Welcome to Ma221! (Mar 15)

Perturbation Theory
Can I trust my answer?

Last time: $A = I$ showed eigenvectors very sensitive: takeaway. Close evs \Rightarrow evcs ill conditioned

To describe perturbations in evs:

Def: Epsilon-pseudo-spectrum of A

is set of all evs of all matrices within distance ε of A:

$$\Lambda_\varepsilon (A) = \{ \lambda : (A+E)x = \lambda x \text{ for some } x \neq 0 \} \text{ s.t. } \|E\|_2 \leq \varepsilon$$

Smallest possible $\Lambda_\varepsilon (A)$:

- Each disk around eval of A, radius ε
 - attained by $E = \varepsilon I$
 - attained by $A = A^\dagger$ (Chap 5)

Worst (most sensitive) case

Thus (Trefethen + Reichel)
given any simply connected \(R \subseteq \mathbb{C} \) (no holes)

any \(x \in R \)

any \(\varepsilon > 0 \)

\(\exists A \) s.t. \(\Lambda_\varepsilon(A) \) fills out \(R \)

proof: Ma 185 (Riemann Mapping Thm)

Ex: Perturb \(n \times n \) Jordan Block, \(\lambda = 0 \)

with \(J(n,1) = \varepsilon \begin{bmatrix} 0 & 1 \\ \varepsilon & 0 \end{bmatrix} \)

\(\rho(A) = \lambda^2 - \varepsilon \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \)

\(\Rightarrow \lambda = \sqrt{\varepsilon} \) uniformly spaced on circle of radius \(\sqrt{\varepsilon} \)

\(\varepsilon = 10^{-16} \), \(n = 16 \)

\(\sqrt{\varepsilon} = 0.1 \)

(1) evals are continuous but not necessarily differentiable

(slope of \(\sqrt{\varepsilon} = \infty \) at \(\varepsilon = 0 \))

(2) expect sensitive evals when evals nearly multiple
Condition number of simple (nonmultiple) evals (else ∞)

Thm: λ be simple eval of A

$Ax = \lambda x$, $y^*Ax = \lambda y^*x$, $\|x\|_2 = \|y^*x\|_2 = 1$

If we perturb A to $A + E$

λ perturbed to $\lambda + \delta \lambda$

$\delta \lambda = \frac{y^*Ex}{y^*x} + O(\|E\|_2)$

$|\delta \lambda| \leq \frac{\|E\|_2}{\|y^*x\|} + O(\|E\|_2)$

$= \sec(\Theta) \cdot \|E\|_2 + O(\|E\|_2)$

$\Theta = \text{angle between } x \text{ and } y$

$\sec(\Theta) = \text{condition number}$

proof: $(A + E)(x + \delta x) = (\lambda + \delta \lambda)(x + \delta x)$

$Ax + A \delta x + Ex + E \delta x = \lambda x + \lambda \delta x + \delta \lambda x + \delta \lambda \delta x$

cancel Ax second order, drop $\delta \lambda \delta x$

$y^*(A \delta x + Ex = \lambda \delta x + \delta \lambda x)$

$y^*A \delta x + y^*Ex = y^* \lambda \delta x + y^* \delta \lambda x$

cancel

$\frac{y^*Ex}{y^*x} = \delta \lambda$
Special Case 1: \(A = A^H \) or "normal"
\[AA^H = A^H A \] (HWQ 4.2)
\[\implies \text{A has orthonormal evecs} \]

Cor: If A normal, perturbing A to \(A + \delta \)
\[1/|\delta| \leq 1/\|E\|_2 + O(\|E\|_2^2) \]
\[\text{i.e. condition } \# = 1 \]

Proof: \(A = Q \Lambda Q^T \)
\[AQ = Q \Lambda \text{ and } Q^T A = \Lambda Q^T \]
right evecs = cols of \(Q \)
left evecs = rows of \(Q^T = \text{cols of } Q \)
\[\implies x = y \implies y^H x = 1 \]

Later (Chap 5) if \(A = A^H \) and \(E = E^H \)
then \[1/|\delta| \leq 1/\|E\|_2 \] (no \(1/\|E\|_2^2 \) term)

Special Case 2: \(A = \text{Jordan Block} \)
\[A = \begin{bmatrix} 0 & 1 \\ \vdots & \ddots & \ddots \\ 0 & \cdots & 0 & 1 \\ 0 & \cdots & 0 & 0 & 1 \end{bmatrix} \]
\[x = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \]
\[y = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} \]
\[y^H x = 0 \implies \text{cond } \# = \infty \]

Extend to eliminate \(O(\|E\|_2^2) \) term
Thm (Bauer–Fike) if A has all simple evals, λ_i, with right and left evcs x_i and y_i, $\|x_i\|_2 = \|y_i\|_2 = 1$
Then for any E, the evals of $A + E$
lie in disks in \mathbb{C}, centered at λ_i
with radii $\frac{\|E\|_2}{\|y_i^* x_i\|}$

if k disks overlap, k evals lie in their union (proof in book)

Algorithms for Non-Symmetric Eigenproblem

Ultimate Algorithm:
Hessenberg QR (HQR)
Takes any $n \times n$ nonsymmetric dense A
computes Schur form $A = Q^* T Q$
in $O(n^3)$ flops
Build up to it via sequence of simpler algs, also used in practice to find just a few evals/evects of large (sparse) matrices; HQR also used for large sparse matrices (Chapter 7): “approximate” large sparse matrix by small dense matrix, use HQR on small dense matrix

Plan:

Power Method: Just repeated multiplication of x by A, converges to evect for eval of largest magnitude

Inverse Iteration: Apply power method to \(B = (A - \sigma I)^{-1} \) which has same evects as A, largest eval of B corresponds to eval of A closest to \(\sigma \). By choosing \(\sigma \) carefully, can converge to any eval/evect pair.
Orthogonal Iteration: Extends power method from one eigenvector to whole invariant subspace.

QR Iteration: Combine Orthogonal Iteration and Inverse Iteration.

Other techniques:
- to get down to $O(n^3)$
- Real Schur Form
- Minimize communication (discuss some later)

Power Method:
- $i = 0, \text{ given } \mathbf{x}_0$
- repeat
 - $y_{i+1} = A \mathbf{x}_i$
 - $\mathbf{x}_{i+1} = y_{i+1} / \| y_{i+1} \|_2$... approx. eigenvector
 - $\lambda_{i+1} = \mathbf{x}_{i+1}^T A \mathbf{x}_{i+1}$... approx. eigenvalue
- $i = i + 1$
- until convergence.
Convergence:

\[A = \text{diag} \left(d_1, d_2, \ldots, d_n \right) \]
where \(|d_1| > |d_2| \geq \ldots \geq |d_n| \)

\[x_i = A^i x_0 / \| A^i x_0 \|_2 \]
\[= \left[\lambda_1^i x_0(1), \lambda_2^i x_0(2), \ldots \right]^T / \| \cdot \|_2 \]
\[= \lambda_1^i \left[x_0(1), \left(\frac{d_2}{d_1} \right)^i x_0(2), \ldots \right]^T / \| \cdot \|_2 \]
\[\rightarrow \lambda_1 \]

as \(i \) grows, converges to

\[\lambda_1 \left[x_0(1), 0, \ldots, 0 \right]^T / \| \cdot \|_2 \]
\[= \text{evec of } \lambda_1 \]

cconvergence is \(\left| \frac{d_2}{d_1} \right|^i \)

Suppose \(A \) diagonalizable \(A = S \Lambda S^{-1} \)

\[A^i = S \Lambda^i S^{-1} = S \text{diag} \left(\lambda_1^i, \ldots, \lambda_n^i \right) S^{-1} \]

\[A^i x_0 = S \Lambda^i S^{-1} x_0 \]
\[= S \Lambda^i z \]
\[= S \left[\lambda_1^i z_1, \lambda_2^i z_2, \ldots \right]^T \]
\[= \lambda_1^i S \left[z_1, \left(\frac{d_2}{d_1} \right)^i z_2, \ldots \right]^T \]
\[\rightarrow \lambda_1 \left[z_1, 0, \ldots, 0 \right]^T \]
\[= \lambda_1^i z_1 \text{ } S(:, 1) \Rightarrow \text{evec of } \lambda_1 \]
To converge at good rate, need
(1) \(\left| \frac{d\lambda}{d\xi} \right| < 1 \), smaller the better
can't count on this
e.g. \(A \) orthogonal \(\Rightarrow \lambda_i \left| \xi_i \right| = 1 \)

(2) \(\xi_i \) nonzero, or if pick \(\xi_0 \) randomly, \(\text{prob}(\xi_i \text{ small}) \) is small

Inverse Iteration: fix case \(1 \leq |\xi| \leq 1 \)

Power method on \(B = (A - \sigma I)^{-1} \)
called "shift"

\(i = 0 \), \(x_0 \) given

Repeat
\(y_{i+1} = (A - \sigma I)^{-1} x_i \)
\(\xi_{i+1} = y_{i+1} / \| y_{i+1} \|_2 \)
\(\lambda_{i+1} = \xi_{i+1}^T A \xi_{i+1} \)
\(\tilde{\xi} = \xi_{i+1} \)

until convergence

Evecs of \(B \) same as for \(A \)
Evrs of \(B \) are \(1/(\tilde{\xi}_i - \sigma) \)
Suppose \(\sigma \) closest to \(\tilde{\xi} \)

Same analysis as above says
\[
\begin{bmatrix}
\frac{(\lambda_k - \sigma)}{(\lambda_i - \sigma)} & \frac{z_i}{\epsilon_k} \\
\frac{(\lambda_k - \sigma)}{(\lambda_i - \sigma)} & \frac{z_i}{\epsilon_i} \\
\vdots & \vdots \\
\frac{(\lambda_k - \sigma)}{(\lambda_i - \sigma)} & \frac{z_i}{\epsilon_k}
\end{bmatrix}^{k_{th}} \text{ component}
\]

If \(\sigma \) closer to \(\lambda_k \) than any other \(\lambda_i \) all factors will be \(< 1 \), can converge very fast.

Where do we put \(\sigma \)? Use it!

Convergence quadratic, even cubic if \(A = A^T \)

Next algorithm: converge to invariant subspace

Orthogonal iteration

Given \(Z_0 \), n x p orthogonal matrix

\(i = 0 \)

Repeat

\(Y_{i+1} = AZ_i \) \(\text{orthog tri factor} \)

\(Y_{i+1} = Z_{i+1} \cdot R_{i+1} \ldots QR \)

\(Z_{i+1} \) spans approximate
Invariant subspace

\[\mathcal{v} = \mathcal{v} + 1 \]

until convergence

\[p = 1 : \text{same as power method} \]

Informal Analysis:

\[A = S \Lambda S^{-1} \text{ diagonalizable} \]

\[1 \lambda_1 \geq 1 \lambda_2 \geq \ldots \geq 1 \lambda_p > 1 \lambda_{p+1} \geq \ldots \geq 1 \lambda_n \]

\[\text{need gap for convergence} \]

\[\text{span}(Z \mathcal{v} + 1) = \text{span}(\mathcal{v} + 1) = \text{span}(AZ) \]

\[= \text{span}(A^2 Z) \text{ by induction} \]

\[= \text{span}(S \Lambda \mathcal{v} S^{-1} Z) \]

\[A^i Z_0 = S \Lambda^i S^{-1} Z_0 \]

\[= S \Lambda^i \text{diag}(\frac{d_1}{\lambda_p}, \ldots, \frac{d_p}{\lambda_p}, 1, \frac{d_{p+1}}{\lambda_p}, \ldots) S^{-1} Z_0 \]

\[= S \Lambda^i \left[\begin{array}{c} \mathcal{v} \\ W_i \end{array} \right] n-p \]

\[\mathcal{v} \text{ multiplied by } \left(\frac{d_k}{\lambda_p} \right)^i, \left(\frac{\lambda_k}{\lambda_p} \right)^i \geq 1 \]

\[\text{getting bigger} \]

\[W_i \text{ multiplied by } \left(\frac{d_k}{\lambda_p} \right)^i, \left(\frac{n_k d_k}{\lambda_p} \right) \leq 1 \]

\[\text{getting smaller} \]

i.e. \[W_i \rightarrow 0 \]
Vi grows, stays full rank
\[A^t Z_0 \rightarrow A^t \begin{bmatrix} V_1 & \cdots & V_p \end{bmatrix} = \text{linear comb. of leading } p \text{ cols of } S \]

= invariant subspace spanned by first k evec

First col of \(Z_i \) same as power method
First s cols of \(Z_i \) same as running with \(p = s \)

Algorithm computing "top p" invariant subspaces at same time

\(\Rightarrow \) Orthog. Iter. gives first \(p \) invariant subspaces, assuming \(|1| > |1_2| > \cdots \)

\(\Rightarrow \) Why not let \(p = n \), \(Z_0 = I \)
compute \(n \) invariant subspaces.

(obstacle: real matrices with complex evals have \(|1| = |1_2| \))

Thm: Run Orthog iter. on \(A \) with
\(Z_0 = I \), \(|1| > |1_2| > \cdots \)
and all submatrices \(S(1:k, 1:k) \) have full rank
Then $A_i = Z_i^T A Z_i$ (similar to A with Z_i orthogonal) converges to Schur form $A \rightarrow upper\; triangular\; forms\; on\; diag$.

Proof: For each k, span of first k columns of Z_i converge to invariant subspace spanned by first k eigenvalues of A.

$Z_i = \begin{bmatrix} Z_{i1}^T, Z_{i2}^T \end{bmatrix}$

$Z_i^T A Z_i = \begin{bmatrix} Z_{i1}^T \ A \ Z_{i1}^T & Z_{i1}^T \ A \ Z_{i2}^T \\ Z_{i2}^T \ A \ Z_{i1} & Z_{i2}^T \ A \ Z_{i2} \end{bmatrix}$

$= \begin{bmatrix} \ Z_{i1}^T \ A \ Z_{i1} & Z_{i1}^T \ A \ Z_{i2} \\ Z_{i2}^T \ A \ Z_{i1} & Z_{i2}^T \ A \ Z_{i2} \end{bmatrix}$

$Z_{i1} \rightarrow invariant\; subspace$

$A Z_{i1} \rightarrow Z_{i1} B^{k \times k}$
$Z_i^h A Z_i^h \rightarrow Z_i^h Z_i^h B$

$\rightarrow 0$ by orthog of Z_i

(see typed notes for code for Matlab demo of convergence)