Welcome to Ma 221! Lecture 13, Sep 22

4 axes to organize course
1) Math problem: Ax=b
2) Structure of A: coming up
3) Accuracy
 GEPP: Backward stable, rare failures
 \[
 \begin{bmatrix}
 1 & 0 & 0 & 1 \\
 0 & 1 & 1 & 0 \\
 0 & 1 & 0 & 1 \\
 0 & 1 & 0 & -1
 \end{bmatrix}
 \begin{bmatrix}
 2 \\
 4 \\
 4 \\
 8
 \end{bmatrix}
 \]
 repeated doubling can cause instability
 "Guaranteed accuracy", rare failures
 using iterative refinement
 convergence proof assumes \(\kappa(A) \cdot \epsilon \leq 1 \)
4) Fast as possible: minimize communication

Historically, LAPACK reorganized GEPP
to use BLAS3 (matmul, GEMM
triang solve \(\text{LX=B}, \text{TRSM} \))

Idea similar to induction proof for GEPP,
but do b columns at a time, apply
updates all at once to trailing matrix
For simplicity, ignore pivoting

\[A = b \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} = \begin{bmatrix} L_{11} \cdot U_{11} & A_{12} \\ L_{21} \cdot U_{11} & A_{22} \end{bmatrix} \]

using existing alg to do \[\begin{bmatrix} A_{11} \\ A_{21} \end{bmatrix} = \begin{bmatrix} L_{11} \\ L_{21} \end{bmatrix} U_{11} \]

\[= \begin{bmatrix} L_{11} \cdot U_{11} & L_{11} \cdot U_{12} \\ L_{21} \cdot U_{11} & A_{22} \end{bmatrix} \]

where we solved \(A_{12} = L_{11} \cdot U_{12} \) for \(U_{12} \) using TRSM

\[= \begin{bmatrix} L_{11} & 0 \\ L_{21} & I \end{bmatrix} \begin{bmatrix} U_{11} & U_{12} \\ 0 & L_{21} \cdot U_{12} \end{bmatrix} \]

Schur complement = \(S \) mat mul, QEMM

Repeat on \(S \)

Often very fast, but for some combinations of \(n \) and cache size \(M \) can't choose \(b \) to minimize comm
i.e. reach \(O(\frac{n^3}{M}) \) words moved

Just as for mat mul, there is a recursive cache oblivious alg that reaches \(O(\frac{n^3}{V M}) \)
(Toledo, 1997)
High Level alg:
DO LU on left half of A
Update right half
(U at top, Schur complement at bottom)
Do LU on Schur Complement

function \([L, U] = RLU(A)\) ... Recursive LU
... assume \(A\) \(n \times m\), \(n \geq m\), \(m\) power of 2
if \(m=1\) .. one column
pivot so \(A_{11}\) largest entry, pivot rest of matrix
\(L = A / A_{11}, U = A_{11}\)
else ... write \(A = \frac{1}{2} \begin{bmatrix} m/2 & m/2 \\ m/2 & m/2 \end{bmatrix}
\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}\)
\(L_1 = \begin{bmatrix} L_{11} \\ L_{12} \end{bmatrix}
\begin{bmatrix} m/2 \\ m/2 \end{bmatrix}
\)
\([L_1, U_1] = RLU(\begin{bmatrix} A_{11} \\ A_{22} \end{bmatrix})\) ... LU of left half
\(A_{12} = L_1 \cdot U_{12}\) for \(U_{12}\) ... update \(U\)
\(A_{22} = A_{22} - L_{21} \cdot U_{12}\) ... update Schur compl.
\([L_2, U_2] = RLU(A_{22})\)
\(L = \begin{bmatrix} L_1 \\ L_2 \end{bmatrix}\)
\(U = \begin{bmatrix} U_1 \\ U_2 \end{bmatrix}\)

Correctness by induction
Cost: Recurrences (for \(m=n\))
\(A(n) = 4\) arith ops = \(\frac{2}{3} n^3 + O(n^2)\)
same flops as usual alg
similar recurrence to matmul

\[W(n) = \# \text{word moved} = O\left(\frac{n^3}{\log n}\right) \]

RLV: only hits lower bound for \#words moved
\# messages

To minimize \# messages:

1. Replace partial pivoting by tournament pivoting (see notes)
2. Keep partial pivoting, more complicated data structure; payoff unclear

How to use Strassen-like alg?

Can modify RLV to run in \(O(n^w)\) flops if matmul does

1. multiply \(L_{12} \cdot U_{12}\) using \(O(n^w)\) matmul
2. solve \(A_{12} = L_{11} \cdot U_{12}\) by divide-conquer invert \(L_{11}\) (not as stable as GEPP)

\[
T = \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix}^{-1} = \begin{bmatrix} T_{11}^{-1} & -T_{11}^{-1} \cdot T_{12} \cdot T_{22}^{-1} \\ 0 & T_{22}^{-1} \end{bmatrix}
\]

Use \(O(n^w)\) matmul

recall \(L_{ii} = 1\), \(L_{ij} \leq 1\) so

should be reasonably conditioned
Where to find implementations

Matlab: $A \backslash b$, or $[L,U,P]=lu(A)$

$rcond$, cond2est to estimate $\kappa(A)$

LAPACK:

- `xGETRF : GEPP` \(x = S/D/C/Z \)
- `xGETRF2 : G-EPP recursively`
- `xGESV` solve \(Ax = b \)
- `xGESVX` iterative refinement in precision \(x \)
- `xGESVXX` iterative refinement residual in double precision of \(x \)
- `xGECON` for condition est

Many other libraries

- Scalapack
- SLATE cluster
- PLASMA
- MAGMA
- ...

Exploiting Structure in \(A \)

- A symmetric positive definite: (spd)
 - Cholesky, no pivoting, \(\frac{1}{2} \) flops of GEPP

- A symmetric only
 - save half flops, pivoting required
 - but care needed to keep symmetry
A: band matrix
 \(bw = \text{bandwidth} \)
 costs in flops drops from \(O(n^3) \) to \((bw^2 \cdot n) \)
 space drops from \(O(n^2) \) to \(O(bw \cdot n) \)

A: sparse matrix: lots of zeros
 cost, space drop significantly
 depends on pattern of nonzeros
 many complicated algo; lots of software

A: structured matrices: dense but
 depend on \(O(n) \) parameters
 Vandermonde: \(V(i,j) = x_i^{j-1} \)
 Toeplitz: \(T(i,j) = t_{i-j} \)
 many more, discuss most common

Symmetric (Hermitian) Positive Definite
 spd or hpd for short

def: \(A \) real and spd iff \(A = A^T \)
 and \(x^T A x > 0 \ \forall x \neq 0 \ \ x \text{ real vector} \)

A complex and hpd iff \(A = A^* \)
 and \(x^H A x > 0 \ \forall x \neq 0 \ \ x \text{ complex vector} \)
Lemma: (just real case)

1) \(X \) nonsingular \(\Rightarrow \) \(A \) s.p.d. \(\iff \) \(X^T A X \) s.p.d.

pf: \(A \) s.p.d. and \(x \neq 0 \Rightarrow Xx \neq 0 \Rightarrow \)

\(0 \neq (Xx)^T A (Xx) = x^T X^T A X x = x^T (X^T A X) x \)

\(\Rightarrow X^T A X \) s.p.d. other direction same.

2) \(A \) s.p.d. \(H = A(j:k, j:k) \)

\(H \) "principal submatrix" \(H \) s.p.d.

pf: \(A \) s.p.d. \(y \neq 0 \Rightarrow 0 \neq x = \begin{bmatrix} y \end{bmatrix} \)

\(\Rightarrow 0 \neq x^T A x = y^T H y \Rightarrow H \) s.p.d.

3) \(A \) s.p.d. \(\iff \) \(A = A^T \) and all evals \(d_i > 0 \)