
Notes for Ma221 Lecture 16, Dec 3, 2024 
 
Chebyshev Polynomials, applied to analyzing CG and accelerating SOR 
 
This lecture will cover a topic used twice in Chap 6, Chebyshev Polynomials, 
which are used to analyze the convergence of Conjugate Gradients (CG),  
accelerate SOR, and other similar purposes. To further motivate the study 
of these and other polynomials in studying linear algebra algorithms, 
recall that Krylov subspace methods (KSMs) seek to find the “best” approximate 
solution x_k of to Ax=b in a k-dimensional Krylov subspace  
      script{K}_k(A,B) = span{ b, A*b, A^2*b, … A^(k-1)*b } 
                                   = span{ p_(k-1)(A)*b,  where p is a polynomial of degree <= k-1 } 
In the case of CG, recall that the “best” polynomial is defined to minimize 
   || A*x_k - b ||_{A^{-1}}^2 = (A*x_k - b)^T * A^{-1} * (A*x_k - b) 
                                                   = (A*p_(k-1)(A)*b - b)^T * A^{-1} * (A*p_(k-1)(A)*b - b) 
                                                   = (q_k(A)*b)^T * A^{-1} * (q_k(A)*b) 
    where q_k(A) = I - A*p_(k-1)(A) is a polynomial of degree k with q_k(0) = 1 
                                                   = b^T * q_k(A)^2 * A^{-1} * b 
   Since A is spd, we can write its eigendecomposition A = Q*Lambda*Q^T, 
   and let y = Q^T*b to get  
                                                  = y^T * q_k(Lambda)^2 * Lambda^(-1) * y 
                                                  = sum_i  q_k(lambda_i)^2 * lambda_i^(-1) * y_i^2 
So the “best” x_k corresponds to the “best” polynomial q_k, i.e. that minimizes this  
weighted sum of its squared values q_k*(lambda_i)^2 at the eigenvalues of A. 
To simplify, we upper bound this by 
                                                  <= max_i | q_k(lambda_i) |^2 * y^T * Lambda^(-1) * y 
                                                  =   max_i | q_k(lambda_i) |^2  * || b ||_{A^{-1}}^2 
or 
(*)       || A*x_k - b ||_{A^{-1}} / || b ||_{A^{-1}} <= max_i | q_k(lambda_i) | 
So if we can bound the magnitude of some “good” polynomial q_k, where 
“good” means q_k(0)=1 while | q_k(lambda_i) | is “small” for all eigenvalues lambda_i of A 
(note that 0 can’t be an eigenvalue of A, since A is spd), 
then we can get a useful bound on the convergence rate. Chebyshev polynomials, 
suitably scaled depending on A, will serve this purpose, and give us a bound on how 
fast CG converges. 
 
Another example where polynomials can help is accelerating a splitting method, like SOR. 
Recall that a splitting method produces a sequence of approximate solutions 
x_k = R*x_(k-1) + c, where the exact solution of A*x=b satisfies x = R*x + c, and so 
x_k - x = R*(x_{k-1} - x) = R^k * (x_0 - x). Suppose we tried to find a linear combination  
      y_k = sum_{i=0 to k} c_(k,i) * x_i  
of these approximations that converged faster. Note that if x_0 = x, then  all subsequent x_i = x, 
so we need to have x = sum_{i=0 to k} c_(k,i) * x or 1 = sum_{i=0 to k} c_(k,i) for all k. Then 
 



(**)   y_k - x = sum_{i=0 to k} c_(k,i)*x_i - x 
                       = sum_{i=0 to k} c_(k,i) * ( x_i - x ) 
                       = sum_{i=0 to k} c_(k,i) * R^i * (x_0 - x) 
                       = p_k(R) * (x_0 - x) 
So now our goal is again to find a degree-k polynomial p_k(R) that is small at the eigenvalues of  
R, but with the slightly different constraint that the sum of its coefficients is 1, i.e. p_k(1) = 1. 
Again, suitably scaled Chebyshev polynomials will serve this purpose. Furthermore,  
Chebyshev polynomials have one more important property that will make computing 
y_k cheap: we will only need to keep y_(k-1) and y_(k-2) in memory and operate on them 
to get y_k, not x_0 through x_k. 
 
Now we define Chebyshev polynomials, and just the few of their many properties that 
we will need for  our purposes. 
 
Def: The m-th Chebyshev polynomial is defined by the 3-term recurrence 
T_0(z) = 1, T_1(z) = z, and T_m(z) = 2*z*T_{m-1}(z) - T_{m-2}(z) 
 
The following lemma follows straightforwardly from  the definition: 
Lemma: Chebyshev polynomials have the following properties (see Lemma 6.7 in text for more): 
  (a) T_m(1) = 1   
  (b) T_m(z) = 2^m*z^m + O(z^(m-1)) 
  (c) T_m(cos y) = cos(m*y);  this applies to T_m(z) when |z| <=1, hence |T_m(z)| <=1 if |z| <= 1.  
  (d) T_m(cosh y) = cosh(m*y); this applies to T_m(z) when z>= 1, hence T_m(z) >= 1 if z >= 1. 
  (e) If m is even (resp. odd) then T_m(z) is an even (resp. odd) polynomial 
  (f) If |z| >=1 then T_m(z) = .5*[(z+sqrt(z^2 - 1))^m + (z+sqrt(z^2 - 1))^(-m)] 
  (g) T_m(1+eps) >= .5*(1+m*sqrt(2*eps)) if eps > 0 
 
Property (e) extends property (d) to z <= -1, since T_m(z) = (-1)^m * T_m(-z). 
Property (g) follows from Property (f).  
Properties (f) and (g) provide different ways to estimate how fast T_m(z) grows for z>1, and help 
explain the plots of T_m(z) in Fig 6.6 in the text, which show that |T_m(z)| grows monotonically 
and very rapidly outside the interval z in [-1,1], within which it is bounded by 1. 
 
We apply this to understanding the convergence of CG using (*) as follows. 
We need to pick a polynomial q_k(z) with the properties that q_k(0)=1, and 
|q_k(lambda_i)| is small for eigenvalues lambda_i of A. Let 0 < lambda_min <= lambda_max 
be the eigenvalues of the spd matrix A, and note that if lambda_min <= z <= lambda_max, then 
      -1 <= (  lambda_max + lambda_min - 2*z )/ ( lambda_max - lambda_min ) <= 1 
and so 
  q_k(z) = T_k(( lambda_max + lambda_min - 2*z) / ( lambda_max - lambda_min )) /  
                T_k(( lambda_max + lambda_min ) / ( lambda_max - lambda_min ) ) 
satisfies q_k(0) = 1 as required, and for  lambda_min <= z <= lambda_max it satisfies 
   | q_k(z) | <= 1 / T_k(( lambda_min + lambda_max) / ( lambda_max - lambda_min ) ) 
                       … by property (c) of the lemma above 



                  = 1 / T_k( (kappa + 1) / (kappa - 1)) 
                       … where kappa = lambda_max / lambda_min is the condition number of A 
                  = 1 / T_k( 1 + 2/(kappa - 1) ) 
                  <= 2 / ( 1 + 2*k/sqrt(kappa - 1) ) 
                       … by property (g) of the lemma 
Thus using (*) we can conclude that k = O(sqrt(kappa)) steps of CG are enough to decrease the 
error by a constant factor < 1, and so that O(sqrt(kappa)) steps of CG are needed to 
converge to any fixed residual norm || r ||_{A^{-1}} / || b ||_{A^{-1}}.  
This proves the convergence result for CG claimed earlier.  
 
(We pause the recorded lecture here.) 
 
Now we consider how to accelerate the convergence of splitting methods like SOR. 
Now we need to pick a polynomial p_k(z) with the properties that p_k(z) is small for z 
an eigenvalue of R, and p_k(1)=1. Since we are assuming the splitting method converges, 
this mean the spectral radius rho(R) < 1, i.e all the eigenvalues of R are less than 1 in  
absolute value. Since the useful properties of Chebyshev polynomials proven above only apply to 
real arguments, we need to assume R only has real eigenvalues. Assuming this is true, 
let rho satisfy  
 -1 < -rho <= lambda_min <= lambda_max <= rho < 1  
where lambda_min and lambda_max are the smallest and largest eigenvalues of R. 
In contrast to the previous analysis of CG, where these eigenvalues were only used for 
analysis, we actually need their values (or a bound rho) in order to implement an accelerator.  
This limits the usability of this approach, but in some cases  (eg Poisson equation and variations), 
these are known  (along with faster algorithms, like multigrid). 
Given rho, we let 
   p_k(z) = T_k(z/rho) / T_k(1/rho) 
Clearly p_k(1)=1 as desired, and if |z| <= rho then |p_k(z)| <= 1/T_k(1/rho). 
How much faster can this converge than the original splitting method? 
Assuming we pick rho as small as possible, so rho = rho(R) = max_i | lambda_i(R) |, 
and rho = 1 - eps, then again using property (g) of the Lemma we get 
     1 / T_k(1/rho) = 1 / T_k(1/(1-eps))  
                               = 1 / T_k(1 + eps/(1-eps)) 
                             <= 2/(1+k*sqrt(2*eps/(1-eps)) 
                               ~ 2*(1 - k*sqrt(2*eps)) 
This is to be contrasted with the original splitting method, which after k steps decreases the error by 
     rho^k = (1-eps)^k ~ 1 - k*eps 
In other words, when eps is small, Chebyshev acceleration can reduce the number of iterations 
by a square root, an asymptotic improvement. 
 
To see how to do this cheaply, we use the 3-term term recurrence  
    T_(k+1)(z) = 2*z*T_k(z) - T_(k-1)(z) 
defining Chebyshev polynomials, and scale it to get a 3-term recurrence for p_(k+1)(z). 
Letting mu_k = 1/T_k(1/rho) for brevity, we get 



   p_(k+1)(z) = mu_(k+1)*T_(k+1)(z/rho) 
              = mu_(k+1)*(2*z/rho*T_k(z/rho) - T_(k-1)(z/rho)) 
              = mu_(k+1)*(2*z/rho*p_k(z)/mu_k - p_(k-1)(z)/mu(k-1)) 
              = (2*mu_(k+1)/(rho*mu_k) * z * p_k(z) - (mu_(k+1)/mu_(k-1))*p_(k-1)(z) 
              = alpha_k * z * p_k(z) + beta_k * p_(k-1)(z) 
Note that 1/mu_k = T_k(1/rho) also can be computed using a 3-term recurrence, so allowing us 
to compute alpha_k and beta_k cheaply too. 
Applying this 3 term recurrence for p_(k+1)(z) to (**) yields 
  y_(k+1) - x = p_(k+1)(R) * ( x_0 - x ) 
                    = alpha_k * R * p_k(R)*(x_0 - x) + beta_k * p_(k-1)(R)*(x_0-x) 
                    = alpha_k* R * ( y_k - x ) + beta_k* (y_(k-1) - x) 
                    = alpha_k * R*y_k + beta_k*y_(k-1) - alpha_k*R*x - beta_k*x 
or 
   y_(k+1) = alpha_k * R * y_k + beta_k*y_(k-1) - alpha_k*R*x - beta_k*x + x 
To simplify the last three terms which depend on x, use x = R*x + c to get 
    -alpha_k*R*x - beta_k*x + x = -alpha_k*(x-c) - beta_k*x + x 
                                                 = (-alpha_k - beta_k + 1)*x + alpha_k*c 
                                                 = alpha_k*c 
which follows from the definitions of alpha_k and beta_k. This yields the final algorithm: 
    y_(k+1) = alpha_k * R * y_k + beta_k*y_(k-1) + alpha*c 
whose cost is rough the same as the original splitting method. 
 
Recall that this depended on R having all real eigenvalues, as well as knowing a reasonably 
tight bound on rho(R). Let us first try applying this to Jacobi’s method for our model problem, 
Poisson’s equation on an N x N mesh. Recall that R_J was symmetric, so all real eigenvalues, and 
that rho(R_J) was cos(pi/(N+1)) ~ 1 - pi^2/(2*(N+1)^2) = 1 - O(1/N^2), 
where N is the number of mesh points in each dimension. This means Jacobi would take 
O(N^2) iterations to converge versus O(N) for the Chebyshev accelerated version, a big 
improvement. But we already know that we can use SOR(w_opt) to converge in O(N) 
Iterations, so it is natural to try to applying Chebyshev acceleration to SOR(w_opt) 
to converge in just O(sqrt(N)) iterations. Unfortunately R_SOR(w) has complex eigenvalues, 
so does not satisfy our assumption. Fortunately there is a clever fix: we apply R_SOR(w) once, 
updating the entries of x in the usual order, and then apply it again, updating them in the reverse 
order. This effectively “symmetrizes” SOR, yielding SSOR(w), and it can be shown that 
SSOR(w) has all real eigenvalues. The choice of optimal w is no longer the same for SOR(w), 
But a good choice is known with rho(R_SSOR(w)) = 1 - O(1/N), allowing us to use 
Chebyshev acceleration to converge in O(sqrt(N)) iterations instead of O(N) as desired. 
For the N x N Poisson equation, this means O(N^2*sqrt(N)) = O(n^(5/4)) flops are needed 
to converge, where n = N^2 is the size of the matrix, versus O(n^(3/2)) for SOR(w_opt). 
See section 6.5.6 of the text for more details. 
 
This completes the analysis of all the algorithms in Table 6.1 in the textbook, showing how 
fast they all converge on the N x N Poisson equation. 
See Fig 6.8 in the text for a decision tree to help choose KSMs for other kinds of matrices. 


