
Notes for Ma221 Lecture 13, Nov 27, 2023 
 
Krylov subspace methods for A*x=b and A*x = lambda*x 
 
Next we consider Krylov Subspace Methods, of which there are many, 
depending on the matrix structure. For spd matrices like our model 
problem, Conjugate Gradients (CG) is the most widely used, and the 
one we will discuss in most detail. We will also summarize 
the other methods with a "decision tree" that chooses the right 
algorithm depending on properties of your matrix (like symmetry, 
positive definiteness, etc), see Fig 6.8 in the text. 
 
Unlike Jacobi, GS and SOR, a Krylov subspace method for Ax=b or 
A*x = lambda*x need only assume that you have a "black-box" subroutine for 
multiplying A times a vector by x (or A^T times x, for some methods).  
So you cannot ask for the diagonal part, or subdiagonal part, etc.  
that you would need for methods like Jacobi. 
This is particularly useful in two situations:  
(1) If you are writing a library for solving A*x=b, the user can simply  
input a pointer to a function that computes A*z for any z, and your 
algorithm calls it without having to know any details about how A 
is represented. 
(2) A may not actually be represented as a matrix with explicit entries,  
but as the result of evaluating some complicated function. 
For example, suppose you have a system, like a car engine or airplane 
wing, governed by a complicated set of PDEs. You'd like to optimize 
some set y of n outputs of the PDE as a function of some set x of  
n inputs, y=f(x), say the pressure on the wing as a function of 
its shape. For some optimization methods, this means that you need to solve  
linear systems with the nxn coefficient matrix A = del f, the Jacobian of f.  
A is not written down, it is define implicitly as the derivative  
of the outputs of the simulation with respect to its inputs, and varies  
depending on the inputs.  The easiest way to access A is to note that  
A*z = del f * z ~ ( f(x+h*z) - f(x) )/h when h is small enough, so  
multiplication by A requires running the simulation twice to get f(x+h*z)  
and f(x) (care must be taken in choosing h small enough but not too small, 
because otherwise the result is dominated by error). 
There is no such simple way to get A^T * z, unfortunately. 
 
There is actually software that takes an arbitrary collection of C or 
Fortran subroutines computing an arbitrary function y = f(x), and  
produces new C or Fortran subroutines that compute del f(x), by differentiating 
each line of code automatically; google "ADIFOR" or see 
   wiki.mcs.anl.gov/autodiff/ 



Another more specialized and widely used example, for training neural nets,  
is TensorFlow. 
 
On the other hand, if we assume that the matrix A is available explicitly, 
then it is possible to reorganize many Krylov subspace methods to significantly 
reduce their communication costs, which are dominated by moving the data needed 
to represent the sparse matrix A. For example, when A is too large to fit in 
cache (a typical situation), each step of a conventional sequential method does a  
multiplication A*x, which requires reading the matrix A from slow memory to cache. 
Thus the communication cost is proportional to the number of steps, call it k. 
However the reorganized Krylov subspace methods can take k steps and only 
read A from slow memory once, a potential speedup of a factor of k. 
See the link to the 2014 Acta Numerica survey article on the class webpage for more 
details. In practice k is limited by both the sparsity structure of A and issues 
of numerical stability; numerical stability is also discussed in more detail in  
Chap 7 of the text. 
 
We begin by discussing how to extract information about A from a subroutine 
that does A*z. Given a starting vector y_1 (say y_1 = b for solving A*x=b),  
we can compute y_2 = A*y_1, ... , y_(i+1) = A*y_i, ... y_n = A*y_(n-1) = A^(n-1)*y_1. 
Letting K = [y_1,y_2,...,y_n] we get 
    A*K = [A*y_1,...,A*y_n] = [y_2,y_3,...,y_n,A^n*y_1] 
Assuming for a moment that K is nonsingular, write c = -K^(-1)*A^n*y_1 to get 
    A*K = K*[e_2,e_3,...,e_n,-c] = K*C 
where 
    C = K^(-1)*A*K = [ 0 0 ... 0 -c_1 ] 
                                   [ 1 0 ... 0 -c_2 ] 
                                   [ 0 1 ... 0 -c_3 ] 
                                   [        ...            ] 
                                   [ 0 0 ... 1 -c_n ] 
is upper Hessenberg, and a companion matrix, i.e. its characteristic polynomial 
is simply p(x) = x^n + sum_(i=1 to n) c_i*x^(i-1). So just by matrix-vector 
multiplication we have reduced A to a simple form, and could imagine using 
C to solve A*x=b or find eigenvalues.  
 
But this would be a bad idea for two reasons: 
(1) K is likely to be dense (if y_1 is dense), and solving with K is 
probably harder than solving with A 
(2) K is likely to be very ill-conditioned, since it is basically 
running the power method, so the vectors y_i are converging to the 
eigenvector of the largest eigenvalue in absolute value. 
 
Krylov subspace methods address these two drawbacks, implicitly or explicitly, 
as follows:  



We will not compute K but rather an orthogonal Q such that the 
leading k columns of K and of Q span the same space, called a Krylov subspace: 
   span{y_1,y_2,...,y_k} = span{y_1,A*y_1,...,A^(k-1)*y_1} 
                                         = {script K}_k(A,y_1) 
The relationship between K and Q is simply the QR decomposition: K = Q*R. 
Furthermore, we won't compute all n columns of K and Q, but just the 
first k << n columns, and settle for the "best" approximate solution 
x of A*x=b or A*x = lambda*x that we can find in the Krylov subspace  
they span (the definition of "best" depends on the algorithm). 
 
(We pause the recorded lecture here.) 
 
To proceed, substitute K = Q*R into C = K^{-1}*A*K to get 
    C = R^{-1)*Q^T*A*Q*R 
or 
(*)    R*C*inv(R) = Q^T*A*Q = H 
since R and so R^{-1} are triangular, and C is upper Hessenberg, 
then H is also upper Hessenberg (Question 6.11 in the text).  
If A is symmetric, then so is H, and so H is tridiagonal. 
 
To see how to compute the columns of Q and H one at a time, write 
Q = [q_1,q_2,...,q_n], rewrite (*) as 
  A*Q = Q*H 
and equate the j-th column on both sides to get 
  A*q_j = sum_{i=1 to j+1} q_i*H(i,j) 
Since the q_j are orthonormal, multiply both sides of the last equality 
by q_m^T to get 
 q_m^T*A*q_j = sum_{i=1 to j+1} H(i,j)*q_m^T*q_i = H(m,j) for 1 <= m <= j 
and so 
 H(j+1,j) * q_(j+1) = A*q_j - sum_{i=1 to j} q_i*H(i,j) 
 
This yields the following algorithm: 
 
Arnoldi algorithm for (partial) reduction of A to Hessenberg form: 
   q_1 = y_1 / ||y_1||_2 
   for j = 1 to k 
      z = A*q_j 
      for i = 1 to j ... run Modified Gram-Schmidt (MGS) on z 
         H(i,j) = q_i^T*z 
         z = z - H(i,j)*q_i 
      end for 
      H(j+1,j) = ||z||_2 
      q_(j+1) = z / H(j+1,j) 
   end for 



 
The q_j vectors are called Arnoldi vectors, and the cost is k multiplications  
by A, plus O(k^2*n) flops for MGS. If we stop the algorithm here, at k < n, what have  
we learned about A? Write Q = [Q_k,Q_u] where Q_k = [q_1,...,q_k] is 
computed as well as the first column q_{k+1} of Q_u; the other columns of Q_u 
are unknown. Then 
    H = Q^T*A*Q = [Q_k,Q_u]^T * A * [Q_k,Q_u] 
                             = [ Q_k^T*A*Q_k  Q_k^T*A*Q_u ] = [ H_k  H_uk ] 
                                [ Q_u^T*A*Q_k  Q_u^T*A*Q_u ]    [ H_ku H_u  ] 
Since H is upper Hessenberg, so are H_k and H_u, and H_ku 
has a single nonzero entry in its upper right corner, namely H(k+1,k). 
So H_uk and H_u are unknown, and H_k and H_ku are known. 
 
When A is symmetric, so that H is symmetric and tridiagonal, we may write 
    H = T = [ alpha_1 beta_1         0                                             ...    ] 
                 [ beta_1   alpha_2  beta_2       0                               ...    ] 
                 [     0         beta_2    alpha_3  beta_3 0                     ...    ]  
                 [                                            ...                                              ] 
                 [                                               ... 0  beta_(n-1)   alpha_n ] 
Equating column j on both sides of A*Q = Q*T yields 
    A*q_j = beta_(j-1)*q_(j-1) + alpha_j*q_j + beta_j*q_(j+1) 
Multiplying both sides by q_j^T yields  
    q_j^T*A*q_j = alpha_j 
leading to the following simpler version of the Arnoldi algorithm, 
called Lanczos: 
 
Lanczos algorithm for (partial) reduction of A=A^T to tridiagonal form 
   q_1 = y_1 / ||y_1||_2, beta_0 = 0, q_0 = 0 
   for j = 1 to k 
      z = A*q_j 
      alpha_j = q_j^T*z 
      z = z - alpha_j*q_j - beta_(j-1)*q_(j-1) 
      beta_j = ||z||_2 
      q_(j+1) = z / beta_j 
   end for 
 
Here is some notation to describe the Arnoldi and Lanczos algorithms. 
As above, the space spanned by {q_1,...,q_k} is called a Krylov subspace: 
   {script K}_k(A,y_1) = span{q_1,...,q_k} 
or {script K}_k for short. 
We call H_k  (T_k for Lanczos) the projection of A onto {script K}_k. 
 
Our goal is to solve A*x=b or A*x = lambda*x by somehow finding 
the "best" solution in the Krylov subspace. 



 
For the eigenvalue problem, the answer is simple: use the eigenvalues 
of H_k (or T_k) as approximate eigenvalues of A. To see what the 
error is, suppose H_k*y = lambda*y and write 
   H * [ y ] = [ H_k  H_uk] * [ y ] = [ H_k*y   ] = [ lambda*y                ] 
          [ 0 ]    [ H_ku H_u ]    [ 0 ]    [ H_ku*y]     [ H(k+1,k)*y_k*e_1 ] 
and since A*Q = Q*H 
   A * (Q * [ y ] ) = lambda * (Q * [ y ] ) + q_(k+1)*H(k+1,k)*y_k 
                  [ 0 ]                                 [ 0 ] 
so if the product of H(k+1,k)*y_k is small, the eigenvalue/vector pair 
(lambda, y') = (lambda, Q*[y ; 0]) has a small residual  
   || A*y' - lambda*y' ||_2 = |H(k+1,k)*y_k| 
When A is symmetric, we know from Chapter 5, Thm 5.5,  that this is in fact a 
bound on the error in lambda. 
 
To see how the eigenvalues of T_k approximate the eigenvalues of A as k grows, 
we consider the symmetric case (Lanczos), and plot the eigenvalue of T_k 
versus k (Figure 7.2:  LanczosConvergence9.eps and LanczosConvergence29.eps). 
Chapter 7 discusses finding eigenvalues and eigenvectors in more detail. 
The monotonic convergence of the largest and smallest eigenvalues shown in 
these pictures is due to the Cauchy Interlace Thm (homework Q5.4, part 1). 
 
This presentation has ignored floating point errors so far. In practice, it 
is common for the vectors q_j to lose orthogonality as the number of iterations 
grows, leading to more complicated behavior, and interesting algorithmic changes. 
See Chap 7 for more details. 


