Keep reading Chapter 2:

Goals of chapter 2: Integer algorithms and number theory, basis for:
how to generate hash tables
how to generate random numbers
how computer arithmetic works (hardware or software)
how to do encryption/decryption

Goal for today: Basic properties of primes,
greatest common divisor gcd(a,b)
division algorithm
hash tables
random numbers

Primes
DEF: if a and b are integers, a != 0, say a|b if a divides b, ie.
exists integer f such that b=a*f; else say a /| b
EX: 2|2, 2|100, 1| anything, anything | 0, 2 /| 1001, 3 | 111111, 9 | 72252
(reminder of rules for whether 3|a, 9|b, proofs later)
Thm: a|b and a|c => a|(b+c)
Proof: a|b <=> b=a*f1 for some f1, a|c <=> c=a*f2 for some f2,
so a|b and a|c -> b+c=a*(f1+f2) -> a|b+c
Thm: a|b => a|b*c; a|b and b|c => a|c
ASK&WAIT: why?
DEF a positive integer p is a prime if the only positive integers which
divide it are 1 and p; else composite
EX: 2,3,5,7,11,13,... are prime
Theorem (Fundamental Theorem of Arithmetic): every positive integer
has a unique prime factorization, where the factors are written in
increasing order.
Proof: wait till we learn induction in Chapter 3
EX: 100 = 2*2*5*5 = 2^2 * 5^2; 1024 = 2^10
ASK&WAIT: how many primes are there? Why?

DEF a,b, integer, not both 0.
gcd(a,b) = greatest common divisor of a and b, is largest integer d
such that d|a, d|b
ASK&WAIT: why exclude a=b=0?
ASK&WAIT: gcd(6,9)?, gcd(1,101)?, gcd(0,234)?,
DEF if gcd(a,b)=1, we say a and b are relatively prime.
ASK&WAIT suppose \(a = 2^5 \cdot 3^2 \cdot 5^1 \)
\(b = 2^4 \cdot 3^3 \cdot 5^2 \)
what is \(\gcd(a, b) \)?

suppose \(a = 2^n2 \cdot 3^n3 \cdot 5^n5 \)
\(b = 2^m2 \cdot 3^m3 \cdot 5^m5 \)
what is \(\gcd(a, b) = \)?

First algorithm for computing \(\gcd(a, b) \):
1) factor \(a = 2^n1 \cdot 3^n2 \cdot 5^n3 \cdot ... \)
2) factor \(b = 2^m1 \cdot 3^m2 \cdot 5^m3 \cdot ... \)
3) let \(\gcd = 2^{\min(m1, n1)} \cdot 3^{\min(m2, n2)} \cdot 5^{\min(m3, n3)} \cdot ... \)

Later: a (much faster!) algorithm to compute \(\gcd(a, b) \),
without factoring \(a \) and \(b \)

DEF \(a, b, \) positive integer, \(\text{lcm}(a,b) = \) least common multiple
= smallest positive integer divisible by \(a \) and \(b \)

ASK&WAIT EX: \(\text{lcm}(6,9)? \), \(\text{lcm}(1,101)? \) \(\text{lcm}(0,234)? \)

ASK&WAIT Suppose \(a = 2^5 \cdot 3^2 \cdot 5^1 \)
\(b = 2^4 \cdot 3^3 \cdot 5^2 \) - what is \(\text{lcm}(a,b)? \)

Algorithm for computing \(\text{lcm}(a,b): \)
1) factor \(a = 2^n1 \cdot 3^n2 \cdot 5^n3 \cdot ... \)
2) factor \(b = 2^m1 \cdot 3^m2 \cdot 5^m3 \cdot ... \)
3) let \(\gcd = 2^{\max(m1, n1)} \cdot 3^{\max(m2, n2)} \cdot 5^{\max(m3, n3)} \cdot ... \)

ASK&WAIT What is \(\gcd(a, b)*\text{lcm}(a,b)? \)

Theorem (division algorithm) given integers \(a, d>0 \) (divisor), there is a
unique \(q \) (quotient) and \(r \) (remainder) such that \(0\leq r < d, \ a=q \cdot d+r \)
ASK&WAT: is this an algorithm?

DEF a integer, \(d>0 \), then \(a \mod d = r \), remainder after dividing \(a \) by \(d \)
Note: in C,C++, this is written \(a \div d \)
EX: 7 mod 3 = 1, since 7=1+2*3; 3 mod 7 = 3; anything mod 1 = 0.
ASK&WAT: what is 87813134 \mod 1000
ASK&WAT: what is 27 mod 8 = 11011_2 \mod 2^3

Application of Division Algorithm: Hashing functions.
A "hash table" is a data structure
where you can store data and search for it (usually) very quickly (CS61B)
EX: You want to store records (student ID#, name, grades) in a data base,
and look up records quickly given the student ID#, an 8-digit integer.
We could have a table of length 10^8,

\[\text{array } \text{Student}[100000000] \]

where \text{Student}(i) contains the record with the name, grades of student i and just look at entry i to find data for student i.

But this is too large a table, since it is too large to fit in memory, and since there are many fewer students than 10^8. Instead we use a smaller table (say size 10^5 for Berkeley, enough to hold all students, and a little more) and do the following:

\[\text{array } \text{Student}[100000] \]

\[a = f(i) \quad \text{... compute address } a \text{ in table of record of student } i \]

\[\text{record} = \text{Student}[a] \]

Hash function $f(i)$ needs to map 8 digit integers to 5 digit integers, to look up in table of length 10^5. It should spread the data out across the table evenly, to use whole table.

Simple function to use: $f(i) = i \mod 10^5$

(generally, $i \mod m$, $m =$ length of table)

EX: data for student $i = 87654321$ stored at address $a=f(i)=54321$

ASK&WAIT: what happens if two students i and j have same $a=f(i)=f(j)$?

Application: Random number generation, or how "rand" function works in C, C++

Random number generation means producing a sequence of integers $x(1), x(2), \ldots$ all in the range $[0, N-1]$, where each $x(i)$ is chosen ‘at random’. For example, if $N=6$, we could roll a die to get each $x(i)$: each value from 0 to $N-1$ is equally likely, and each $x(i)$ is "independent" or unrelated to all other $x(j)$. We want an algorithm to produce such a sequence efficiently.

Uses: 1) game programs (so game different each time)
2) many fast algorithms (quicksort)
3) programs to simulate real world events which occur at random:
 - simulate data traffic in new network design
 - simulate elevator traffic in new building design
 - simulate bits of fluid in a turbulent air flow between a disk head and a disk surface in a new disk design or over an airplane wing in a new airplane design
4) related idea used for hash functions

We will use a simple algorithm (based on division algorithm)
to generate $x(i+1)$ from $x(i)$, so $x(i)$ is not random in sense of rolling dice (since it is easy to predict $x(i+1)$ from $x(i)$, if you know the formula used in the algorithm, but it will "look random", and be good enough for purposes described above.

ASK & WAIT: Why not use a really random function to generate $x(i)$, e.g. counting ticks on a Geiger counter, or looking at certain stock exchange data (e.g. 3rd lowest digit of volume)

The formula is $x(n+1) = a*x(n) \mod n$,

This is called a linear congruential method, because the formula involves a linear function $a*x(n)$ and a congruence (or mod).

EX: $x(n+1) = 3*x(n) \mod 7$ yields $1 \ 3 \ 2 \ 6 \ 4 \ 5 \ 1 \ 3 \ 2 \ 6 \ 4 \ 5 \ldots$

Thm: Any linear congruential random number generator generates a periodic sequence, i.e. it eventually repeats the same sequence over and over.

ASK & WAIT: Why? How long can the random sequence be before it repeats?

EX: $x(n+1) = 4*x(n) \mod 7$ yields $1 \ 4 \ 2 \ 1 \ 4 \ 2 \ldots$

So choice of a, n important

(see Knuth, "Art of Computer Programming", vol 2)

EX: Following 3 figures illustrate good and bad random sequences

Comments on first 3 figures (1000 samples in each one)

Top: $n=1000$, $a=541$, $x(1)=347$; doesn’t even look random

only 49 different values of $x(i)$, so period only 49

Middle: $n=997$, $a=541$, $x(1)=347$; much better, period 997

Bottom: $n=2^{15}-1$, $a=7^5$, $x(1)=347$; much better, period $2^{15}-1$

Comments on next 3 figures (3000 samples in each one)

Periodic behavior of top obvious

Periodic behavior of middle less obvious

No periodic behavior of bottom yet