Chap 5 - Symm. Eigen problem + SVD
Part 3: Algorithms

Overview: Several approaches depending on goals:

(1) "Usual accuracy": backward stable, exact answer for $A + E$, $\|E\|_2 = O(\varepsilon) \|A\|_2$
 \[\rightarrow (1.1) \text{ Get all evals (w or w/o evens)} \]
 \[(1.2) \text{ Just evals in } [x, y] \text{ (w/o evens)} \]
 \[(1.3) \text{ Just get } d_1, d_2, \ldots, d_j \ (\text{"1"}) \]
 \[Eq. \text{ just } d_1, \ldots, d_{10} \]
 (1.2) and (1.3) can be much cheaper than (1.1)
 if only few evals (evens desired)

(2) "High Accuracy"

Ex: A well-conditioned, so all sing vals are same size
 say $O(1)$, then usual error bound:
 \[\sigma_i \pm O(\varepsilon) \sigma_i \]
 \[\rightarrow \text{ all } \sigma_i \text{'s computed with } \text{high relative accuracy } \Rightarrow \]
leading digits correct

B = D \cdot A , \text{ Diagonal, some } D_{ii} \text{ are much smaller than others } \Rightarrow \text{ some tiny } \sigma_i \text{ usual accuracy does not guarantee relative accuracy of tiny } \sigma_i \text{ In fact } B \text{ is "well conditioned" in sense: small relative perturbations in each } B_{ij} \Rightarrow \text{ small relative perturbation in all } \sigma_i \text{ (new perturbation theory: "Relative Weyl's Thm")}

3 algorithms that achieve this
- see links to paper in long Chap 5 notes and web page

(3) Updating: given } A = Q \cdot \Lambda \cdot Q^T \text{, cheaply compute } \text{eivals (basis of } A \pm xx^T \text{ (basis of one alg for (1.1))}
All this applies to SVD.

Algorithms and costs:
1. Start by reducing A to $Q^T T Q$ where T is tridiagonal.

 All algorithms work on T.

 Costs $O(n^3)$ flops, possible to only move $O\left(\frac{n^3}{\text{fastmem size}}\right)$ words main mem \rightarrow fast mem.

 See link on web page.

 A banded computing T costs $O(n^2 b)$ flops.

 SVD: $A = U^T B V$, U, V orthogonal.

 B bidiagonal.

(1.1) Given T find all evals, possibly evecs.

 Cost: $O(n^2)$ just for evals, anywhere from $O(n^2)$ to $O(n^3)$ for evecs.
some speed/accuracy tradeoff

(1.1.1) QR Iteration (Chap 4)

Thm (Wilkinson): If choose right shift, tridiagonal QR globally convergent, usually cubically convergent (4 correct digits triples at each iteration)

Cost: \(O(n^2) \) for evals but \(O(n^3) \) for evecs

only multiplies by orthogonal matrices \(\Rightarrow \) backward stable

LAPACK: ssyev

QR Iteration for SVD of bidiagonal \(B \)
guarantees high relative accuracy for all \(\sigma_i \)'s, no matter how small

(1.1.2) Find all evecs in \(O(n^2) \)
but does not guarantee they are orthogonal

(1) Compute evals alone (LAPACK: sstebz)
(2) Computes their evecs using inverse iteration,
\[X_{i+1} = (T - \lambda_i I)^{-1} X_i \quad \text{(LAPACK: \textsc{stein})} \]

\(T \) tri-diagonal \(\Rightarrow \) one step cost \(O(n) \)
and since \(\lambda_j \) accurate eval,
\(\Rightarrow \) only \(O(1) \) steps
\(\Rightarrow \) total cost \(O(n^2) \)

Problem: if \(\lambda_j \) and \(\lambda_{j+1} \) very close, no guarantee their evecs are orthogonal

E.g.: Suppose \(\lambda_j \) and \(\lambda_{j+1} \)
round to same floating point number

Open problem for many years to get orthogonal evecs in \(O(n^2) \)

\(\Rightarrow \) MRRR algorithm

(1.1.3) "Divide and Conquer" (DC)
faster than QR, not as fast as inv. it., reliable
\(\text{cost } O(n^2) \) \(\leq n^3 \)
\[A = x \xi^T \quad (\text{LAPACK: ssyeval}) \]

(1.1.4) MRRR = Multiple Relatively Robust Representations

- variant of Inv. It.
 (Parlett + Dhillon) (ssyevr)

- Still open to extend MRRR reliably to SVD (Willems thesis, but some stability gaps)

Theoretical Improvement (Gu):

- can beat \(O(n^3) \) for computing all evecs of \(T \)-why isn't \(\Omega(n^2) \) a lower bound? Trick: represent evecs implicitly as a product of "simple" orthogonal matrices:
 \[\text{cost} = O(n (\log n)^p) \quad \text{small } p \]

(1.2) or (1.3) - only some evecs and evecs:

- Use bisection (based on Sylvester's Thm) to compute only desired evals
- Use inverse iteration (or MRRR)
to compute their evecs:
\(O(n^3) \) for each eval/evec

(2): Higher Accuracy:
use Jacobi's Algorithm, updated
by Drmac/Veselic for SVD
\(\text{LAPACK: } \text{sgesv} \)
slower, not available for eigen-
problem

(3): got evecs of \(A \pm xx^T \)
given \(A = Q D Q^T \): use same
idea as for \(D \)