
Notes for Math 221, Lecture 3, Sep 10, 2024 
 
To summarize our approach to understanding accuracy in the face of  
roundo? (or other) error, our goal will be to prove that algorithms  
are "backward stable". For example if our algorithm for computing the  
scalar function f(x) computes 
  alg(x) = f(x + delta) ~ f(x) + f'(x)* delta 
where delta is "small", then relative error can be approximated by 
  | ( alg(x) - f(x) ) / f(x) | <= |f'(x)* delta / f(x)|  
    = |f'(x)*x/f(x)| * |delta/x| 
Def: The factor kappa(x) = |f'(x)*x/f(x)| is the condition_number  
of the function f evaluated at x. 
 
Here is a simple geometric interpretation of kappa(x) in this scalar 
case: When is kappa(x) infinite? If f is a smooth function with  
bounded f', kappa(x) is infinite when f(x)=0. How is kappa(x)  
related to the distance from x to the nearest zero xhat of f,  
i.e. f(xhat)=0? If f is smooth and f(x) small, one step of Newton  
will estimate xhat for us: 
  xhat ~ x - f(x)/f'(x) or 
  x - xhat ~ f(x)/f'(x) or, computing the relative distance, 
  | (x - xhat)/x | ~ | f(x)/(x*f'(x)) | = 1/kappa(x) 
I.e. the condition number is close to the reciprocal of the relative 
distance to the nearest ``infinitely hard'' problem. 
| 
We want to use the same approach for the problem of solving A*x=b, 
including this geometric interpretation of the condition number, 
but where we get (A+Delta)*xhat = b instead, where Delta is "small" 
compared to A, or the eigenproblem A*x = lambda*x, but get  
   (A+Delta)*xhat = lambdahat*xhat 
where again Delta is "small" compared to A. 
 
To formalize the notion of "small", we need to understand vector and  
matrix norms.  In both cases, we may say 
  we want to compute x = f(A), but get xhat = alg(A) = f(A+Delta) 
So to bound the error, we write 
  error = xhat - x = alg(A) - f(A) = f(A+Delta) - f(A) 
Assuming Delta is "small", and taking the first term of the Taylor  
expansion, we get 
  error ~ J_f(A) * Delta  where J_f(A) is the Jacobian of f 
If A and x were scalars, we could take absolute values and get an  
absolute error bound: 
   |error| <~  |J_f(A)| * |Delta| 
and proceed as above. 



 
In the cases most relevant to linear algebra, A and x are not scalars  
but matrices and vectors (with obvious generalizations, depending on 
the problem). To generalize this error bound, we need to generalize  
absolute values, which leads us to norms. 
 
Goals: Matrix and vector norms 
       Singular Value Decomposition 
       Condition numbers for Ax=b 
 
Matrix and vector norms 
 
Def norm: Let B be linear space R^n (or C^n). 
       It is normed if there is a function ||.||:B -> R s.t. 
         (1) ||x|| >= 0, and ||x|| = 0 i? x=0  
             (positive definiteness) 
         (2) ||c*x|| = |c|*||x|| (homogeneity) 
         (3) ||x+y|| <= ||x|| + ||y|| (triangle inequality) 
Examples: p-norm  = ||x||_p = (sum_i |x_i|^p)^(1/p), for p >= 1 
          Euclidean norm = 2-norm  = ||x||_2 
               Note: x real => ||x||_2^2 = sum_i x_i^2 = x^T * x 
          infinity-norm = ||x||_inf = max_i |x_i| 
          C-norm =  ||C*x|| where C has full column rank      
               (Question 1.5) 
 
Lemma (1.4): all norms are equivalent  
       i.e. given any norm_a(x) and norm_b(x), there are positive  
            constants alpha and beta such that  
              alpha*norm_a(x) <= norm_b(x) <= beta*norm_a(x)                      
       (proof: compactness) 
 
This lemma is an excuse to use the easiest norm to prove later  
results. 
         
Def: matrix norm (vector norm on mxn vectors) 
     (1) ||A|| >= 0, and ||A|| = 0 i? A=0  
         (positive definiteness) 
     (2) ||c*A|| = |c|*||A|| (homogeneity) 
     (3) ||A+B|| <= ||A|| + ||B|| (triangle inequality)                      
 
Ex: max norm = max_ij |A_ij|  
    Frobenius norm = (sum_ij |A_ij|^2)^(1/2) 
 
Def: operator norm 



      norm(A) = max_{nonzero x} norm(A*x)/norm(x) 
 
Lemma (1.6): The operator norm is a matrix norm.  
   proof: Question 1.15 
 
Lemma (1.7): if norm(A) is an operator norm, there exists x such that  
             norm(x)=1 and norm(A*x)=norm(A). 
   proof: norm(A) = max_{nonzero x} norm(A*x)/norm(x) 
                  = max_{nonzero x} norm(A * x/norm(x) ) 
                  = max_{unit vector y} norm(A * y ) 
   y attaining this maximum exists since norm(A*y) is a continuous  
   function of y on compact (closed and bounded) set = unit ball 
 
 
Now we turn to orthogonal and unitary matrices, which we need for  
the SVD. 
 
Notation: Q^* = conj(Q^T),  
          sometimes we write Q^H (H stands for "Hermitian", 
          since a matrix satisfying A=A^H is called Hermitian) 
Def: orthogonal matrix: Q square, real and inv(Q) = Q^T 
     unitary matrices:  Q square, complex, and inv(Q) = Q^* 
(For simplicity, we state results for real case, but all extend to  
complex.) 
 
Fact: Q orthogonal <=> Q^T*Q = I <=> all columns mutually orthogonal 
      and are unit vectors, Q*Q^T = I implies same about rows 
 
Fact: norm(Q*x,2)=norm(x,2) - aka Pythagorean theorem 
      Proof: norm(Q*x,2)^2 = (Q*x)^T*(Q*x) = x^T*Q^T*Q*x = x^T*x  
             = norm(x,2)^2 
 
Fact: Q and Z orthogonal => Q*Z orthogonal 
      Proof: (Q*Z)^T * (Q*Z) = Z^T*Q^T * Q*Z = Z^T * I * Z = I 
 
Fact: If Q is m x n, with n<m, and Q^T * Q = I_n, then you                      
      can add m-n columns to Q to make it m x m and orthogonal, so  
      Q^T*Q=I_m (there may be infinitely many ways to this, we can 
      give a proof later, but this is a useful fact in some proofs) 
 
Lemma (most proofs in homework, Q1.16) 
  (1) norm(A*x) <= norm(A)*norm(x) for vector and its operator norm 
  (2) norm(A*B) <= norm(A)*norm(B) for operator norm                            
  (3) norm(Q*A*Z,2) = norm(A,2) if Q, Z orthogonal 



  (4) norm(Q,2)=1 
  (5) norm(A,2) = sqrt(lambda_max(A^T*A)) 
  (6) norm(A^T,2) = norm(A,2) 
 
proof of (5) only: 
   norm(A,2) = max_{nonzero x} norm(A*x)/norm(x) 
             = max_{nonzero x} sqrt( (A*x)^T*(A*x) / sqrt(x^T*x) ) 
             = sqrt ( max_{nonzero x} (A*x)^T*(A*x) / (x^T*x) ) 
             = sqrt ( max_{nonzero x} x^T*A^T*A*x / x^T*x ) 
 
   Use the fact that A^T*A is symmetric and so has eigenvalue  
   decomposition: 
     A^T*A*q_i = l_i * q_i  
   where l_i real, q_i real, unit, orthogonal. 
   Let Q = [q_1,...,q_n] and Lambda = diag(l_1,...,l_n), so that 
   A^T*A*Q = Q*Lambda, and A^T*A = Q*Lambda*inv(Q) = Q*Lambda*Q^T 
   Continuing from above: 
 
   norm(A,2)  
        = sqrt ( max_{nonzero x} x^T*Q*Lambda*Q^T*x / x^T*x ) 
        = sqrt ( max_{nonzero x} x^T*Q*Lambda*Q^T*x / x^T*Q*Q^T*x ) 
        = sqrt ( max_{nonzero y} y^T*Lambda*y / y^T*y ) 
                    where y = Q^T*x 
        = sqrt ( max_{nonzero y} sum_i y_i^2 l_i / sum_i y_i^2 ) 
       <= sqrt ( max_{nonzero y} l_max * sum_i y_i^2 / sum_i y_i^2 )        
        = sqrt ( l_max ), attained by choosing y_max = 1, rest 0 
 
 
SVD = Singular Value Decomposition 
The SVD is a Swiss Army Knife of numerical linear algebra: 
Given the SVD of A, one can easily  
  solve Ax=b (when A is square),  
  solve an overdetermined or underdetermined least squares problem  
     with rectangular A (whether A is full rank or not),  
  compute the eigenvalues and eigenvectors of A*A^T and A^T*A, or  
  compute eigenvalues and eigenvectors of A if A is symmetric.   
Furthermore, one can use the SVD to write down error bounds for all 
these problems.  It is more expensive to compute than other  
algorithms specialized for these problems, so it may not be the  
algorithm of first resort. 
 
History: The first complete statement goes back to Eckart & Young in  
1936. The first reliable algorithm was by Golub & Kahan in 1965, with 
faster ones since then, to be discussed in Chapter 5. Perhaps the  



fastest algorithm appears in the prize-winning 2010 PhD thesis by  
Paul Willems, which remains to be incorporated into LAPACK.  
(We have found some numerical examples on which the algorithm fails  
to be accurate enough, and have not managed to fix it yet, despite  
conversations with the author.  So learning about and testing this  
algorithm is a possible (and challenging) class project.) 
 
Thm. Suppose A = m x m, then there is an 
        orthogonal matrix U = [u(1),...,u(m)]  
        diagonal matrix Sigma = diag(sigma(1),...,sigma(m))  
            with sigma(1) >= sigma(2) >= ... >= 0 
        orthogonal matrix V = [v(1),...,v(m)]  
     with A = U*Sigma*V^T.  
        u(i) called left singular vectors 
        sigma(i) called singular values 
        v(i) called right singular vectors 
     More generally, if A is m x n with m > n, then 
        U m x m and orthogonal as before 
        V n x n and orthogonal  
        Sigma is m x n with same diagonal as before 
     When m > n, we sometimes write this as follows (the "thin SVD") 
        [u(1),...,u(n)] * diag(sigma(1),...,sigma(n)) * V^T 
     The same ideas work if A is m x n with m < n. 
 
Geometric interpretation: Thinking of A as a linear mapping from R^n 
  to R^m, with the right orthogonal choice of bases  
  of R^n (i.e. columns of V) and R^m (i.e. columns of U)  
  then A is diagonal (i.e. Sigma):   
     A = U*Sigma*V^T => A*V = U*Sigma => A*v(i) = sigma(i)*u(i) 
 
Proof: Induction on n: 
   Two base cases 
   n=1: Let U have the first column = A/norm(A,2), rest chosen in any 
        way that makes U orthogonal; Sigma(1,1) = norm(A,2), V = 1 
   A=0: Let U = I_m,  Sigma = 0, V = I_n 
    
   Induction step (if A nonzero): 
      ||A||_2 = max_{x: x neq 0} ||A*x||_2 / ||x||_2 
              = max_{x: ||x||_2 = 1} ||A*x||_2 
   Let v(1) be x attaining the max, sigma(1) = ||A||_2 = ||A*v(1)||_2 
   and u(1) = A*v(1) / ||A*v(1)||_2 . 
   Choose V = [v(1),Vhat] to be square & orthogonal 
   Choose U = [u(1),Uhat] to be square & orthogonal 
   Write Ahat = U^T*A*V 



              = [ u(1)^T ] * A * [v(1), Vhat] 
                [ Uhat^T ] 
              = [ u(1)^T*A*v(1)  u(1)^T*A*Vhat ] 
                [ Uhat^T*A*v(1)  Uhat^T*A*Vhat ] 
              = [ sigma(1)       A12 ] 
                [ A21            A22 ] 
   Show A21 = 0 by definition of Uhat 
   Show A12 = 0 by definition of sigma(1) = ||A||_2  
                (use part (3) of above Lemma) 
   Apply induction to A22 = U_2*Sigma_2*V_2^T, so 
      A = U*Ahat*V^T = U * [ sigma(1)        0          ] * V^T 
                           [    0     U_2*Sigma_2*V_2^T ] 
        = U * [ 1  0  ] * [ sigma(1)    0    ] * [ 1  0    ] * V^T 
              [ 0 U_2 ]   [   0      Sigma_2 ]   [ 0 V_2^T ] 
        = orthogonal * nonnegative_diagonal * orthogonal, as desired 
 
 
The SVD has many useful properties; assume A is m x n with m >= n. 
 
 Fact 1: In the square nonsingular case,  
    we can use it to solve A*x=b with just O(n^2) more work: 
    Proof: X = inv(A)*b = inv(U*Sigma*V^T)*B = (V*inv(Sigma)*U^T)*b 
 But note: computing the SVD itself is expensive, O(n^3) (see Chap 5) 
 If all you want to do is solve A*x=b, Gaussian Elimination is  
 cheaper. On the other hand, we will see that the SVD is more  
 reliable when A is nearly singular, provides and error bound, and  
 even lets us "solve" A*x=b when A is exactly singular. 
 
 Fact 2: When m>n, we can  solve the full rank least squares problem 
       argmin_x ||A*x-b||_2 as follows:  
   writing the thin SVD, A = U*Sigma*V^T with U m x n, 
   then x = V*inv(Sigma)*U^T*b , same formula as the square case 
  Proof: Write A = Uhat*Sigmahat*V^T where Uhat = [U,U'] is m x m and  
         Sigmahat = [Sigma; 0] is m x n. Then 
          || A*x-b ||_2^2 = || Uhat*Sigmahat*V^T*x - b ||_2^2 
                          = || Uhat^T* ( " )  ||_2^2 
                          = || Sigmahat*V^T*x - Uhat^T*b ||_2^2 
                          = || [ Sigma*V^T*x - U^T*b ] ||^2 
                            || [             - U'^T*b] ||_2 
                          = || Sigma*V^T*x - U^T*b ||_2^2 
                           +|| -U'^T*b ||_2^2 
         is clearly minimized by choosing x = V*inv(Sigma)*U^T*b 
         to zero out the term depending on x 
 



 Def: When A = U*Sigma*V^T is m x n, m >= n, and full rank, then 
         A^+ = V*inv(Sigma)*U^T is n x m, and is called the 
    Moore-Penrose pseudoinverse of A. 
  
 This is the most natural extension of the definition of "inverse" 
 to rectangular full-rank matrices. We can also use the SVD, and  
 an appropriately defined Moore-Penrose pseudoinverse to solve the  
 rank deficient least squares problems,  
 or underdetermined problem (m < n), as we describe later.            
 (Q 3.13 has more inverse-like properties of the pseudo-inverse). 
 
 Just to solve a least squares problem where you are not 
 worried about rank deficiency, the QR decomposition is cheaper. 
 On the other hand, we will see that the SVD is more reliable when 
 A is nearly singular. 
 
 Fact 3: If A symmetric with eigenvalues  
            Lambda = diag(lambda_1,...,lambda_n) 
         and orthonormal eigenvectors V = [v(1),...,v(n)],  
         then its SVD is 
            A = V*Lambda*V^T (done if all lambda_i >= 0) 
              = (V*D)*(D*Lambda)*V^T where D = diag(sign(lambda(i))) 
              = U*Sigma*V^T 
 
 Fact 4: Using the thin SVD, the eigenvalue decomposition of  
          A^T*A = (U*Sigma*V^T)^T*(U*Sigma*V^T) = V*Sigma^2*V^T 
 
 Fact 5: Using the thin SVD, the eigenvalue decomposition of  
          A*A^T = (U*Sigma*V^T)*(U*Sigma*V^T)^T = U*Sigma^2*U^T 
            (what happens if m>n?) 
 
 Fact 6: Let H = [ 0 A^T ] be (m+n) x (m+n), assuming A is m x n 
                 [ A  0  ] 
         Then H has eigenvalues +- sigma(i)  
         and eigenvectors 1/sqrt(2)*[v(i) ; +- u(i)] 
  Proof: plug in A = U*Sigma*V^T 
 
  Fact 6 suggests that algorithms for the SVD and the symmetric  
  eigenproblem will be closely related (see Chap 5) 
 
 Fact 7: ||A||_2 = sigma(1), ||inv(A)||_2 = 1/sigma(n) and  
 
 Def: kappa(A) = sigma(1)/sigma(n) is called condition number of A 
      for reasons we will see shortly 



 
 
 Fact 8: Let S be the unit sphere in R^n. Then A*S is an ellipsoid  
 centered at the origin with principal axes sigma(i)*u(i) 
             
 Proof: suppose s = [s_1;...;s_n] where sum_i s(i)^2 = 1, and write 
   A*s = U*Sigma*V^T*s = U*Sigma*shat = sum_i u(i)*sigma(i)*shat(i)  
 
  (matlab demo a = randn(2,2), svddemo2; a = randn(3,3); svddemo3) 
 
 Fact 9: Suppose  
    sigma(1) >= ... >= sigma(r) > 0 = sigma(r+1) = ... = sigma(n). 
 Then A has rank r; the null-space of A is  
    span(v(r+1),...,v(n)), of dimension n-r,  
 and the range space of A is  
    span(u(1),...,u(r)), of dimension r 
 
 Fact 10: Matrix A_k of rank k closest to A in 2-norm is  
    A_k = sum_{i=1 to k} u_i*sigma(i)*v(i)^T = U*Sigma_k*V^T 
    where Sigma_k = diag (sigma(1) , ... , sigma(k), 0, ... 0) 
    and the distance is norm(A - A_k , 2) = sigma(k+1) 
    In particular, the distance to the nearest singular  
    (or non-full rank) matrix is sigma(n) = sigma_min. 
  
 Proof: easy to see that A_k has right rank, right distance to A;  
    need to show no closer one: 
    Suppose B has rank k, so null space has dimension n-k.  
    The space spanned by {v(1),...,v(k+1)} has dimension k+1.  
    Since the sum of the dimensions (n-k)+(k+1) > n, these two spaces 
    must overlap (can't have > n independent vectors in R^n). 
    Let h be unit vector in their intersection. then 
    norm(A-B,2) >= norm((A-B)*h,2) = norm(A*h,2) 
                 = norm(U*Sigma*V^T*h,2) = norm(Sigma*V^T*h,2) 
                 = norm(Sigma*[x(1),...,x(k+1),0,...,0]^T,2) 
                >= sigma(k+1) 
   
 (matlab demo: We use this idea that A_k approximates A to   
  demonstrate image compression, since an image is just a matrix  
  (of gray values, say). 
 
   load clown.mat, [U,S,V]=svd(X);  
   figure(1), clf, image(X), colormap('gray'), brighten(.5), 
   figure(2), clf, n = 0; for k=[1:10,20:10:200], n=n+1;  
     Xk=U(:,1:k)*S(1:k,1:k)*(V(:,1:k))'; ... 



     err = norm(X-Xk)/norm(X); compr = k*(200+320)/(200*320); ... 
     figure(2), image(Xk), colormap('gray'), brighten(.5),... 
     title(['k= ',int2str(k),' err= ', num2str(err),' compression= ', ... 
       num2str(compr)]), ... 
    pause, end 
 
To see how the error and compression depend on the rank we can plot: 
 
figure(3), s = diag(S);  
semilogy(1:200,s/s(1),'r',1:200,(1:200)*(200+320)/(200*320),'b'), 
title('Error in red, compression in blue'), xlabel('rank'), grid 
 
(Note: jpeg compression algorithm uses a similar idea, on subimages) 
 
 
Now we start using this material to analyze the condition number  
for matrix inversion and solving Ax=b: If A (and b) change 
a little bit, how much can inv(A) (and x=inv(A)*b) change? 
 
If |x|<1, recall that 1/(1-x) = 1+x+x^2+x^3+... 
Now generalize to matrices: 
 
Lemma: If operator norm(X)<1, then I-X is nonsingular and 
     inv(I - X) = sum_{i>=0} X^i and norm(inv(I-X)) <= 1/(1-norm(X)) 
           
proof: Claim I + X + X^2 + ... converges: 
  norm(X^i) <= norm(X)^i -> 0 as i increases 
  so by equivalence of norms there is some C>0 such that 
       max_{kj} | (X^i)_kj | <= C* norm(X^i) <= C* norm(X)^i 
  and so kj-th entry of I + X + X^2 ... is dominated by 
  a convergent geometric series and so converges. 
  Claim (I - X)*( I + X + X^2 + ... + X^i)  
        = I - X^(i+1) -> I as i increases 
  Next norm(I + X + X^2 + ...) 
       <= norm(I) + norm(X) + norm(X^2) + ... by triangle inequality 
       <= norm(I) + norm(X) + norm(X)^2 + ... by ||A*B||<=||A||*||B|| 
        =   1     + norm(X) + norm(X)^2 + ... by def of operator norm 
        =   1/(1 - norm(X))               ... geometric sum 
 
 (Later: generalize to arbitrary Taylor expansions, like  
    e^X = sum_i X^i/i!) 
               
Lemma: Suppose A invertible. Then A-E invertible if  
        norm(E) < 1/norm(inv(A)) in which case 



  inv(A-E) = Z + Z(EZ) + Z(EZ)^2 + Z(EZ)^3 + ... where Z=inv(A) 
     and  
  norm(inv(A-E)) <= norm(Z)/(1-norm(E)*norm(Z)) 
             
proof: inv(A-E) = inv((I-E*Z)*A) = Z*inv(I-E*Z) 
     exists if I-E*Z invertible i.e. if norm(E*Z) < 1, 
     i.e. if norm(E)*norm(Z) < 1 in which case 
          inv(A-E) = Z*(1+EZ + (EZ)^2 + ...) 
     Then take norms  
 
What does this say for 1x1 matrices? 
Why can't we write inv(A-E) = Z + EZ^2 + E^2Z^3 + ... ? 
 
Finally, we can ask how much inv(A) and inv(A-E) di?er. 
 
Lemma: Suppose A invertible. If norm(E) < 1/norm(Z), then 
   norm(inv(A-E)-Z) <= norm(Z)^2*norm(E)/(1-norm(E)*norm(Z)) 
            
proof: inv(A-E)-Z = Z(EZ) + Z(EZ)^2 + ... 
                  = ZEZ ( I + EZ + (EZ)^2 + ...) 
       and then take norms 
 
So the relative change in inv(A) is 
  norm(inv(A-E)-Z)/norm(Z) 
    <= [ norm(A)*norm(Z) * 1/(1 - norm(E)*norm(Z)) ] *  
       [ norm(E)/norm(A) ] 
     = [ norm(A)*norm(Z) ] * [ norm(E)/norm(A) ] + O(norm(E)^2) 
     = condition_number * relative_change_in_A 
 
What does this say for 1x1 matrices? 
          
This justifies the following definition: 
 
Def:    condition number kappa(A) = norm(A)*norm(Z) 
Fact:  kappa(A) >= 1. 
proof: 1 = norm(I) = norm(A*Z) <= norm(A)*norm(Z) 
 
Theorem: min{norm(E)/norm(A): A-E singular}  
         = relative_distance(A, {singular matrices}) 
         = 1/kappa(A) 
 
proof for 2-norm, using SVD:  
  min{norm(E)}: A-E singular} = sigma_min(A), 
so relative_distance(A,{singular}) = sigma_min(A)/sigma_max(A) 



And norm(Z) = norm(inv(A)) = norm(V*inv(Sigma)*U^T)  
            = norm(inv(Sigma))= 1/sigma_min(A) 
 
We've looked at sensitivity of inv(A), now look at solving A*x=b 
Now consider A*x = b vs (A-E)*x' = b+f where x' = x+dx 
  subtract to get 
   A*dx - E*x - E*dx = f 
   (A-E)dx = f + E*x 
   dx = inv(A-E)*(f + E*x) 
   norm(dx) = norm(inv(A-E)*(f + E*x)) 
           <= norm(inv(A-E))*(norm(f) + norm(E)*norm(x)) 
           <= norm(Z)/(1-norm(E)*norm(Z))*(norm(f) + norm(E)*norm(x)) 
            norm(dx)/norm(x) 
           <= norm(Z)*norm(A) * 1/(1-norm(E)*norm(Z)) 
              *( norm(f)/(norm(A)*norm(x)) + norm(E)/norm(A) ) 
           <= norm(Z)*norm(A) * 1/(1-norm(E)*norm(Z)) 
              *( norm(f)/norm(b) + norm(E)/norm(A) ) 
 
   relerr in x <= kappa(A)  
                  * something close to 1 unless A nearly singular 
                  * (rel change in b + rel change in A) 
 
Our algorithms will attempt to guarantee that  
 (*)   computed solution of A*x=b is (A-E)*x' = b+f where  
       norm(f)/norm(b) = O(macheps) and norm(E)/norm(A) = O(macheps) 
       so relerr in x ~ O( kappa(A)*macheps ) 
Recall that property (*) is called "backward stability"  
 
Another practical approach: given x', how accurate a solution is it? 
Compute residual r = A*x'-b = A*x'-A*x = A*(x'-x) = A*error 
so error = inv(A)*r and norm(error) <= norm(inv(A))*norm(r) 
 
norm(r) also determines the backward error in A: 
 
Theorem: The smallest E such that (A+E)x' = b has  
         norm(E) = norm(r)/norm(x') 
proof: r = A*x' - b = -E*x' so norm(r) <= norm(E)*norm(x') 
To attain lower bound on norm(E), choose E = -r*x'^T/norm(x')^2,  
in 2 norm. 
 
In other words, if Ax'-b is small, then the backwards error is small,  
which is probably the most you should ask for when the entries of A  
are uncertain. (Later we will see how to use "iterative refinement",  
aka Newton's method, to get a tiny error in x as long as kappa(A) is  



not about 1/macheps or larger, but this is only sometimes justified.) 
 
 
All our practical error bounds depend on norm(inv(A)). To actually  
compute inv(A) costs several times as much as just solving A*x=b  
(2n^3 versus (2/3)n^3) so we will use cheap estimates of norm(inv(A))  
that avoid computing inv(A) explicitly, and work with small  
probability of large error. 
 
The idea is to use the definition 
   || inv(A) || =  max_{||x|| = 1} || inv(A)*x ||  
                =  max_{||x||<= 1} || inv(A)*x || 
and do gradient ascent ("go uphill") on  || inv(A)*x || 
on the convex set ||x|| <= 1; one may also start with a random  
starting vector. For right choice of norm it is easy to figure out  
ascent direction, and each step requires solving Ax=b for some b,  
which only costs O(n^2), (assuming we have already done LU  
factorization). In practice it usually takes at most 5 steps or so to  
stop ascending so the total costs is O(n^2); see sec 2.4.3 in the 
text for details. 
 
In fact there is a theorem (Demmel, Diament, Malajovich, 2000) that  
says that estimating kappa(A) even roughly, but still with some  
guarantee (say "to within a factor of 10", or within any constant  
factor) is as about expensive as multiplying matrices, which in turn  
is about as expensive as doing Gaussian elimination in the first  
place. Since our goal is to spend just an additional O(n^2) to  
estimate norm(inv(A)) given that we have already done Gaussian  
Elimination (LU factorization), this theorem implies that we need to  
settle for a small probability of getting a large error in our  
estimate of norm(inv(A)). 
 
Where to find implementations of all this? 
    Matlab: A\b  or [P,L,U]=lu(A) or condest or normest1 
    LAPACK: xGETRF just for GEPP where x = S/D/C/Z 
            xGESV to solve A*x=b 
            xGESVX for condition estimation, more 
            xGECON for condition estimation alone 
    ScaLAPACK: PxGESV, etc 


