
Math 55 - Spring 2004 - Lecture notes # 6 - Feb 5 (Thursday)

Keep reading Chapter 2:

Goals of chapter 2: Integer algorithms and number theory, basis for:

how to generate hash tables

how to generate random numbers

how computer arithmetic works (hardware or software)

how to do encryption/decryption

Goal for today: Basic properties of primes,

greatest common divisor gcd(a,b)

division algorithm

hash tables

random numbers

Primes

DEF: if a and b are integers, a != 0, say a|b if a divides b, ie.

exists integer f such that b=a*f; else say a /| b

EX: 2|2, 2|100, 1| anything, anything | 0, 2 /| 1001, 3 | 111111, 9 | 72252

(reminder of rules for whether 3|a, 9|b, proofs later)

Thm: a|b and a|c => a|(b+c)

Proof: a|b <=> b=a*f1 for some f1, a|c <=> c=a*f2 for some f2,

so a|b and a|c -> b+c=a*(f1+f2) -> a|b+c

Thm: a|b => a|b*c; a|b and b|c => a|c

ASK&WAIT: why?

DEF a positive integer p is a prime if the only positive integers which

divide it are 1 and p; else composite

EX: 2,3,5,7,11,13,... are prime

Theorem (Fundamental Theoremm of Arithmetic): every positive integer

has a unique prime factorization, where the factors are written in

increasing order.

Proof: wait till we learn induction in Chapter 3

EX: 100 = 2*2*5*5 = 2^2 * 5^2; 1024 = 2^10

ASK&WAIT: how many primes are there? Why?

DEF a,b, integer, not both 0.

gcd(a,b) = greatest common divisor of a and b, is largest integer d

such that d|a, d|b

ASK&WAIT: why exclude a=b=0?

ASK&WAIT: gcd(6,9)?, gcd(1,101)?, gcd(0,234)?,

DEF if gcd(a,b)=1, we say a and b are relatively prime.

1

ASK&WAIT suppose a = 2^5 * 3^2 * 5^1

b = 2^4 * 3^3 * 5^2

what is gcd(a,b)?

suppose a = 2^n2 * 3^n3 * 5^n5

b = 2^m2 * 3^m3 * 5^m5

what is gcd(a,b) =?

First algorithm for computing gcd(a,b):

1) factor a = 2^n1 * 3^n2 * 5^n3 * ...

2) factor b = 2^m1 * 3^m2 * 5^m3 * ...

3) let gcd = 2^min(m1,n1) * 3^min(m2,n2) * 5^min(m3,n3) * ...

Later: a (much faster!) algorithm to compute gcd(a,b),

without factoring a and b

DEF a,b, postive integer, lcm(a,b) = least common multiple

= smallest positive integer divisible by a and b

ASK&WAIT EX: lcm(6,9)?, lcm(1,101)? lcm(0,234)?

ASK&WAIT Suppose a = 2^5 * 3^2 * 5^1

b = 2^4 * 3^3 * 5^2 - what is lcm(a,b)?

Algorithm for computing lcm(a,b):

1) factor a = 2^n1 * 3^n2 * 5^n3 * ...

2) factor b = 2^m1 * 3^m2 * 5^m3 * ...

3) let gcd = 2^max(m1,n1) * 3^max(m2,n2) * 5^max(m3,n3) * ...

ASK&WAIT What is gcd(a,b)*lcm(a,b)?

Theorem (division algorithm) given integers a, d>0 (divisor), there is a

unique q (quotient) and r (remainder) such that 0<=r<d, a=q*d+r

ASK&WAIT: is this an algorithm?

DEF a integer, d>0, then a mod d = r, remainder after dividing a by d

Note: in C,C++, this is written a%d

EX: 7 mod 3 = 1, since 7=1+2*3; 3 mod 7 = 3; anything mod 1 = 0.

ASK&WAIT: what is 87813134 mod 1000

ASK&WAIT: what is 27 mod 8 = 11011_2 mod 2^3

Application of Division Algorithm: Hashing functions.

A "hash table" is a data structure

where you can store data and search for it (usually) very quickly (CS61B)

EX: You want to store records (student ID#, name, grades) in a data base,

and look up records quickly given the student ID#, an 8-digit integer.

2

We could have a table of length 10^8,

array Student[100000000]

where Student(i) contains the record with the name, grades of student i

and just look at entry i to find data for student i.

But this is too large a table, since it is too large to fit in memory,

and since there are many fewer students than 10^8. Instead we use a

smaller table (say size 10^5 for Berkeley, enough to hold all students,

and a little more) and do the following:

array Student[100000]

a = f(i) ... compute address a in table of record of student i

record = Student[a]

Hash function f(i) needs to map 8 digit integers to 5 digit integers,

to look up in table of length 10^5. It should spread the data

out across the table evenly, to use whole table.

Simple function to use: f(i) = i mod 10^5

(generally, i mod m, m = length of table)

EX: data for student i = 87654321 stored at address a=f(i)=54321

ASK&WAIT: what happens if two students i and j have same a=f(i)=f(j)?

Application: Random number generation, or how "rand" function works in C,C++

Random number generation means producing a sequence of integers

x(1), x(2), ... all in the range [0,N-1], where each x(i) is chosen

‘‘at random’’. For example, if N=6, we could roll a die to get each x(i):

each value from 0 to N-1 is equally likely, and each x(i) is

"independent" or unrelated to all other x(j). We want an algorithm

to produce such a sequence efficiently.

Uses: 1) game programs (so game different each time)

2) many fast algorithms (quicksort)

3) programs to simulate real world events which occur at random:

simulate data traffic in new network design

simulate elevator traffic in new building design

simulate bits of fluid in a turbulent air flow between

a disk head and a disk surface in a new disk design or

over an airplane wing in a new airplane design

4) related idea used for hash functions

We will use a simple algorithm (based on division algorithm)

3

to generate x(i+1) from x(i), so x(i) is not random in sense of

rolling dice (since it is easy to predict x(i+1) from x(i), if you

know the formula used in the algorithm, but it will "look random",

and be good enough for purposes described above.

ASK&WAIT: Why not use a really random function to generate x(i),

e.g. counting ticks on a Geiger counter, or looking at

certain stock exchange data (eg 3rd lowest digit of volume)

The formula is x(n+1) = a*x(n) mod n,

This is called a linear congruential method, because the formula

involves a linear function a*x(n) and a congruence (or mod)

EX: x(n+1) = 3*x(n) mod 7 yields 1 3 2 6 4 5 1 3 2 6 4 5 ...

Thm: Any linear congruential random number generator generates

a periodic sequence, i.e. it eventually repeats the

same sequence over and over

ASK&WAIT: Why? How long can the random sequence be before it repeats?

EX: x(n+1) = 4*x(n) mod 7 yields 1 4 2 1 4 2 ...

So choice of a, n important

(see Knuth, "Art of Computer Programming", vol 2)

EX: Following 3 figures illustrate good and bad random sequences

Comments on first 3 figures (1000 samples in each one)

Top: n=1000, a=541, x(1)=347; doesn’t even look random

only 49 different values of x(i), so period only 49

Middle: n=997, a=541, x(1)=347; much better, period 997

Bottom: n=2^15-1, a=7^5, x(1)=347; much better, period 2^15-1

Comments on next 3 figures (3000 samples in each one)

Periodic behavior of top obvious

Periodic behavior of middle less obvious

No periodic behavior of bottom yet

4

0 100 200 300 400 500 600 700 800 900 1000
0

500

1000
n=1000 a=541 x(1)=347

0 100 200 300 400 500 600 700 800 900 1000
0

200

400

600

800

n=997 a=541 x(1)=347

0 100 200 300 400 500 600 700 800 900 1000
0

1

2
x 10

9 n=2147483647 a=16807 x(1)=347

5

0 500 1000 1500 2000 2500 3000
0

500

1000
n=1000 a=541 x(1)=347

0 500 1000 1500 2000 2500 3000
0

200

400

600

800

n=997 a=541 x(1)=347

0 500 1000 1500 2000 2500 3000
0

1

2
x 10

9 n=2147483647 a=16807 x(1)=347

6

