Math 55 - Spring 04 - Lecture notes \# 2 - Jan 22 (Thursday)

Today's goals: variables and quantifiers ("for all integers $\mathrm{x}, \mathrm{x}+1 \mathrm{>} \mathrm{x}$) Proof techniques

First goal: dealing with variables in propositions
So far, our propositions cannot include variables, like 'x'. So, we can't say "x<1 -> x+1<2"; we'd like to.
We introduce them by having propositional functions $p(x)$. It
becomes true or false once we assign the variable x a value
ASK\&WAIT
$E G: p(x)=$ ' x > 3', $p(2)=? ? \quad, p(4)=? ?$
ASK\&WAIT
EG: $q(x, y)=, x=y-1$, $q(1,2)=$?
ASK\&WAIT
EG: $p(x)=$ ' x is prime ', $p(111201)=$?
EG: $p(x)=$ ' x is student at Berkeley '
ASK\&WAIT EG: If ($x>0$) then $y=x+1$; is this a propositional function?
Note: x must "type check" for these to make sense, i.e.
DEF: The Universe of Discourse is the set of values x is allowed to take in $p(x)$
ASK\&WAIT What are Universes of Discourse for above examples?
DEF: "for all $\mathrm{x} p(\mathrm{x})$ " is a proposition which is true if and only if $p(x)$ is true for all x in the universe of discourse; also called "for each $x, p(x)$ ", "universal quantification of $p(x)$ " some times write "for all x in U. of D., $p(x)$ "

ASK\&WAIT EG: for all integers $n, 2 * n$ is even
ASK\&WAIT EG: for all real numbers $z, z^{\wedge} 2>0$
ASK\&WAIT EG: for all real numbers $z, 0<z<1$-> $z^{\wedge} 2<.5$
ASK\&WAIT EG: for all integers $z, 0<z<1$-> $z^{\wedge} 2<.5$
ASK\&WAIT EG: for all Berkeley L\&S CS students S, S must take discrete math
ASK\&WAIT EG: For all positive integers n, x, y, z, n>2 -> x^n != y^n + z^n (Fermat's Last Theorem)

DEF: "there exists an x such that $p(x)$ " is a proposition which is true if and only if $p(x)$ is true for at least one x in the universe of discourse, "existential quantification"
ASK\&WAIT
EG: there exists an integer $n, 2 * n$ is even
ASK\&WAIT EG: there exists a Berkeley Student S, S works hard
ASK\&WAIT EG: there exists a real number $z, z^{\wedge} 2<0$
ASK\&WAIT EG: there exists a real number $z, z^{\wedge} 2<=0$

ASK\&WAIT EG: there exists a real number $z, z^{\wedge} 2$ <= 1

EG: (Lewis Carroll, author of 'Alice in Wonderland') Universe of Discourse = 'creatures' "All bears are fierce"
"Some bears do not drink Peet's coffee"
"Some fierce creatures do not drink Peet's coffee" Let $B(x)=$ " x is a bear"
Let $F(x)=$ " x is fierce"
Let $P(x)=$ "x drinks Peet's coffee"
Express above using forall, thereexists:
ASK\&WAIT
ASK\&WAIT
ASK\&WAIT
ASK\&WAIT

ASK\&WAIT
ASK\&WAIT
EG: forall real x, thereexists real $y, x=y+1$
EG: thereexists real y, for all real $x, x=y+1$

EG: From calculus: lim(x -> a) f(x) = b really means forall eps>0 therexists delta>0 forall x $0<a b s(x-a)<d e l t a->a b s(f(x)-b)<e p s$

ASK\&WAIT EG: restate not (forall $\mathrm{x} p(\mathrm{x})$) using thereexists:
ASK\&WAIT
EG: restate not (hereexists $x \mathrm{p}(\mathrm{x})$) using forall:

DEF: A variable is bound, if it is either fixed, or in a "for all" or "there exists". Only if all variables in a propositional function are bound is it a proposition. An unbound variable called free
EG: $P(x, y, z)=x=y$ and $y<z$ there exists y for all z $\mathrm{P}(0, \mathrm{y}, \mathrm{z})$
CS: analogy: to evaluate a function, need to know all the arguments

Proof techniques (aka rule of inferences)
[p and $(p \rightarrow q)] \rightarrow q$
Names: modus ponens, law of detachment, "common sense"
EX: p = "3|n", q = "9|n^2", then "p -> q" is clearly true.
So for example, if $n=6$, so that p is true, you can conclude $9 \mid 6^{\wedge} 2$

Other common sense stuff:
$[(p->q)$ and (q $->r)]->(p->r)$
EX: $p=\prime 3\left|n^{\prime}, q=\prime 9\right| n^{\wedge} 2^{\prime}, r=\prime 18 \mid 2 * n^{\wedge} 2^{\prime}$, so $p->q$ and $q->r$
Thus $p->r$, i.e. $3|n \rightarrow 18| 2 * n^{\wedge} 2$
(p and q) $\rightarrow p$
EX: $p=" 3|n ", q=" 2| n ",(p$ and $q)=$ '6|n', so $6|n->3| n$
$p->(p$ or $q)$
EX: $p={ }^{\prime} 3|n ', q=\prime 2| n '$, so $3 \mid n \rightarrow(3 \mid n$ or $2 \mid n)$
[not q and ($p->q$)] \rightarrow not p
Name: modus tollens
Works because (p -> q) <-> (not q -> not p)
EX: Show "if $3 n+2$ is odd then n is odd",
use $p=" n$ is even", $q=" 3 n+2$ is even"; then $p->q$ is clearly true, so $3 n+2$ odd and ($p \rightarrow q$) is the same as not q and ($p \rightarrow q$) whence not p i.e. n is odd
[not p \rightarrow F)] \rightarrow p
Name: proof by contradiction
EX: cuberoot(5) is irrational, i.e. cannot be written as a/b where a and b are nonzero integers without common divisor let $p=$ "cuberoot(5) is irrational" so not $p=$ "cuberoot(5) is rational" -> cuberoot (5) = a/b, where a and b have no common divisor $\rightarrow 5=a^{\wedge} 3 / b^{\wedge} 3$, or $5 b^{\wedge} 3=a^{\wedge} 3$ (use $b!=0$) $\rightarrow 5\left|\mathrm{a}^{\wedge} 3->5\right| \mathrm{a} \rightarrow \mathrm{a}=5 * \mathrm{c} \rightarrow 5 \mathrm{~b}^{\wedge} 3=125 \mathrm{c}^{\wedge} 3$ $\rightarrow b^{\wedge} 3=25 c^{\wedge} 3 \rightarrow 5\left|b^{\wedge} 3 \rightarrow 5\right| b$ -> 5|a and 5|b -> a and b have a common factor and do not have a common factor -> false
so p is true
case analysis
EX: show that $\min (x, y)+\max (x, y)=x+y$
Three possible cases: $x<y, x=y$ and $x>y$
Case 1: $\min (x, y)=x, \max (x, y)=y$, so $\min +\max =x+y$
Case 2: $\min (x, y)=x=y, \max (x, y)=y=x$, so $\min +\max =x+y=2 * x$
Case 3: $\min (x, y)=y, \max (x, y)=x$, so $\min +\max =y+x=x+y$

EX: Are this statement and its proof correct?
Let $a(0), a(1)$, and $a(2)$ be three different points in the plane, and let T be the triangle they form. Let
theta(1) be the clockwise angle between the line segments (a(0), a(1)) and (a(1), a(2))
theta(2) be the clockwise angle between the line segments (a(1), a(2)) and (a(2), a(0))
theta(0) be the clockwise angle between the line segments (a(2), a(0)) and (a(0), a(1))
Then theta(1)+theta(2)+theta(3) = 180 degrees.
Proof: Draw the figure

and use the fact that the sums of the angles in a triangle is 180 degrees.

ASK\&WAIT: Are this statement and its proof correct?

EX: Are this statement and its proof correct?
The number of primes is infinite:
Proof: Suppose that the number of primes is finite; we will get a contradiction. Denote these primes by p1,p2, ... , pn. Let $N=p 1 * p 2 * \ldots * p n+1 . N$ is not divisible by any of p1, p2, ..., pn, because it has a remainder of 1 when you divide by any of them. Therefore N is another prime.

ASK\&WAIT: Are this statement and its proof correct?

Def: "p if and only if q" means "p <-> q is a tautology"
To prove this you have to show that p and q are both true at at the same time, and both false at the same time

EX: Are this statement and its proof correct?
$a * b$ is rational if and only a and b are rational
Proof: Suppose $a=p / q$ and $b=r / s$ are rational, i.e. quotients of integers. Then $a * b=(p * r) /(q * s)$ is rational.

ASK\&WAIT: Are this statement and its proof correct?

Proving "NOT EXIST x such that $P(x)$ " is same as "FORALL x NOT $P(x)$ "
EX: Are following statement and proof correct?
There is no polynomial $p(n)$ with integer coefficients such that $p(n)$ is prime for all integers $n>=0$. In other words, there is no simple (polynomial) formula for generating primes.
Proof: instead show "FORALL polynomials p(n),
there is an $n>=0$ such that $p(n)$ is not prime":
Write $\mathrm{p}(\mathrm{n})=\mathrm{p}_{-}(\mathrm{d}) * \mathrm{n}^{\wedge} \mathrm{d}+\mathrm{p}_{-}(\mathrm{d}-1) * \mathrm{n}^{\wedge}(\mathrm{d}-1)+\ldots+\mathrm{p}_{-}(1) * \mathrm{n}+\mathrm{p}_{-}(0)$
$=r(n)+p_{-}(0)$
If $p_{-}(0)=0$, then $p(0)=0$ is not prime
If $p_{-}(0)=1$ or -1 , then $p(0)=1$ or -1 , so not prime
If $p_{-}(0)$ is composite, so is $p(0)=p_{-}(0)$
If $p_{-}(0)=q$ is prime, then $q \mid r(q)$, so $q \mid p(q)=r(q)+q$

ASK\&WAIT: Are this statement and its proof correct?

