
Math 55 - Spring 04 - Lecture notes # 1 - Jan 20 (Tuesday)

Name, class, URL (www.cs.berkeley.edu/~demmel/ma55) on board

Head TA Mike West speaks on bureaucracy

Advertise CS 70 (T Th 2-3:30) as an "honors" alternative to Ma55

All material on web page and at Copy Central Northside

Read Course Outline on web page for course rules and grading policies

You are responsible for reading this and knowing the rules!

Class outline:

Basics (Chap 1) - common language for rest of course

logic (basis of proofs,

logical operations in programs (CS61)

hardware design (CS150))

sets and functions (same proof of 3 results:

(1) can show that can’t write a program to

implement every possible function,

because there are more functions than programs;

(2) can show it is impossible to to

write a debugger that finds "infinite loops"

in other programs (CS 172))

(3) there are more real numbers than rational numbers

(even though there are infinitely many of both

Used in most of math curriculum

Integer algorithms (Chap 2)

Big-O notation (measure approximately how fast a function f(n)

increases as n increases)

Using Big-O to analyze speed of algorithms (used in CS61, CS170)

Prime numbers, GCD (Greatest common divisors),

"modular arithmetic" (a mod b), Chinese remainder theorem

Applications: generating random numbers

integer with "bignums"

cryptography (eg RSA used in Netscape)

(Ma 113, CS 170)

More proof techniques (Chap 3)

induction (knowing when a theorem, or program, is correct)

(CS 17x, most of math curriculum)

Probability theory and counting (Chaps 4, 5, Lenstra’s notes)

analyzing, designing algorithms (CS 170, CS 162, CS 188...)

1

(sometimes an algorithm that uses "random numbers" is

faster than one that does not)

how many ways to pair up n students into teams of 2 or 3 or ...

how to gamble in Reno

algorithms that use random numbers

EX suppose you build a web search engine

(or web page to sell books or ...)

you buy 100 PCs and put them in a room

when a request comes in, you pick a PC at random, and send it

to that PC

what is the average waiting time to service a request?

Read Chapter 1 of book, homework due Wednesday Jan 28

at the beginning of section

Do problems

sec 1.1: 6, 16(a,c,e,g), 40, 42, 48, 60

1.2: 4a, 8(a,b), 10 (for 8a and 8b), 20, 38 (assume results of 36, 37)

1.3: 8, 14, 26(a,c,e), 56(a,b)

1.4: 4, 8(a,c,e), 28(a,c,e,g,i)

1.5: 6, 8(a,c,e), 22, 52

Begin course:

DEF: Proposition is a statement that must be either

true (T) or false (F)

EG: 2+2 = 4 (Y)

2+2 = 3 (Y)

Is 2+2=4? (N)

Let x = 3. (N)

x+1 = 2 (N, unless we know the value of x)

Every even number > 2 is the sum of two primes. (Y)

Notation: propositions denoted p,q,r ...

DEF: not p , p or q (disjunction), p and q (conjunction),

p xor q (exclusive or)

Truth tables

DEF: a compound proposition is formed by simple propositions

connected by logical operators and parentheses;

EG: (p and q) or (r and s)

programming example below

DEF: p -> q, "if p, then q", "p implies q", "p sufficient for q",

"q necessary for p"; p -> q same as not(p) or q;

EG: if it is sunny, then we go to the beach

2

p = it is sunny, q = we go to the beach

(T unless it is sunny (p) and we don’t go (not q))

Truth table

ASK&WAIT EG: if (today is Friday), then (2+3 = 6);

on which days is this true?

p = (today is Friday), q = (2+3=6)

T every day except Friday

ASK&WAIT EG: if (1+1=3) then (2+2=4)

Note that p and q need not have anything to do with one another

in order to form the expression p -> q

DEF: The converse of p -> q is q -> p; they need not be true

at the same time

ASK&WAIT EG: If I am exactly 18 years old then I am allowed to vote;

converse is

if I am allowed to vote, then I am exactly 18 years old

note that converse not necessarily true if original is

DEF: The contrapositive of p -> q is not q -> not p;

these are the same

ASK&WAIT EG: If I am exactly 18 years old then I am allowed to vote;

converse is

if I am not allowed to vote, then

I am not exactly 18 years old

contrapositive is true

Truth table proof of prop <=> contrapositive

DEF: p <-> q "p if and only q", "p->q and q->p", biconditional

Application to programming (C or C++ syntax)

if (compound proposition, or logical expression) then do something...

if ((n>0) && (m<k)) then do something ...

(n>0) and (m<k) are propositions whose value (T or F)

can be evaluated when you get to this line in the program,

and && means "and", || means "or", etc.

in computer 1 represents true and 0 false (representation details

in CS61C, CS150)

Application to Web search

In www.google.com you can type into the Advanced Search form:

With all the words: guano

and With at least one of the words: geometry tickle

Same as "find all web pages W for which the proposition is true"

3

(W contains guano) and

((W contains geometry) or (W contains tickle))

ASK&WAIT: what web pages do you get?

EX: Geometry Learning center page on disease histoplasmosis,

caused by fungus growing in bat guano,

contains guano and geometry, not tickle

EX: Magazine article about "tickle down economics"

of Christmas toys and a town in Florida

that smells like alligator guano

contains guano and tickle, not geometry

EX: poem in on-line poetry magazine Lynx

contains all 3

Now let’s try google with

With all the words: guano

and With at least one of the words: geometry tickle

and Without the words the

ASK&WAIT: Same as "find all web pages W for which the proposition is true"

(W contains guano) and

((W contains geometry) or (W contains tickle)) and

(not(W contains the))

ASK&WAIT: what web pages do you get?

EX: "G" page of an Esperanto dictionary

contains guano, geometry, not tickle or the

................

Next Goal: simplifying compound propositions or replacing

an expression depending on p, q, r, ... combined with

"and", "or", etc. with another "equivalent" and "simpler"

one that has the same truth/false value for all values of

p, q, r, ... (just like when you learned algebra in high school;

algebra with variables that can only have values True and False

is called "Boolean Algebra")

What is "equivalence"?

DEF: p <-> q means (p -> q) and (q -> p); true if p and q are

both true or both false (show truth table)

DEF: propositions p and q are called logically equivalent if

p <-> q is always true (a tautology); write p <=> q;

EG: p <=> not(not(p))

EG: p or not(p) <=> True (p or not(p) a "tautology")

EG: p and not(p) <=> False (p and not(p) a "contradiction")

4

When is q "simpler" than p? Roughly, if q is a "smaller"

compound expression, with fewer operations like and, or etc

Motivation:

1) Proofs: if the compound prop. p equivalent to True

(p a tautology), then you have proved a theorem

2) In programming, simple expressions (in "if" statements)

are easier to understand and debug, faster to evaluate,

since each "and" or "or" costs an operation

3) In computer design: A computer stores and computes with "bits"

which are either 1 (true) or 0 (false), represented by electrical

signals. The computations are done with little pieces of hardware

that, say, take two input bits and compute their "and" to get an

output bit. Each little piece of hardware corresponds to one of

the operations "and", "or", etc. that we have talked about, and

so computer hardware is just evaluating compound propositions.

A "simpler" compound proposition needs fewer pieces of hardware

to evaluate it, which is smaller, cheaper, faster... See also

CS150, Chap 10, other "CAD" courses in EECS, and whole industries.

Rules we can use to simplify compound propositions:

EG: True or q <=> True (domination)

ASK&WAIT EG: (I am a student at Stanford) or (2+2=4) <=> True

EG: False and q <=> False (domination)

EG: p or q <=> q or p (commutativity)

EG: (p or q) or r <=> p or (q or r) (associativity)

EG: DeMorgan’s laws

not(p or q) <=> (not p) and (not q)

not(p and q) <=> (not p) or (not q)

proof: Truth table

ASK&WAIT EG: Prove that not(p -> q) -> p a tautology, i.e. <=> True

not(p -> q) -> p

not(not(p) or q) -> p Def ->

not(not(not(p) or q)) or p Def ->

(not(p) or q) or p Double negative

not(p) or (q or p) associativity

not(p) or (p or q) commutativity

(not(p) or p) or q associativity

(True) or q not(p) or p <=> True

True true or q <=> true

Like musical instrument: practice

5

Also: Truth Table (Ref: EE290H - logic verification, 150 vars)

EG: p or (q and r) <=> (p or q) and (p or q) distributivity

EG: p and (q or r) <=> (p and q) or (p and q) distributivity

(notice that names of rules -- distributivity etc -- are

same as rules for regular algebra with numbers, since the rules

are analogous)

How does one interpret an expression like not p or q?

as (not p) or q, or as not(p or q), which are quite different

The precedence for operators in absence of parentheses is

Highest to Lowest: not, (and, or), (-> , <->)

If there is ambiguity, I will use parentheses

6

