Welcome to Ma221! Lecture 16, Sep 29

Courses announcement: class projects related to LAPACK

How do we pick best permutation P

i.e. order of row & columns to do Cholesky on PA^T? Goal: minimize flops + memory

(backward stable for any P)

Use language of graph theory:

vertices: rows and columns
edges: locations of nonzeros (v_1, v_2) \(\rightarrow\) nonzero in A_{v_1,v_2}
weights: values of nonzeros

Last Time: RCM: Reverse Cuthill McKee

Breadth First Search: order vertices by distance from starting vertex

\(\Rightarrow\) "band" matrix

(block tri-diagonal)

Minimum Degree (MD)

Def: degree(v) = # edges touching v

\(\Rightarrow\) # nonzeros in row & column v

Fact: If I pick v as pivot:

\(\Rightarrow\) # flops = d^2 muls + add, d = degree(v)
\[\Rightarrow \text{fill-in (new nonzeros) } \leq d^2 \]

\[\cdot \cdot \cdot \quad \text{degree}(v) = 3 \]

Greedy Alg: at each step pick
v with minimum \(\text{deg}(v) \)

\[\text{degree}(v) = 3 \]

update graph to show nonzeros of next step
again pick minimum degree(v)

Matlab: amd, symamd, colamd

if \(A \neq A^T \) apply to \(A + A^T \)

ND = Nested Dissection: good if
vertices only connected to
"nearest neighbors"

\[V = \text{vertices} = V_1 \cup V_2 \cup V_3 \text{ disjoint} \]

\[1. \quad |V_1| \approx |V_2| \]

\[2. \quad |V_3| \text{ much smaller} \]

\[3. \quad \text{no edges connecting } V_1 \text{ and } V_2 \]

Order vertices \(V_1 \) first, then \(V_2 \), then \(V_3 \)
\[A = \begin{bmatrix} v_1 & v_2 & v_3 \\ v_2 & A_{11} & 0 \\ v_3 & A_{21} & A_{22} \end{bmatrix} \quad \Rightarrow \quad L = \begin{bmatrix} L_{11} & & \\ & L_{22} & \\ & & L_{33} \end{bmatrix} \]

Apply recursively to \(A_{11}\) and \(A_{22}\)

(plots of 7x7 mesh)

Thm (George, Hoffman (M.1), Rose, Gilbert, Tarjan 70s-80s)

Any ordering for Cholesky on \(n \times n\) mesh does at least \(\Omega(n^3)\) ops

= dense Cholesky on last separator, a dense \(n \times n\) matrix which costs \(O(n^3)\)

attained by ND

Applies to planar graphs (draw it on paper with no edge crossings)
(ex: NASA airfoil) (type "load airfoil" in Matlab)

Thm (Ballard, D., Hall, Schwartz 2009)

\(\Omega(\#\text{flops}/IM)\) \#flops depends
on sparsity pattern

Thm: (David, D., Grigor, Peyroud, 2010)
attainable by ND, done “carefully”
bottleneck is dense nxn matrix
for \(V_3 \)

Contrast with BandSolver:

\[\# \text{flops} = O(b^2 \cdot \text{dimension}) = n^4 \] for nxn mesh

(How to pick \(V_3 \) if not simple mesh:
lots of algo/Software, see CS267
METIS, ParMETIS)

What about 3D meshes \(n \times n \times n \)

\[\begin{tiny} V_1 \end{tiny} \quad \begin{tiny} V_2 \end{tiny} \quad \begin{tiny} ND \end{tiny} \] still good

\[\text{dimension} = n^3 \]

dense Chol: costs \(O(n^3) \)

band Chol: cost \(O(n^2) \)

\(ND \) : costs \(O(n^6) \)

Steps of sparse Cholesky:

Choose ordering (RCM, MD, ND, ...)
Build data Structures for \(A, L \)
Perform factorization

Contrast with GE with Partial Pivoting

where data structure dynamic
Ways to deal with Sparse general A

1. *Threshold pivoting*: among pivot choices at each step, pick one with least fill in, within a factor of 2 or 3 of largest (i.e. MD with some stability)

2. *Static Pivoting*: (SuperLU)

 1. reorder and scale A to make diagonal as large as possible

 Thm: For any nonsingular A

 Exist Perm P and diagonal D_1, D_2

 s.t. $B = P \cdot AP \cdot D_2$ satisfies

 $|B(i,i)| = 1$ and $|B(i,j)| \leq 1$

 \Rightarrow like Cholesky, choose pivots from diagonal

 2. reorder rows and cols of B

 using same techniques as for Cholesky, build data structures for B, L, U

3. During factorization, if a prospective pivot too small, make it bigger (rare) — low rank perturbation of A

 \Rightarrow use Sherman-Morrison or

 use perturbed A as preconditioner in iterative algorithm (GMRES)

Lots of algs, SW... (see "updated survey" by Xiaoye Li)

on class webpage