or
$$B(S_{\sigma}) = \lambda(S_{\chi})$$

 $y^{\mu}A = \lambda y^{\mu}$ iff $y^{\mu}S^{-1}SAS^{-1} = \lambda y^{\mu}S^{-1}$
or $(y^{\mu}S^{-1})B = \lambda (y^{\mu}S^{-1})$

Ma221 Lecture 9 Segment 2 Backward Stable approach to competing e-vals and e-vecs

$$\begin{array}{l} \left(\begin{array}{c} \text{omp using e-vecs of } T: just \\ \text{triangular solve:} \\ \begin{array}{c} \text{index } \\ \text{triangular } \\ \begin{array}{c} \text{solve:} \\ \begin{array}{c} \text{index } \\ \text{triangular } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \text{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \text{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \text{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \text{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \text{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \text{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \text{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \text{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \text{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \text{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \mbox{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \mbox{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \mbox{Times } \\ \mbox{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \begin{array}{c} \text{Times } \\ \mbox{Times } \\ \mbox{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \mbox{Times } \\ \mbox{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \mbox{Times } \\ \mbox{Times } \\ \mbox{Times } \\ \mbox{Times } \\ \end{array} \right) \\ \begin{array}{c} \text{Times } \\ \mbox{Times } \\ \$$

there are multiple eigenvalues: always
we turns something, try eig([
$$\frac{1}{2}$$
, $\frac{1}{2}$])
see what happens.
proof of Schur form: Induction
let x be unit right evec $Ax=\lambda x$, $\|x\|_{2}=1$
Let Q= $[x, O']$ be unitary matrix
 $O^{H}AQ = \begin{bmatrix} x^{H} \\ O'^{H} \end{bmatrix} A \begin{bmatrix} x, O' \end{bmatrix}$
 $= \begin{bmatrix} x^{H}AX & x^{H}AO' \\ O'^{H}AX & O'^{H}AO' \end{bmatrix}$
 $= \begin{bmatrix} \lambda x^{H}x & x^{H}AO' \\ \lambda O'^{H}X & O'^{H}AO' \end{bmatrix}$
 $= \begin{bmatrix} \lambda & x^{H}AQ' \\ O & O'^{H}AO' \end{bmatrix}$
apply induction to $O'^{H}AG' = U^{H}TU$
 T upper turianglo, U unitary
 $O^{H}AO = \begin{bmatrix} \lambda & x^{H}AO' \\ O & U^{H}AO' \end{bmatrix}$

where
$$A := A: x_i$$

 $A := \{A := A: x_i : \forall \alpha_i\}$
 $= \{ := \{a_i: A: x_i : \forall \alpha_i\}$
 $\subseteq V$

such that
$$A = \sum_{i=1}^{2} x_i B(j,i)$$
 in $AX = XB$
 $B_X = \lambda y$ $A(Xq) = XBy = \lambda(Xq)$
i.e. Xg evec of A , eval λ
Lemma: Let $V = spar(X)$ be on-dimensional
invariant subspace of A as above,
 $A = XB$. $X = OR$, Let $[O, O]^{-1}$
 $be square and orthop$
 $[O, Q']^{-1}A \cdot [Q,Q'] = [A_{11} A_{12}]$
 $A_{11} = R \cdot B \cdot R^{-1}$ has same evals as B
 $Proof: [O, O]^{-1}A \cdot [O, Q']$
 $= [Q^{-1}AO = Q^{-1}AO'] = [A_{11} A_{12}]$
 $AQ = A \times R^{-1} = XBR^{-1} = ORBR^{-1}$
 $So = A_{11} = O^{-1}AQ = O^{-1}ORBR^{-1} = FBR^{-1}$
 $A_{21} = O^{-1}QRBR^{-1} = O$

March Ledure 9 Segment 4
Review other eigenproblems
that can arise. In Lecture 1,
showed that ODEs can
give rise to more general
eigenproblems:
(1) ODE: x'(t) = Kx(t) ->
If K·x(0) =
$$\lambda \cdot x(0)$$
 then
 $x(t) = c^{\lambda t} x(0)$, similar it
 $x(0)$ is linear comb. of evecs
(2) When $M x''(t) + Kx(t) = D$
and $\lambda^2 M x(0) + Kx(0) = 0$ then
 $x(t) = e^{\lambda t} x(0)$
"generalized eigenproblem"
for (M, K), with eval λ^2
and evec $x(0)$. Usual
detof eval becomes
det($\lambda' M + K$) = D, $\lambda' = \lambda^2$

Worst case (Trefethen + Reichel) (riven any simply connected REQ, gnx x e R any 2°0 there exists A with one eval at X As (A) nearly fills out R j.e. evals can be very sensitive proof: use Riemann Mapping Thm EX: Perturb Wan Jordan Block, J=0 with $J(n,l) = \varepsilon \left[\begin{array}{c} 0\\ \end{array} \right],$ E p()= 1- = =0 => 1=UE uniformly speced on circle of radius VE $g = (0^{-16} n = (6 radius = .))$ evaluate not always different table functions of A (slopeof e^{vn} is coate:)
 expect sensitive evals when (nearly) multiple, as was case for evecs

(ondition number of simple (nonmultiple)
eval:
Thm: A simple evolof A
Ax=Ax y^H A = Ay^H, [IxII]=IlyIE=1
If we perturb A to A+E, then
A perturbed to d+ 5A
SA = U^{KEx} + O(IIEII²)
ISAI = IIEI2 + O(IIEII²)
= sec(D) IIEI2 + O(IEII²)
where
$$\Theta$$
 = angle between K and y
i.e. Sec(D) is condition number
proof L Subtract A x = Ax from
(A+E)(x+Sx) = (A+SiXx+Sx)
Ax+ASx+Ex=ASx + dSx+SAx + dSx+SA
ignore second order terms: ESX, SAdx
A: Sx + Ex = ASX + SAx
multiply by y^H

VItimale Algorithm: Hessenberg QR takes nonsymmetric A, competes Schurform A= QTQ" in O(n3) flops. Build up to it via simpler algorithms that are also used, eg to find just a few evals/evecs of large sparse matrices. Hessonberg QR also building block, because we approximate large sparso matrix by small dense matrix on which we use Hessenborg OR (Chap 7) flan: Power Method' Just repeated multiplication of K by A converges to ever for eval of largost magnitude Inversa Iterntion: Apply power method to B=(A-oI)" which has same evers as A, largest eval in magnitude corresponds to evalot A

(onsider
$$A = diag(A_1, ..., A_n)$$

where $|\lambda_1| > |A_1| \ge |A_3| \ge ..., generalize later
 $X_i = A^i x_0 / |(A^i x_0)|_2$
 $= [\lambda_1^i x_0(1), \lambda_2^i x_0(2), ...] / || " ||_2$
 $= \lambda_1^i [X_0(1), (\frac{\lambda_1}{\lambda_1})^i x_0(2), (\frac{\lambda_3}{\lambda_1})^i x_0(2) - ...] / || \cdot ||_2$
 $a_i = \lambda_1^i [X_0(1), (\frac{\lambda_1}{\lambda_1})^i x_0(2), (\frac{\lambda_3}{\lambda_1})^i x_0(2) - ...] / || \cdot ||_2$
 $a_i = || \le 1$
 $a_i = a_i || \le 1$
 $A^i = a_i || = a$$

For this to converge at good rate
head (1) (
$$\frac{dz}{di}$$
 | 4) smaller the better
con't count on this, eq
if A orthogonal, then
all $|di|=1$, no convergence
(2) z. non-arro, pick X. randomly
chance z. tiny very small
How to achieve $|d_1| >> |d_2|^2$.
Inverse Iteration - power method
on B=(A-oI)⁴ X:
xin= xin Axin - approx evec
Airn= xin Axin - approx eval
i=it1
until convergence
evecs of B same as for A
evals of B ave Airo ,
Suppose o closest to de

Do same analysis as above with vector $\begin{bmatrix} (\lambda_{k} - \sigma) / (\lambda_{i} - \sigma) \end{bmatrix}^{i} \cdot \frac{z_{i}}{z_{k}} \\ \begin{bmatrix} (\lambda_{k} - \sigma) / (\lambda_{i} - \sigma) \end{bmatrix}^{i} \cdot \frac{z_{2}}{z_{k}} \\ \vdots \\ 1 \\ \begin{bmatrix} (\lambda_{k} - \sigma) / (\lambda_{i} - \sigma) \end{bmatrix}^{i} \cdot \frac{z_{n}}{z_{k}} \end{bmatrix}^{k+h} component \\ \begin{bmatrix} (\lambda_{k} - \sigma) / (\lambda_{n} - \lambda_{n}) \end{bmatrix}^{i} \cdot \frac{z_{n}}{z_{k}}$ If we can make 6 much closer to de than any other di, can converge as fast as we want. Where dowc got 6? Algorithm computer estimate of dr. This makes convergence quadratic, even cubic in some cases Ma221 Lecture 9 Sogments Last time: power method and inverse iteration; extend power method from one vector to multiple vectors

$$S \Lambda^{i} S^{+} Z_{0}$$

$$= S \cdot \lambda_{p}^{i} d_{i} a_{q} \left(\frac{\lambda_{r}}{\lambda_{p}}^{i} \left(\frac{\lambda_{2}}{\lambda_{p}}^{i} - \cdots \right)^{i} \right), \left(\frac{\lambda_{p} u}{\lambda_{p}}^{i} \right)^{i}, \cdots \right) S^{i} Z_{0}$$

$$= S \cdot \lambda_{p}^{i} \left[\begin{array}{c} V_{i} \\ W_{i} \end{array} \right]^{n} P$$

Vi miltiplied by
$$\left(\frac{\partial x}{\partial p}\right)^{i}$$
, $\left(\frac{\partial x}{\partial p}\right)^{2}$
Wi miltiplied by $\left(\frac{\partial x}{\partial p}\right)^{i}$, $\left(\frac{\partial x}{\partial p}\right)^{2}$
Wi $\rightarrow O$, Vi grows, keeps full
vank if Vo full rank
A'Zo $\rightarrow \lambda_{p}^{i} S[V_{0}] = (inear combination
of (eading p columns of S)
i.e. first p eigenvectors,
desired invariant subspace$

The Run Orthogonal Iterative
on A with Zo=I, Id. 1212.
and all submetrices S(1:K,1:K) all
have full rank, then Ai=ZiTAZi
(gimilar to A) converges to Schur form,
i.e. upper triengular, evals on diagonal
proof: by previous analysis, for each &
span of first k columns of Zi
converge to invariant subspace
spanned by first k avas of A
$$Z_i = [Z_{i1}, Z_{i2}]$$

 $Z_i^{H} AZ_i = [Z_{i1}^{H}] A [Z_{i2}, Z_{i2}]$
 $= [Z_{i1}^{H} AZ_i, Z_{i1}^{H} AZ_{i2}]$
 $Z_i^{H} AZ_i = [Z_{i1}^{H}] A [Z_{i2}, Z_{i2}]$
 $= [Z_{i1}^{H} AZ_i, Z_{i1}^{H} AZ_{i2}]$
 $Z_i^{H} AZ_i = [Z_{i1}^{H} AZ_i, Z_{i2}^{H} AZ_{i2}]$

Pievious analysis = expose Air. (n, 1:n-1)
to shrink by factor

$$|A_{x} - \sigma_{i}|/min| S_{0} - \sigma_{i}|$$

 J_{xx}
This is implicitly inverse iteration
Suppose eval is real
 $A_{i} - G.I = Q_{i}R_{i}$
 $\Rightarrow Q_{i}T(A_{i} - G.I) = R_{i}$
 $\Rightarrow of G_{i}$ were exact eval, \Rightarrow
 $R_{i}(n,n) = \Rightarrow$
 $lest row of Q_{i}T(A_{i} - G.I)$ is O
 $\Rightarrow last colof Q_{i}$ is left evec
 $af A_{i}$ for eval σ_{i}
Now suppose σ_{i} just close to an eval
 $A_{i} - G.I = Q_{i}R_{i}$
 $(A_{i} - G_{i}I)^{T} = Q_{i}R_{i}^{T}$
 $(A_{i} - \sigma_{i}I)^{T}R_{i}^{T} = Q_{i}$

(matlab demo-see typed notes for coole)

If $A = A^T$, then $H = H^T \Rightarrow H$ tridiagonal $\Rightarrow cost one QR$ iteration O(n) (Chap 5)

Many improvements (SIAM Linea Algebro Prize 2003, Byers/Mathria (Braman) Usedin LAPACK. reduces communication by constant factor, doesn't hit lower bound

There are non-QR based aborithms that do hit lower bound in theory, do O(n3) flops (randomized algorithms) bol constant in O(n3) much larger than QR iteration, so not yet practical ("Minimizing communication for Eigenproblems and SVD" at bebop.cs. barkeley.edu)

Ma221 Lecture 9 Segmention More débail on Hossonberg QR How to raduce A=QHQT H=QTAQ

SVD: similar, bet different orthog matrices on left and right: QAQE = B = D bioliggonal Que Que Que Qui Qui Qui Qui Qui Qui Qui OR iteration on upper Hessenberg Matrix Lemma: Hessenberg form is maintained by QR iteration proof A upper Hessenberg =7A-6I is too A-0I = QR, Qupper Hessenberg (ith column of Q linear combination of columns 1. i of A-GI) than R.O. S S also per Messenberg How to do one step of GR iteration with shifton H=A-oI in O(n2), with Gr

Proof of Implicit @ Theorem
Let g: be column i of @
Q^AQ=H
$$\Rightarrow AQ=QH$$

(olumn 1: Aq, = H(1,1)·q.+ H(2,1)·g.
 \Rightarrow determines H(3,1), H(2,1), g= via GR on
[q1, Ag.]=[q1, g=7][1 H(1,1)]

More generally suppose we have
$$q_3, q_5 \cdot \cdot q_i^2$$

and columns 1:0-1 of H. Getnestadum
 $Aq_i^2 = \sum_{j=1}^{i+1} q_j H(j,i)$ from $AQ = QH$
 $q_j^T A q_i^2 = H(j,i)$ for $j = 1$ to i
 $Aq_i^2 - \sum_{j=1}^{i} q_j H(j,i) = q_{i+1} H(i+1,i)$
 $q_i vec us q_{i+1}$ and $H(i+1,i)$.