
Notes for Ma221, Lecture 2, Sep 3, 2024 
 
Goals: Floating point arithmetic 
       Roundoff error analysis for polynomial evaluation 
       Beyond basic error analysis:  
         exceptions, high/low/variable precision arithmetic,  
            reproducibility, interval arithmetic, 
         exploiting mathematical structure to get accuracy without  
            high precision 
 
Example: Polynomial Evaluation, and polynomial zero finding 
 
   EX: Review how bisection to find a root of f(x)=0 works: 
         start with an interval [x1,x2] where f changes sign:  
           f(x1)*f(x2) < 0  
         evaluate at midpoint: f((x1+x2)/2) 
         keep bisecting subinterval where f changes sign 
       Try it on (x-2)(x-3)(x-4) = x^3 - 9*x^2 + 26*x - 24  
       (Matlab demo) 
         rts = [2,3,4] 
         coeff = poly(rts) 
         help bisect (on web page) 
         bisect(coeff,2.6,3.1,1e-12) 
         bisect(coeff,2.2,3.2,1e-12) 
           ... no surprises, get small intervals around 3 
 
       Now try it on (x-2)^13 
         rts = 2*ones(1,13) 
         coeff = poly(rts) ... no errors yet, take my word for it 
         bisect(coeff,1.7,2.4,1e-12) 
         bisect(coeff,1.7,2.2,1e-12) 
         bisect(coeff,1.9,2.2,1e-12) ... huh? a very different answer  
            each time? 
 
  Horner's rule to evaluate (x-2)^13 - what is the real graph? 
     x = 1.7:1e-4:2.3; 
     y = polyval(coeff,x); 
     yacc = (x-2).^13; 
     plot(x,y,'k.',x,yacc,'r','Linewidth',1.5) 
     axis([1.7,2.3,-1e-8,1e-8]), grid 
       ... can we explain this? 
 
   To summarize: Try evaluating (x-2)^13 two ways: 
       as (x-2)^13 - smooth, monotonic curve, as expected 
       as x^13 - 26*x^12 + ... - 8192, with Horner's rule: 
           for x in the range [1.8,2.2], basically get random looking  
           numbers in the range [-1e-8,1e-8] 
   Actually, they aren't really "random", as the following zoomed-in  
   plot shows: 
      s=2^(-45); x=2-256*s:s:2+256*s; 
      y=polyval(coeff,x); yacc=(x-2).^13; 
      plot(x,y,'k.',x,yacc,'r'), axis([2-256*s,2+256*s,-2e-9,2e-9]) 
   We will not explore the much less random behavior in this plot,  
   but just try to bound the error. To do so, we need to understand 



   the basics of floating point arithmetic.  
 
   (There is a large body of work studying roundoff in more detail,  
   leading to more accurate algorithms, see additional notes at the  
   end of this lecture and the class webpage for details.)  
 
 
Floating Point - How real numbers are represented in a computer 
 
Long ago, computers did floating point in many different ways, making  
it hard to understand bugs and write portable code.  Fortunately  
Prof. Kahan led an IEEE standards committee that convinced all the  
computer manufacturers to agree on one way to do it, called the  
IEEE 754 Floating Point Standard, for which he won the Turing Award.  
This was in 1985. The standard was updated in 2008, and again in 2019.  
We'll say more on the significant changes below. See the class 
webpage for links to more details. 
 
Scientific Notation: +- d.ddd x radix^e 
 
Floating point usually uses radix=2 (or 10 for financial applications) 
so you need to store the sign bit (+-), exponent (e), and  
mantissa (d.ddd). Both p = #digits in the mantissa and the exponent  
range are limited, to fit into 16, 32, 64 or 128 bits. Historically,  
only 32 and 64 bit precisions have been widely supported in hardware.  
But lately 16 bits have become popular, for machine learning, and 
companies like Google, Nvidia, Intel and others are also implementing  
a 16-bit format that differs from the IEEE Standard, called bfloat16, 
with even lower precision (p=8 vs p=11). And now there is a new 
standards committee exploring 8-bit floating point numbers, which have 
become very popular for machine learning, with many companies  
inventing their own slightly different versions. So with the same 
motivation as for the 754 standard, consistency and portability  
across platforms, the new committee is trying to find the best  
design for "most" problems. How to use such low precision 
to reliably solve linear algebra (and other non-machine learning)  
problems is an area of current research.  
 
For simplicity, we will initially ignore the limit on exponent range, 
i.e. assume no overflow or underflow. 
 
Normalization:  We use 3.1000e0 not  0.0031e3 - i.e. the leading digit 
is nonzero. Normalization gives uniqueness of representations, which  
is useful. And in binary, the leading digit must be 1, so it doesn't 
need  to be stored, giving us a free bit of precision (called the  
"hidden bit"). 
 
Def: rnd(x) = nearest floating point number to x  
     (Note: The default IEEE 754 rule for breaking ties is  
      "nearest even", i.e. the number whose least significant digit  
      is even (so zero in binary).) 
Def: Relative Representation Error (RRE):   
     RRE(x) = | x - rnd(x) | / | rnd(x) | 
Def: Maximum Relative Representation Error  = max_x  RRE(x) 



       (aka machine epsilon, macheps) 
       = half distance from 1 to next larger number 1+radix^(1-p) 
       = .5 * radix^(1-p) = | (1+.5*radix^(1-p)) - 1 | / 1 
       = 2^(-p) in binary 
    Note: eps in Matlab = 2^(-52) =  2*macheps 
 
Roundoff error model, assuming no over/underflow: 
      fl(a op b) = rnd(a op b) = true result rounded to nearest 
                 = (a op b)(1 + delta),   |delta| <= macheps   
      where op may be add, subtract, multiply or divide 
We will use this throughout the course, it's all you need for most 
algorithms. It's also true for complex arithmetic (but using a 
bigger macheps, see Q 1.12 for  details). 
 
Existing IEEE formats: single(S)/double(D)/quad(Q)/half(H) (radix = 2) 
      S: 32 bits =1 (for sign) +8 (for exponent) +23 (for mantissa),  
         So there are p=24 = 1 (hidden bit) + 23 bits to represent  
         a number, and so macheps = 2^(-24) ~ 6e-8 
         Also -126 <= e <= 127, so 
           overflow threshold (OV) ~  2^128 ~ 1e38,  
           underflow threshold (UN) = 2^(-126) ~ 1e-38 
      D: 64=1+11+52 bits, so p=53, macheps = 2^(-53) ~ 1e-16 
           -1022 <= e <= 1023, OV ~  2^1024 ~ 1e308, and 
           UN = 2^(-1022) ~ 1e-308 
      Q: 128=1+15+112 bits, p = 113, macheps = 2^(-113) ~ 1e-34 
           -16382 <= e <= 16383, OV ~  2^16384 ~ 1e4932, and 
           UN = 2^(-16382) ~ 1e-4932                           
      H: 16=1+5+10 bits,  p = 11, macheps = 2^(-11) ~ 5e-4 
           -14 <= e <= 15, OV ~  2^15 ~ 1e4, and UN = 2^(-14) ~ 1e-4  
 
The new bloat16 format has the following parameters: 
   16 = 1+8+7, so p=8, macheps = 2^(-8) ~ 4e-3 
   The exponent e has the same range as IEEE single (by design: 
   converting between bfloat16 and S cannot overflow or underflow). 
 
The committee working on 8-bit floating point for machine learning 
is working on a document describing our plans so far, which will 
Hopefully be released publicly soon. 
 
Referring back to Lecture 1, where we referred to the approach of 
using a few steps of Newton's method to be "guaranteed correct except 
in rare cases," a common approach is to try to do most of the work in 
lower (and so faster) precision, and then do just a little work 
in higher (and so slower) precision, typically to compute accurate 
residuals (like A*x-b), during the Newton steps; the goal is to get 
the same accuracy as though the entire computation had been done in 
higher precision. 
          
Even higher precision than 128 bits is available via software  
simulation (see ARPREC, GMP on the class web page) 
          
We briefly mention E(xtended), which was an 80-bit format on Intel x86  
architectures, and was in the old IEEE standard from 1985, but is now  
deprecated. See also the IEEE 754 standard for details of decimal  



arithmetic (future C standards will include decimal types, as already  
in gcc). 
 
That's enough information about floating point arithmetic to  
understand the plot of (x-2)^13, but more about floating point later. 
 
Analyze Horner's Rule for evaluating p(x): 
  simplest expression: 
       p = sum_{i=0 to d} a_i x^i 
  algorithm: 
       p   = a_d, for i=d-1:-1:0, p   =  x*p       + a_i 
  label intermediate results (no roundoff yet): 
       p_d = a_d, for i=d-1:-1:0, p_i =  x*p_{i+1} + a_i 
  introduce roundoff terms: 
       p_d = a_d,  
       for i=d-1:-1:0, p_i = [x*p_{i+1}*(1+d_i) + a_i]*(1+d'_i) 
                where |d_i| <= macheps and |d'_i| <= macheps  
Thus 
    p_0 = sum_{i=0:d-1}  
          [(1+d'_i)*prod_{j=0:i-1 (1+d_j)*(1+d'_j)]*a_i*x^i 
             + prod_{j=0:d-1} (1+d_j)*(1_d'_j)*a_d*x^d 
        = sum_{i=0:d-1} [product of 2i+1 terms like 1+d] a_i*x^i 
             + [product of 2d terms like (1+d)] a_d*x^d 
        = sum_{i=0:d} a'_i * x^i                 
 
In words: Horner is backward stable: you get the exact value of a 
polynomial at x but with slightly changed coefficients a'_i from  
input p(x). 
 
How to simplify to get error bound: 
      prod_{i=1:n} (1 + delta_i) 
         <= prod_{i=1:n} (1 + macheps) 
          = 1 + n*macheps + O(macheps^2)   
            ...  usually ignore (macheps^2) 
         <= 1 + n*macheps/(1-n*macheps)  if n*macheps < 1  
            ... (lemma left to students) 
  Similarly 
      prod_{i=1:n} (1 + delta_i) 
         >= prod_{i=1:n} (1 - macheps) 
          = 1 - n*macheps + O(macheps^2)   
            ...  usually ignore (macheps^2) 
         >= 1 - n*macheps/(1-n*macheps)  if n*macheps < 1  
            ... (lemma left to students) 
 
  So  |prod_{1 to n} (1 + delta_i) - 1| <= n*macheps  
         ... ignore macheps^2 
  and thus 
      |computed p_d - p(x)| <= sum_{i=0:d-1} (2i+1)*macheps*|a_i*x^i| 
                               + 2*d*macheps*|a_d*x^d| 
                            <= sum_{i=0:d} 2*d*macheps*|a_i*x^i| 
 
 relerr = |computed p_d - p(x)|/|p(x)| 
       <=  sum_{i=0:d} |a_i x^i| / |p(x)|   *   2*d*macheps 
        =  condition number  *  relative backward error 



 
 How many decimal digits can we trust? 
     dd correct digits <=> relative error <= 10^(-dd)  
                       <=> -log_10 (relative error) >= dd 
 
 How to modify Horner to compute (an absolute) error bound: 
       p = a_d,  ebnd = |a_d|, 
       for i=d-1:-1:1, p = x*p + a_i, ebnd = |x|*ebnd + |a_i| 
       ebnd = 2*d*macheps*ebnd 
 
Matlab demo: 
  coeff = poly(2*ones(13,1)); 
  x = [1.6:1e-4:2.4]; 
  y = polyval(coeff,x); 
  yacc = (x-2).^13; 
  ebnd = 13*eps*polyval(abs(coeff),abs(x)); 
  %   note eps in Matlab = 2*macheps 
  plot(x,y,'k.',x,yacc,'c',x,y-ebnd,'r',x,y+ebnd,'r') 
  axis([1.65 2.35 -1e-8 1e-8]), grid 
  %   need to make vertical axis wider to see bounds 
  axis([1.65 2.35 -1e-6 1e-6]), grid 
  %   conclusion: don't trust sign outside roughly [1.72, 2.33] 
 
Consider Question 1.21: how could we use this error bound to  
  stop iterating in root finding using bisection? 
  ... now try wider range, look at actual and estimated # correct  
      digits 
 
  x = -1:.0001:5; 
  y = polyval(coeff,x); 
  yacc=(x-2).^13; 
  ebnd=13*eps*polyval(abs(coeff),abs(x)); 
  plot(x,-log10(abs((y-yacc)./yacc)),'k.',x,-log10(ebnd./ ... 
       abs(yacc)),'r') 
  axis([-1 5 0 16]), grid 
  title('Number of correct digits in y') 
 
 
This picture is a foreshadowing of what will happen in linear algebra: 
The vertical axis is the number of correct digits, both actual  
(the black dots) and lower-bounded using our error bound (the red  
curve).   The horizontal axis is the problem we are trying to solve,  
in this simple case the value of x at which we are evaluating a fixed  
polynomial p(x).  
 
The number of correct digits gets smaller and smaller, until no  
leading correct digits are computed, the closer the problem gets to  
the hardest possible problem, in this case the root x=2 of the  
polynomial. This is the hardest problem because the only way to get  
a small relative error in the solution p(2)=0, is to compute 0  
exactly, i.e. no roundoff is permitted. And changing x very slightly 
makes the answer p(x) change a lot, relatively speaking. In other  
words, the condition number, sum_i |a_i x^i| / |p(x)| in this simple  
case, approaches infinity as p(x) approaches zero. 



 
In linear algebra the horizontal axis still represents the problem 
being solved, but since the problem is typically defined by 
an n-by-n matrix, we need n^2 axes to define the problem. There 
are now many "hardest possible problems", e.g. singular matrices 
if the problem is matrix inversion. The singular matrices form a 
set of dimension n^2-1 in the set of all matrices, the surface defined 
by det(A)=0.  And the closer the matrix is to this set, i.e. to being  
singular, the harder matrix inversion will be, in the sense that the  
error bound will get worse and worse the closer the matrix is to this  
set. Later we will show how to measure the distance from a matrix to  
the nearest singular matrix "exactly" (i.e. except for roundoff) using  
the SVD, and show that the condition number, and so the error bound,  
is inversely proportional to this distance. 
 
Here is another way the above figure foreshadows linear algebra. 
Recall that we could interpret the computed value of the polynomial 
p(x) = sum_i a_i*x^i, with roundoff errors, as the exactly right value  
of a slightly wrong polynomial, that is  
      p_alg(x) = sum_{i=0:d} [(1+e_i)*a_i]*x^i, 
where |e_i| <= 2*d*macheps. We called this property  
"backward stability", in contrast to "forward stability" which would  
means that the answer itself is close to correct.  So the error bound  
bounds the difference between the exact solutions of two slightly  
different problems p(x) and p_alg(x). 
 
For most linear algebra algorithms, we will also show they are  
backward stable. For example, if we want to solve A*x=b, we will  
instead get the exact solution of (A+Delta)*xhat = b, where the matrix  
Delta is "small" compared to A. Then we will get error bounds by  
essentially taking the first term of a Taylor expansion of  
inv(A+Delta): 
    xhat - x = inv(A+Delta)*b - inv(A)*b 
To do this, we will need to introduce some tools like matrix and  
vector norms (so we can quantify what "small" means) in the next  
lecture. 
 
To extend the analysis of Horner's rule to linear algebra algorithms,  
note the similarity between Horner's rule and computing dot-products: 
 
  p   = a_d, for i=d-1:-1:1, p   = x*p     + a_i 
  s   =  0 , for i=1:d,      s   = x_i*y_i + s 
 
Thus the error analysis of dot products, matrix multiplication, 
and other algorithms is very similar (homework 1.10 and 1.11).  
 
This is all you need to know to analyze the common behavior of many 
numerical algorithms. The next part of this lecture goes into more 
detail on other properties of floating point, such as exception 
handling, which are necessary for making algorithms reliable.  
 
 
Next we briefly discuss some properties and uses of floating point  



that go beyond these most basic properties (even more details are at the 
end of these notes). Analyzing large, complicated codes by hand  
to understand all these issues is a challenge, so there is research in  
automating this analysis; there is a day-long tutorial on available  
tools that was held at Supercomputing'19. 
 
(1) Exceptions: IEEE arithmetic has rules for cases like: 
    Underflow: Tiny / Big = 0   
         (or "subnormal", special numbers at bottom of exponent range) 
    Overflow and Divide-by-Zero 
       1/0 = Inf = "infinity", represented as a special case in the  
           usual format, with natural computational rules like:  
       Big + Big = Inf,  Big*Big = Inf,  3 - Inf = -Inf, etc. 
    Invalid Operation:: 
       0/0 = NaN = "Not a Number", also represented as special case 
       Inf - Inf = NaN, sqrt(-1) = NaN, 3 + NaN = NaN, etc 
    Flags are available to check if such exceptions occurred. 
 
    Impact on software: 
      Reliability: 
         Suppose we want to compute s = sqrt(sum_i x(i)^2): 
         What could go wrong with the following obvious algorithm? 
           s = 0, for i=1:n s = s + x(i)^2, end for,  s = sqrt(s)  
         To see how standard libraries deal with this, see snrm2.f  
         in the BLAS. 
         For a worst-case example, see Ariane 5 crash on webpage. 
         We are currently investigating how to automatically guarantee  
         that libraries like LAPACK cannot "misbehave" because of  
         exceptions (go into infinite loops, give wrong answer without  
         warning, etc.) 
      Error analysis: it is possible to extend error analysis to 
         take underflow into account by using the formula 
           rnd(a op b) = (1+delta)*(a op b) + eta 
         where |delta| <= macheps as before, and |eta| is 
         bounded by a tiny number, depending on how underflow is 
         handled. 
      Speed:  
         Run ``reckless'' algorithm, that is fast but ignores possible  
            exceptions 
         Check flags to see if exception occurred 
         In rare case of exception, rerun with slower, more reliable  
            algorithm 
 
(2) Higher precision arithmetic: possible to simulate using either  
    fixed or floating point, various packages available: MPFR, ARPREC,  
    XBLAS (see web page). There are also special fast tricks just for  
    high precision summation; see Homework 1.18. 
 
(3) Lower precision arithmetic: As mentioned before, many companies 
    are building hardware accelerators for machine learning, which 
    means they provide fast matrix multiplication. As mentioned in  
    Lecture 1, and will be discussed later, it is possible to  
    reformulate many dense linear algebra algorithms to use 
    matrix multiplication as a building block, and so it is natural  



    to want to use these accelerators for other linear algebra 
    problems as well. As illustrated in our error analysis of Horner's 
    rule, many of our error bounds will be proportional to 
    d*macheps, where d is the problem size (eg matrix dimension), 
    and often d^2*macheps or more. These bounds are only useful when 
    d*macheps (or d^2*macheps) are much smaller than 1.   
    So when macheps is ~4e-3 with bfloat16, this means d must be 
    much smaller than 1/macheps = 256, or much smaller than 
    1/sqrt(macheps) = 16, for these bounds to be useful. This is 
    obviously very limiting, and raises several questions: 
    Are our (worst case) error bounds too pessimistic? Can we do 
    most of the work in low precision, and little in high precision, 
    to get an accurate answer? There are some recent positive answers 
    to both these questions. 
 
(4) Variable precision: There have been various proposals over the 
    years to support variable precision arithmetic, sometimes with 
    variable word lengths, and sometimes encoded in a fixed length  
    word. Variable word lengths make accessing arrays difficult  
    (where is A(100,100), if every entry of A can have a different  
    bit-length?). There has been recent interest in this area,  
    with variable precision formats called unums (variable length)  
    and posits (fixed length), proposed by John Gustavson. Posits 
    allocate more bits for the mantissa when the exponent needs few 
    bits (so the number is not far from 1 in magnitude) and fewer 
    mantissa bits for long exponents. This so-called "tapered  
    precision" complicates error analysis, and it is an open 
    question of how error analyses or algorithms could change to 
    benefit. See the class webpage for links to more details, 
    including a youtube video of a debate between Gustavson and 
    Kahan about the pros and cons of unums.   
 
(5) Reproducibility: Almost all users expect that running the same  
    program more than once gives the bitwise identical answer; this is  
    important for debugging, correctness, even legal reasons  
    sometimes. But this can no longer be expected, even on your  
    multicore laptop, because parallel computers (so nearly all now),  
    may execute sums in different orders, and roundoff makes  
    summation nonassociative: 
     (1-1)+1e-20 = 1e-20 neq 0 = (1+1e-20)-1 
    There is lots of work on coming up with algorithms that fix this,  
    without slowing down too much, such as ReproBLAS (see web page).  
    The 2019 version of the IEEE 754 standard also added a new  
    "recommended instruction", to accelerate both the tricks  
    for high precision arithmetic in (2), and to make summation  
    associative (see web page). 
 
(6) Guaranteed error bounds from Interval Arithmetic: Represent each  
    floating point number by an interval [x_low,x_high], and use 
    special rounding modes in IEEE standard to make sure that lower  
    and upper bounds are maintained throughout the computation: 
      [x_low,x_high] + [y_low,y_high] =  
           [round_down(x_low+y_low),round_up(x_high+y_high)] 
    Drawback: naively replacing all variables by intervals like this  



    often makes interval widths grow so fast that they are useless.  
    There have been many years of research on special algorithms that  
    avoid this, especially for linear algebra (see web page). 
     
(7) Exploiting structure to get high accuracy: Some matrices have  
    special mathematical structure that allows formulas to be used  
    where roundoff is provably bounded so that you get high relative  
    accuracy, i.e. most leading digits correct. For example, 
    a Vandermonde matrix has entries V(i,j) = x_i^j, and arises  
    naturally from polynomial interpolation problems. It turns out  
    that this special structure permits many linear algebra problems,  
    even eigenvalues, to be done accurately, no matter how hard  
    (``ill-conditioned'') the problem is using conventional  
    algorithms. See the class webpage for details. 
 
(We end the recorded lecture here. The following notes give more 
Details about some of the above floating point issues.) 
 
(1) Exceptions: what happens when computed result would have an  
    exponent that is too big to fit, too small to fit, or isn't  
    mathematically defined, like 0/0? One gets "exceptions", with 
    rules about the results and how to compute with them, plus flags  
    to check to see if an exception occurred. 
  
    What if answer > OV? get infinity (overflow) 
        fl(1e20*1e20) = fl(1/0) = inf    ... in single 
        fl(3+inf) = inf, fl(1/inf) = 0, fl(1/-0) = -inf 
 
    What if answer mathematically undefined? get NaN = Not a Number  
        fl(sqrt(-1)) = fl(0/0) = fl(inf-inf) = NaN 
        3 + NaN = NaN ... so you see NaN on output if one occurred 
 
    What if answer < UN?  get underflow                              
      What to do: if you return zero, then what happens with code: 
          if (a .ne. b) then x = 1/(a-b)   ... can divide by zero,  
      Instead, IEEE standard says you get "subnormal numbers" 
         x = +- 0.dddd  * 2^exp_min instead of +- 1.dddd * 2^exp 
      Without subnormals, we would do error analysis with 
          fl(a op b) = (a op b)(1 + delta) + eta,    
             where |delta| <= macheps,   |eta| <= UN 
      With subnormals, can do error analysis with 
          fl(a op b) = (a op b)(1 + delta) + eta,    
             Where |delta| <= macheps, and 
            |eta| <= UN*macheps for *,/  and eta=0 for +-             
      Thm: With subnormals, for all floats a,b fl(a-b) = 0 iff a=b 
      Purpose: simplify reasoning about floating point algorithms 
 
    Why bother with exceptions? Why not always just stop when one  
    occurs? 
    (1) Reliability: too hard to have test before each floating point  
        operation to avoid exception 
         Ex for control system (see Ariane 5 crash on webpage),  
         Ex Matlab: don't want to go into infinite loop because of an  
            input NaN (caused several fixes to LAPACK, and also helped  



            motivate an on-going CS research project to build tools to  
            prove that NaNs, infinities, etc cannot cause infinite  
            loops or analogous bugs) 
    (2) Speed: ditto (too slow to test before each operation) 
          (1) run "reckless" code that is fast but assumes no  
              exceptions 
          (2) check exception flags 
          (3) in case of exception, rerun with slower algorithm 
        Ex: s = root-sum-squares = sqrt(sum_{i=1}^n x_i^2) 
        What could go wrong? (see Q 1.19) 
    (3) Sometimes one can prove code correct with exceptions: 
        Ex: Current fastest algorithms to find (some) eigenvalues of  
        symmetric matrices depends on these, including 1/(-0) = -Inf 
 
   Impact on LAPACK: One of the fastest algorithms in LAPACK for  
     finding eigenvalues of symmetric matrices assumes that  
     1/+0 = +infinity, and 1/-0 = -infinity, as specified by the IEEE  
     standard. We tried to port this code to an ATI GPU, 
     and discovered that they did not handle exceptions correctly:  
     1/(-0) was +infinity instead of -infinity. 
     The code depended on getting -infinity to get the right answer, 
     and (until they fixed their hardware) we had to take the quantity 
     in the denominator of 1/d and instead compute 1/(d+0), which made 
     the -0 turn into a +0, whose reciprocal was correctly computed.  
     See EECS Tech Report EECS-2007-179 for details. 
 
(2) Exploiting lack of roundoff in special cases to get high precision 
     Fact: if   1/2 < x/y < 2 then fl(x-y) = x-y  ... no roundoff 
     Proof: Cancellation in x-y means exact result fits in p bits 
     Fact: Suppose M >= abs(x). Suppose we compute 
             S = fl(M+x), q = fl(S-M),  r = fl(x-q) 
           In exact arithmetic, we would compute  
           r = x-q = x-(S-M) = x-((M+x)-M) = 0. 
           But in floating point, S+r = M+x exactly, with r being  
           the roundoff error, i.e. (S,r) is the double precision sum 
           of M+x 
     (Proof sketch in special case; only roundoff occurs in S=fl(M+x),  
      other two operations are exact). 
     This trick, called "Accurate 2-Sum" can be generalized in a  
     number of ways to get very general algorithms available in the  
     following software packages: 
      ARPREC (see class website): provides arbitrary precision  
            arithmetic 
      XBLAS (see class website): provides some double-double precision  
            Basic Linear Algebra Subroutines (BLAS), like  
            matrix-vector-multiplication. LAPACK uses these routines  
            to provide high accuracy solvers for Ax=b. 
      ReproBLAS (see class website): Provides bit-wise reproducible  
            parallel implementations of some BLAS. The challenge here  
            is that since roundoff makes floating point addition  
            nonassociative, computing a sum in a different order 
            will usually give a (slightly) different answer. On a  
            parallel machine, where the number of processors (and  
            other resources) may be scheduled dynamically, 



            computing a sum in a different order is likely. Since  
            getting even slightly different results is a challenge for  
            debugging and (in some cases) correctness, 
            we and others are working on efficient algorithms that  
            guarantee reproducibility. 
      New instruction in IEEE 754 2019: AugmentedAddition: This one  
            instruction takes any values of M and x, and returns  
            S = fl(M+x) and r = M+x-S exactly, a more general version  
            of Accurate 2-Sum (and potentially faster, depending on  
            how it is implemented). It also rounds M+x slightly  
            differently, rounding ties toward zero, instead of the  
            nearest even number, which can be used to make 
            floating point addition associative. There are analogous  
            AugmentedSubtraction and AugmentedMultiplication  
            instructions. 
 
     Finally, we point out the paper "Accurate and Efficient Floating  
     Point Summation," J. Demmel and Y. Hida, SIAM J. Sci. Comp, 2003,  
     for a efficient way to get full accuracy in a summation despite  
     roundoff (in brief: to sum n numbers to full accuracy, you need  
     to use log_2(n) extra bits of precision, and sum them in  
     decreasing order by magnitude), and the website  
        www.ti3.tu-harburg.de/rump/  
     for a variety of papers on linear algebra with guaranteed  
     accuracy. 
 
(3) Guaranteed error bounds (sometimes) via interval arithmetic: 
    So far we have used rnd(x) to mean the nearest floating point  
    number to x. 
    (Note: Ties are broken by choosing the floating point number whose 
    last bit is zero, also called "round to nearest even". This has  
    the attractive property that half the ties are rounded up and half  
    rounded down, so there is no bias in long sums.) 
    But the IEEE Floating Point Standard also requires the operations 
      rnd_down(x) = largest  floating point number <= x 
      rnd_up(x)   = smallest floating point number >= x 
    Thus [rnd_down(x+y),rnd_up(x+y)] is an interval guaranteed to  
    contain x+y. And if [x_min,x_max] and [y_min,y_max] are two  
    intervals guaranteed to contain x and y, resp., then  
    [rnd_down(x_min+y_min),rnd_up(x_max+y_max)] is guaranteed 
    to contain x+y. So if each floating point number x in a program is  
    represented by an interval [x_min,x_max], and we use rnd_down and  
    rnd_up to get lower and upper bounds on the result of each  
    floating point operation (note: multiply and division are a  
    little trickier than addition), then we can get guaranteed error 
    bounds on the overall computation; this is called interval  
    arithmetic. 
    Alas, naively converting all variables and operations in a program  
    to intervals often results in intervals whose width grows so  
    rapidly, that they provide little useful information. So there has  
    been much research over time in designing new algorithms that try  
    to compute intervals that are narrow at reasonable  
    cost. Google "interval arithmetic" or see the website  
    www.ti3.tu-harburg.de/rump/ for more information. 



 
(4) Accurate Linear Algebra despite roundoff: 
    A natural question is what algebraic formulas have the property  
    that there is some way to evaluate them that, despite round off,  
    the final answer is always correct in most of its leading digits: 
     Ex: general polynomial: no, not without higher precision 
     Ex: x^2+y^2:  yes, no cancellation,  
     Ex: determinant of a Vandermonde matrix: V(i,j) = x_i^(j-1):  
         General algorithm via Gaussian elimination can lose all  
         digits, but formula det(V) = prod_{i < j} (x_j - x_i) works 
 
   A complete answer is an open question, but there are some necessary  
   and sufficient conditions based on algebraic and geometric  
   properties of the formula, see article by  
   Demmel/Dumitriu/Holtz/Koev on "Accurate and Efficient Algorithms in  
   Linear Algebra" in Acta Numerica v 17, 2008: A class of linear  
   algebra problems are identified that, like det(Vandermonde), permit  
   accurate solution despite roundoff. We will not discuss this  
   further, just say that the mathematics depends on results going  
   back to Hilbert's 17th problem, which asked whether positive  
   rational (or polynomial) functions could always be written as a  
   sum of squares of other rational (or polynomial) functions  
   (answers: rational = yes, polynomial = no). For example,  
   when 0 < x_1 < x_2 < ... in the Vandermonde matrix V ,  
   it turns out most any linear algebra operation on V can be done  
   efficiently and to nearly full accuracy despite roundoff, including  
   eig(V).  (This work was cited in coauthor Prof. Olga Holtz's  
   award of the 2008 European Math Society Prize). 
 


