1,101) ?, \operatorname{gcd}(0,234) ?$,
DEF if $\operatorname{gcd}(a, b)=1$, we say a and b are relatively prime.

```
ASK&WAIT suppose a = 2^5 * 3^2 * 5^1
                    b = 2^4 * 3^3 * 5^2
    what is gcd (a,b)?
suppose a = 2^n2 * 3^n3 * 5^n5
    b = 2^m2 * 3^m3 * 5^m5
    what is gcd (a,b) =?
```

First algorithm for computing gcd(a,b):

1) factor $a=2 \wedge n 1 * 3 \wedge n 2 * 5 \wedge n 3 * \ldots$
2) factor $\mathrm{b}=2^{\wedge} \mathrm{m} 1 * 3^{\wedge} \mathrm{m} 2 * 5^{\wedge} \mathrm{m} 3 * \ldots$.
3) let $\operatorname{gcd}=2^{\wedge} \min (\mathrm{m} 1, \mathrm{n} 1) ~ * ~ 3^{\wedge} \min (\mathrm{m} 2, \mathrm{n} 2) ~ * ~ 5^{\wedge} \min (\mathrm{m} 3, \mathrm{n} 3) ~ * ~ . .$.

Later: a (much faster!) algorithm to compute $\operatorname{gcd}(a, b)$, without factoring a and b

DEF a, b, postive integer, $\operatorname{lcm}(\mathrm{a}, \mathrm{b})=$ least common multiple
= smallest positive integer divisible by a and b
ASK\&WAIT EX: $1 \mathrm{~cm}(6,9)$?, $1 \mathrm{~cm}(1,101)$? $1 \mathrm{~cm}(0,234)$?
ASK\&WAIT Suppose a = 2^5 * 3^2 * 5^1
$\mathrm{b}=2^{\wedge} 4 * 3^{\wedge} 3 * 5^{\wedge} 2$ - what is $\operatorname{lcm}(\mathrm{a}, \mathrm{b})$?
Algorithm for computing $\operatorname{lcm}(a, b)$:

1) factor $\mathrm{a}=2^{\wedge} \mathrm{n} 1 * 3^{\wedge} \mathrm{n} 2 * 5^{\wedge} \mathrm{n} 3 * \ldots$
2) factor $\mathrm{b}=2^{\wedge} \mathrm{m} 1 * 3^{\wedge} \mathrm{m} 2 * 5^{\wedge} \mathrm{m} 3 * \ldots$
3) let $\operatorname{gcd}=2^{\wedge} \max (\mathrm{m} 1, \mathrm{n} 1) * 3^{\wedge} \max (\mathrm{m} 2, \mathrm{n} 2) * 5^{\wedge} \max (\mathrm{m} 3, \mathrm{n} 3) * \ldots$

ASK\&WAIT What is $\operatorname{gcd}(\mathrm{a}, \mathrm{b}) * \operatorname{lcm}(\mathrm{a}, \mathrm{b})$?
Theorem (division algorithm) given integers a, $d>0$ (divisor), there is a unique q (quotient) and r (remainder) such that $0<=r<d, a=q * d+r$ ASK\&WAIT: is this an algorithm?

DEF a integer, $d>0$, then a mod $d=r$, remainder after dividing a by d
Note: in C,C++, this is written $a \%$ d
EX: $7 \bmod 3=1$, since $7=1+2 * 3 ; 3 \bmod 7=3$; anything $\bmod 1=0$.
ASK\&WAIT: what is $87813134 \bmod 1000$
ASK\&WAIT: what is $27 \bmod 8=11011 _2 \bmod 2 \wedge 3$

Application of Division Algorithm: Hashing functions.
A "hash table" is a data structure
where you can store data and search for it (usually) very quickly (CS61B)
EX: You want to store records (student ID\#, name, grades) in a data base, and look up records quickly given the student ID\#, an 8-digit integer.

We could have a table of length $10 \wedge 8$,
array Student[100000000]
where Student(i) contains the record with the name, grades of student i and just look at entry i to find data for student i.
But this is too large a table, since it is too large to fit in memory, and since there are many fewer students than $10^{\wedge} 8$. Instead we use a smaller table (say size $10^{\wedge} 5$ for Berkeley, enough to hold all students, and a little more) and do the following:

```
array Student[100000]
a = f(i) ... compute address a in table of record of student i
record = Student[a]
```

Hash function $f(i)$ needs to map 8 digit integers to 5 digit integers, to look up in table of length $10^{\wedge} 5$. It should spread the data out across the table evenly, to use whole table.

Simple function to use: $f(i)=i \bmod 10 \wedge 5$
(generally, $i \bmod m, m=$ length of table)
EX: data for student $i=87654321$ stored at address $a=f(i)=54321$ ASK\&WAIT: what happens if two students i and j have same $a=f(i)=f(j)$?

Application: Random number generation, or how "rand" function works in C,C++
Random number generation means producing a sequence of integers $x(1), x(2), \ldots$ all in the range $[0, N-1]$, where each $x(i)$ is chosen ''at random''. For example, if $N=6$, we could roll a die to get each $x(i):$ each value from 0 to $\mathrm{N}-1$ is equally likely, and each $\mathrm{x}(\mathrm{i})$ is "independent" or unrelated to all other $x(j)$. We want an algorithm to produce such a sequence efficiently.

Uses: 1) game programs (so game different each time)
2) many fast algorithms (quicksort)
3) programs to simulate real world events which occur at random:
simulate data traffic in new network design simulate elevator traffic in new building design simulate bits of fluid in a turbulent air flow between a disk head and a disk surface in a new disk design or over an airplane wing in a new airplane design
4) related idea used for hash functions

We will use a simple algorithm (based on division algorithm)
to generate $x(i+1)$ from $x(i)$, so $x(i)$ is not random in sense of rolling dice (since it is easy to predict $x(i+1)$ from $x(i)$, if you know the formula used in the algorithm, but it will "look random", and be good enough for purposes described above.
ASK\&WAIT: Why not use a really random function to generate $x(i)$, e.g. counting ticks on a Geiger counter, or looking at certain stock exchange data (eg 3rd lowest digit of volume) The formula is $x(n+1)=a * x(n) \bmod n$, This is called a linear congruential method, because the formula involves a linear function $a * x(n)$ and a congruence (or mod) EX: $x(n+1)=3 * x(n) \bmod 7$ yields $132645132645 \ldots$ Thm: Any linear congruential random number generator generates a periodic sequence, i.e. it eventually repeats the same sequence over and over
ASK\&WAIT: Why? How long can the random sequence be before it repeats?
EX: $x(n+1)=4 * x(n) \bmod 7$ yields $142142 \ldots$
So choice of a, n important
(see Knuth, "Art of Computer Programming", vol 2)
EX: Following 3 figures illustrate good and bad random sequences
Comments on first 3 figures (1000 samples in each one)
Top: $n=1000, a=541, x(1)=347$; doesn't even look random
only 49 different values of $x(i)$, so period only 49
Middle: $\mathrm{n}=997$, $\mathrm{a}=541$, $\mathrm{x}(1)=347$; much better, period 997
Bottom: $n=2^{\wedge} 15-1, a=7^{\wedge} 5, x(1)=347$; much better, period 2^15-1
Comments on next 3 figures (3000 samples in each one)
Periodic behavior of top obvious
Periodic behavior of middle less obvious
No periodic behavior of bottom yet

