Welcome to Ma 221! Lecture 15, Sep 27

Last time: Sturm-Liouville → tridiagonal

Poisson's Eqn (Elliptic PDEs)

\[
\frac{\partial^2 u(x,y)}{\partial x^2} + \frac{\partial^2 u(x,y)}{\partial y^2} + q(x,y) \cdot u(x,y) = r(x,y)
\]

on square \([x,y] \in [0,1]^2\)

discretize as before: 2D mesh

\[
[x(i), y(j)] = [i \cdot h, j \cdot h] \quad h = \frac{1}{N+1}
\]

approx (4) as before:

\[
u(i,j) \approx 2u(i,j) + u(i+1,j) + u(i,j+1) - 2u(i,j) - 2u(i,j+1)
\]

16 unknowns 4x4 mesh

General Sparse Matrices:

Importance of choosing order of rows + cols to do LU, or Cholesky possibilities: \(A = PLU\), \(P, LUP\), \(PLL^TP\)

Best case choice of P (P or \(P\) and \(P\))

cost can drop from \(O(n^3)\) → \(O(n)\)

memory " " " \(O(n^2)\) → \(O(n)\)
Choosing Best \(P \) or \(P^r + P_0 \): NP-complete exponential cost

\[\Rightarrow \text{use heuristics} \]

Graph Theory:

Def: A weighted undirected graph \(G \) is a collection of 3 sets \((V,E,W)\)

- \(V = \text{vertices (aka nodes)} \)
- \(E = \text{edges connecting pairs of vertices} \)
 \((u,v) \), undirected means \((u,v) = (v,u) \)
 \((u,u) \) allowed
- \(W = \text{weight (number) for each edge} \)

\(V = \text{one row/cell per vertex} \)

\(E = \text{locations of non-zeros} \)

\((u,v) \in E \Rightarrow A(u,v) \) non-zero

undirected \(\Rightarrow \text{symmetric} \)

\((u,u) \Rightarrow \text{diagonal} \)

\(W = \text{values of non-zeros} \)

To choose perm \(P \) given matrix,

build graph, choose order for vertices

permute matrix accordingly

(example: 2D mesh of bridge)
Data Structures for Sparse Matrices

Goal: only store and compute nonzeros (ignore cancellation)

Simplest: COO: Coordinate Format
List of all nonzeros + locations

\[
A = \begin{bmatrix}
2 & 0 & 7 & 0.5 \\
0 & 1 & 4 & 0.3 \\
0 & 0 & 0 & 0
\end{bmatrix} \quad \text{COO}(A) = \{(2,1,1),(7,1,3)
(5,1,5),(1,2,2)\ldots\}
\]

any order of entries legal

Better: CSR, Compressed Sparse Row: 3 arrays
val: array of nonzeros in each row, from row 1 to n, left to right
val: \([2, 7, 5, 1, 4, 3, 8]\)

col_index: array of columns in which each nonzero lies
col_index: \([1, 3, 5, 2, 3, 5, 3]\)

row_begin = pointers to start of each row
row_begin = \([1, 4, 7, 9]\)

\(\text{up to } 5\) memory vs COO

Analogous: CSC = compressed sparse column

How to pick best (cheapest) order of rows, cols for LU?

Goals: minimize time + memory
Ordering impacts stability of GE, not Cholesky: start with "easy" case:
Cholesky (don't worry about stability)
Thm: Still NP-complete, still need heuristics

RCM = Reverse Cuthill-McKee
= Breath First Search, backwards

Def: A path in a graph from \(v_i \) to \(v_k \)
is a sequence of edges \((v_i,v_2),(v_2,v_3), \ldots (v_{k-1},v_k) \)

Def: Distance from \(v_i \) to \(v_k \) is length (# edges) in shortest path.

RCM: 1) pick any starting vertex, call it root
2) compute distances from root to all other \(v \in V \), \(\text{dist}(v) \)
 \(\text{dist}(\text{root}) = 0 \)
distance from root to all its immediate neighbors is 1, etc
3) order vertices in reverse of order visited
 cost = \(O(\# \text{ nonzeros}) \)
Fact: vertices at distance k from root can only be connected to vertices at distance $k-1$, k, or $k+1$.

\Rightarrow matrix block tridiagonal

Matlab: symrcm

Next time: MD = minimum degree
ND = nested dissection