What should convergence criterion be?
Tricky, need to avoid being fooled by very ill-conditioned A that looks like it is converging.
See details in typed class notes.

Code available in LAPACK:
sgesvxx, dgesvxx

Ma221 Lecture 5 Segment 5

Return to minimizing communication.

Historically GEPP was written to perform most work using BLAS3,
used in LAPACK + ScALAPACK.

Idea similar to induction proof for GEPP, but instead of 1 column at a time,
will do b columns at a time, b is a tuning parameter: For simplicity, ignore pivoting.
\[
A = \begin{bmatrix}
\begin{array}{c|c}
A_{11} & A_{12} \\
\hline
A_{21} & A_{22}
\end{array}
\end{bmatrix}^{n-b}
\]

\[
= \begin{bmatrix}
L_{11}U_{11} & A_{12} \\
L_{21}U_{11} & A_{22}
\end{bmatrix}
\]

where we have performed GEPP using prior algorithm on
\[
\begin{bmatrix}
A_{11} \\
A_{21}
\end{bmatrix} = \begin{bmatrix}
L_{11} \\
L_{21}
\end{bmatrix}U_{11}
\]

\[
= \begin{bmatrix}
L_{11}U_{11} & L_{11}U_{12} \\
L_{21}U_{11} & A_{22}
\end{bmatrix}
\]

where have solved \(A_{12}=L_{11}U_{12}\)
using BLAS3 TRSM

\[
= \begin{bmatrix}
L_{11} & 0 \\
L_{21} & I
\end{bmatrix} \begin{bmatrix}
U_{11} & U_{12} \\
0 & A_{22}-L_{21}U_{12}
\end{bmatrix}
\]

Scher complement = S
computed using BLAS3 GEMM
proceed on S
Most work done in calls to
TRSM and GEMM, so should be fast
Often works well, but for some combinations
of n and cache size M, can reach \(\Omega(n^3/M)\)
Just as for matmul, there is a recursive, cache oblivious algorithm (Toledo, 1997)

High Level Algorithm

Do LU on left half of matrix
Update right half of matrix
(U at top, Schur compl. at bottom)

Do LU on Schur Complement

function LL, U = RLUCA() ... RLU = Recursive LU
... assume A nxm, nzm, m power of 2

if m=1 ... one column
pivot so A_{11} largest, update rest of matrix
$L = A/A_{11}, \ U = A_{11}$

else
... write $A = [A_{11} \ A_{12}]$, $L_1 = [L_{11}]$

$A_{11}, A_{12}, L_{11}, U_1, U_2$ are $m/2 \times m/2$

A_{21}, A_{22}, L_{12} are $n - \frac{m}{2} \times \frac{m}{2}$

$[L_1, U_1] = RLU ([A_{11}])$... LU of left half

Solve $A_{12} = L_{11} \cdot U_{12}$ for U_{12} ... update U

$A_{22} = A_{22} - L_{21} \cdot U_{12}$... update Schur complement

$[L_2, U_2] = RLU (A_{22})$

$L = [L_1, [L_2]]$, $U = [U_1 \ U_2]^{n \times m}$
Correctness by induction
Recurrences for \(m=n \)
\[
A(n) = \text{#arith ops} = \frac{2}{3} n^3 + O(n^2)
\]
Similar recurrence
\[
W(n) = \text{# words moved} = O\left(\frac{n^3}{\log n}\right)
\]
RLU only hits lower bound for
\#
words moved, not \# messages
To minimize \# messages: either
1. Replace partial pivoting by
Tournament pivoting (discussed later, references in notes)
2. Keep GEPP, but more complicated
data structure; payoff unclear

How does Strassen etc extend?
Can modify RLU to run in \(O(n \log^2 n) \) flops
1. Multiply \(L_1, U_1 \) using Strassen
and
2. Solve \(A_{12} = L_{11} U_{12} \) as follows
\[
\begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix}^{-1} = \begin{bmatrix} T_{11}^{-1} & -T_{11}^{-1} T_{12} T_{22}^{-1} \\ 0 & T_{22}^{-1} \end{bmatrix}
\]
perform all matmuls using Strassen
Slightly less numerically stable than GEMM

Where to find implementations
All blocked, unless marked recursive
Matlab: \(A \backslash b \), or \([P,L,U]=lu(A) \)
 \(\text{cond, condest} \)
LAPACK: \(\text{xGETRF: GEPP where } x=S/D/C/Z \)
 \(\text{xGETRF2: GEPP recursively} \)
 \(\text{xGESV: solve } Ax=b \)
 \(\text{xGESVXX: condition estimation, iterative refinement with no extra precision} \)
 \(\text{xGESVXX: iterative refinement in extra precision} \)
 \(\text{xGECON: for condition estimation alone} \)
ScLAPACK: \(\text{pxGETRF etc} \)