Welcome to Ma221! (Mar 8)

Approximate $x \in \mathbb{R}^n$ by $F x \sim_{k \times m} \|F x\| \approx \|x\|

Last time: used JL Lemma: F was a scaled random orthogonal matrix.

What other choices of F are there? (See courses for RandLAPACK design document)

To construct random orthogonal Q

$A \sim_{k \times k} \text{each entry i.i.d. } N(0,1)$

$A = QR$ \quad Q random orthogonal

$F = \sqrt{\frac{m}{k}} Q$

expensive: QR costs $O(mk^2)$

Some applications ok where each $F(i,j)$ is i.i.d. $N(0,1)$

delay QR until later in algorithm

but $F x$ costs $m \cdot k$ when x dense, still too much in some cases
Sub sampled randomized trig transform (SRTT)

\[\text{trig} = \text{FFT} \]

\[F_x \text{ will cost } O(m \log m) \text{ or even } O(m \log k) \]

\[F = R \cdot \text{FFT} \cdot D \quad \text{so} \quad F_x = R(\text{FFT}(Dx)) \]

\[D = \text{mxm diagonal matrix} \]

where \(D(i,j) \) uniformly distributed on unit circle in \(\mathbb{C} \)

\[\text{FFT} = \text{Fast Fourier Transform} \]

\[R_{k \times m} \text{, a random subsample of} \]

\[k \text{ rows of } m \times m \text{ I} \]

Real Case SRTT =

Sub sampled randomized Hadamard transform

\[\text{FFT replaced by } H = \text{Hadamard Transform} \]

\[H_2 = \begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}, \quad H_4 = \begin{bmatrix} H_2 & H_2 \\ H_2 & -H_2 \end{bmatrix} \]

\[H_{2^n} = \begin{bmatrix} H_{2^{n-1}} & H_{2^{n-1}} \\ H_{2^{n-1}} & -H_{2^{n-1}} \end{bmatrix} \]

Intuition for why \(\|F_x\| \approx \|x\| \):

FFT, or \(H \), "mixes" entries of \(x \)

so sampling \(k \) of them (multiplying by \(R \))

good enough
When \(x \) is sparse, want it faster

Goal: cost of \(Fx = O(n \text{nnz}(x)) \)

\[F = SD \quad Fx = S(Dx) \]

\(D \) m×m diagonal \(D_{ii} = \pm 1 \)

\(S \) is \(k \times m \), each column is a randomly selected column of \(I_k \)

\[y = S \cdot Dx \]

for each nonzero \(x_i \): pick random \(y_i \)

\(y_{ij} = y_i \pm x_i \)

Called Randomized Sparse Embedding

\(F \) not as statistically “strong” as previous \(F \)’s, so need larger \(k \)

Apply these choices of \(F \) to LS

“sketch and solve”: project onto smaller problem, done

“sketch and iterate”: use randomization to build a “preconditioner”, iterate (Chapter 6)
$$x_{\text{true}} = \arg \min_x \|Ax-b\|_2$$

$$x_{\text{approx}} = \arg \min_x \|F(Ax-b)\|_2$$

Use JL for $F^{\text{random orthogonal}}$
choose $k = n \log n / \epsilon^2$ rows
in order to get
$$\|Ax_{\text{approx}} - b\|_2 \leq (1+\epsilon) \|Ax_{\text{true}} - b\|_2$$

No bound on $\|x_{\text{approx}} - x_{\text{true}}\|_2$

Cost: if F dense, computing FA
using dense matmul cost $O(k \cdot \text{min})$

$$= O(m \cdot n^2 \log n / \epsilon^2)$$
biggger than doing $A = \mathcal{O}(\sqrt{m})$

Use Cheaper F':
SRTT (SRFFT or SRHT)
with dense A

FA costs $O(n \cdot m \log n)$

FA has size kn so solving
smaller LS problem $\arg \min_x \|FAx-Fb\|_2$
costs $O(kn^2) = O(n^3 \log n / \epsilon^2)$

\Rightarrow Total cost = $O(m \cdot n \log n + n^3 \log n / \epsilon^2)$
potentially much cheaper than QR, $O(mn^2)$ when $m \gg n$

May be ok if ε not too small

(if ε small, need to "sketch and iterate"; see Chap 6)

Sparse LS: goal: cost $O(nnz(A))$

+ "lower order terms"

see papers by Clarkson + Woodruff
Meng + Mahoney

$F =$ Randomized Sparse Embedding

$k = O\left(\frac{n^2}{\varepsilon^2} \cdot \log^6 \left(\frac{n}{\varepsilon}\right)\right)$

Forming FA and Fb costs $nnz(A)$ and $nnz(b)$

Since $k = \Omega(n^2)$ much larger than $SRTT$ for which $k = O(n)$

If we solved $\arg\min_k \| (FA)x - Fb \|_2$ using dense QR would cost

$O(kn^2) = O(n^4 \cdot \log^6 (\frac{n}{\varepsilon}) / \varepsilon^2)$

much larger than $SRTT$
To trick: use randomization again to solve new LS problem.
(Use SRTT)

Thm: With probability $\geq \frac{2}{3}$

$$\| Ax_{\text{approx}} - b \|_2 \leq (1 + \epsilon) \| A x_{\text{true}} - b \|_2$$

To make probability of success larger, run s times, pick result with smallest residual.

Probability of success $= 1 - \frac{1}{3^s}$

Randomized Low Rank Factorizations

A^{mn}, assume target rank $k < n$.
Usually don't know k accurately, so in practice pick $k + p$, p extra columns in F, oversampling for "safety"

Given A^{mn}, choose F, tall + skinny
form $A \cdot F$ to get randomized linear combinations of columns of A
I.e. sample column space of A
1) choose random $n \times (k+p)$ F
2) form $Y = A \cdot F$, $m \times (k+p)$
 expect Y to accurately span column space of A
3) factor $Y = QR$, Q also spans column space of A accurately
4) $B = QT A$ $(k+p) \times n$

Answer: approximate A by $Q \cdot B = QQ^T A$

$QQ^T =$ orthogonal projection onto space approximating column space of A

If we compute SVD $B = U \Sigma V^T$
then $QB = (QU) \Sigma V^T$
= approximate SVD of A

Best possible Q: first $k+p$ left singular vectors of $A = U_A \Sigma_A V_A^T$

$QQ^T A = U (1:m, 1:k+p) \Sigma (1:k+p, 1:k+p)^T$

$\cdot (V (1:n, 1:k+p))$

= $k+p$ truncated SVD of A

$\| A - QQ^T A \|_2 = \sigma_{k+p+1}$

Our goal is just to get error proportional to σ_{k+1}
Thm: If each $F(i,j)$ is i.i.d. $N(0,1)$
then $E\left\|A-QQ^TA\right\|_2^2$
$$\leq \left(1 + \frac{4}{\sqrt{p}} \frac{\sqrt{k_p}}{\min(m,n)} \right) \sigma_{k+1}$$

$$\text{Prob} \left(\left\|A-QQ^TA\right\|_2^2 \leq \left(1 + \frac{11}{\sqrt{p}} \frac{\sqrt{k_p}}{\min(m,n)} \right) \sigma_{k+1} \right) \geq 1 - \frac{6}{p}$$

$p=6 \Rightarrow \text{prob} \approx 0.9999$

When is Randomized Low Rank Approximation cheaper than QRPCP, which costs $O(m\cdot n\cdot (k+p))^2$?

If A sparse, last 3 steps of algorithm cost:

(2) $Y = A - F$ costs $2\text{nnz}(A) \cdot (k+p)$
(3) $Y = QR$ costs $2m(k+p)^2$
(4) $B = Q^TA$ costs $2\text{nnz}(A) \cdot (k+p)$

each of which can be much smaller than cost of QRPCP $= O(m\cdot n \cdot (k+p))$

Whether cost of (3) dominates
(2) and (4) depends on how dense A is: if A has at least $k + p$ nonzeros per row, (2) and (4) dominate (3).

(Chap 7 has more approximate algs for SVD, can combine with randomization to accelerate)

This was all for sparse case — what about dense A?

If we use explicit dense F

$\text{cost } (A \cdot F) = 2(m \cdot n(k + p))$, comparable to QRCP

If we use SRTT for F

$\text{cost } (A \cdot F)$ drops to $O(m \cdot n \cdot \log m)$, much faster than QRCP

Factoring $F = QR$ still costs $O(m(k + p)^2)$, potentially much less than QRCP

But $B = Q^T A$ still costs $O(m \cdot n \cdot (k + p))$ comparable to QRCP.

Need another idea.
Randomized Low-Rank Factorization via Row Extraction:

1. Choose random $n \times (k+p)$ F.
2. $Y = A \cdot F$, $m \times (k+p)$.
3. $Y = QR$.
4. Find "most linearly independent" $k+p$ rows of Q:
 \[Q \equiv \begin{bmatrix} Q_1 \vDash_{k+p} \cr Q_2 \vDash_{m-(k+p)} \end{bmatrix} \]
 Write $PQ = \begin{bmatrix} Q_1 \vDash_{k+p} \cr Q_2 \vDash_{m-(k+p)} \end{bmatrix}$.

 P permutation, can use GEPP, or TSLU on Q or QRCP on Q^T.

5. $X = PQ \cdot Q_i^T = \begin{bmatrix} Q_1 \vDash_{k+p} \cr Q_2 \vDash_{m-(k+p)} \end{bmatrix}$.

 We expect $\|X\| \approx O(1)$.

 (true if QRCP provides a strong rank revealing factorization).

6. $PA = \begin{bmatrix} A_1 \vDash_{k+p} \\ A_2 \vDash_{m-(k+p)} \end{bmatrix}$ result is
 \[A \approx P^TX \cdot A_1 \]
 \[\boxed{\cdot} \]
Cost one dense A

(2) $O(m \cdot n \cdot \log n)$ or $O(m \cdot n \cdot \log (k + p))$
if use SRTS or SRHT

(3) For $Y = QR : 2m (k + p)^2$

(4) G-EPP on Q or QRCP on $Q^T :$

$$2m (k + p)^2$$

(5) $Q_2 \cdot Q_1^{-1} : O(m (k + p)^4)$

much better than previous

$O(m \cdot n \cdot (k + p))$ when $k + p \ll n$

If QRCP or G-EPP works well in (5)

i.e. $\|x\| = O(1)$, then approximations nearly as good as $QQ^T A$

Thm: $\| A - P^T x \cdot A \|_2 \leq (1 + \|x\|_2) \| A - QQ^T A \|_2$

proof: assume $P = I$

$$\| A - x \cdot A \|_2 = \| A - QQ^T A + QQ^T A - x \cdot A \|_2$$

$$\leq \| A - QQ^T A \|_2 + \| QQ^T A - x \cdot A \|_2$$

$$= \| A - QQ^T A \|_2 + \| x \cdot Q \cdot Q^T A - x \cdot A \|_2$$

$$\leq \| A - QQ^T A \|_2 + \| x \|_2 \cdot \| Q \cdot Q^T A - A \|_2$$

$$\leq \| A - QQ^T A \|_2 + (\| x \|_2 \cdot \| Q \cdot Q^T A - [A_2 \cdot A_1] \|_2$$
\[\| A - QQ^T A \|^2_2 \leq \| 1 \times \|^2_2 \| QQ^T A - A \|^2_2 \\
= (1 + \| 1 \times \|^2_2) \| (A - QQ^T A) \|^2_2 \]