
Notes for Ma221 Lecture 8, Oct 9, 2023 
 
Dealing with (nearly) low-rank matrices 
Motivation: Real data is often low-rank, so we want to both 
(1) take precautions to avoid getting inaccurate LS solutions, 
(2) take advantage of it to compress the data, go faster, both deterministically 
    and using randomization 
I will use (1) as an application of compression, but compressing large data sets 
comes up in other applications too. 
 
Solving a Least Squares Problem when A is rank deficient 
Thm: Let A be m x n with m >= n, but rank r < n.  
  Let A = U*Sigma*V^T = [U1,U2,U3]*[Sigma1    0   ] * [V1,V2]^T 
                                                                   [  0    Sigma2 ] 
                                                                   [  0             0   ] 
  be the SVD of A where  
     U  is m x m, U1 is m x r, U2 is m x n-r, U3 is m x m-n 
     Sigma is m x n, Sigma1 is r x r, Sigma2 is n-r x n-r and exactly 0 (later: tiny) 
     V  is n x n, V1 is n x r, V2 is n x n-r 
  Then the set of vectors x minimizing ||A*x-b||_2 can be written as 
    {x =  V1 * Sigma1^(-1) * U1^T * b + V2 * y2, y2 any vector of dimension n-r} 
  The unique vector minimizing ||A*x-b||_2 and ||x||_2 is 
     x =  V1 * Sigma1^(-1) * U1^T * b ,  i.e. the choice y2 = 0 
 
 Def: A^+ = V1 * Sigma1^(-1) * U1^T is the Moore-Penrose pseudo-inverse of the rank-r 
      matrix A (includes the full rank case n=r). (In practice, Sigma_2 are all 
      singular values less than some use-determined threshold tol.) 
 
So square or not, full rank or not, "best" solution is argmin_x ||A*x-b||_2 = A^+*b 
 
Proof: || A*x-b ||_2  
       =  || U*Sigma*V^T*x - b ||_2 
       =  || Sigma*V^T*x - U^T*b ||_2    since U is orthogonal 
       =  || Sigma*y - U^T*b ||_2    where y = V^T*x and x have the same 2-norm, 
          since V is orthogonal, so finding the LS solution minimizing || y ||_2 also 
          minimizes || x ||_2 
       =  || [ Sigma1 * y1 - U1^T*b ] ||  
           || [                        - U2^T*b ] || 
           || [                        - U3^T*b ] ||_2 
          where y = [y1 ; y2], y1 is r x 1, and y2 is n-r x 1 
       This is obviously minimized by choosing y1 = Sigma1^(-1)*U1^T*b. 
       And || y ||_2^2 = || y1 ||_2^2 + || y2 ||_2^2 is minimized by y2 = 0. 
       So x = V*y = [V1, V2] * [y1; y2] = V1*y1 + V2*y2 = V1*Sigma1^(-1)*U1^T*b. 
 



Solving a Least Squares Problem when A is (nearly) rank deficient,  
   with the truncated SVD 
 
We have defined the condition number of a matrix as sigma_max / sigma_min, 
where sigma_min = 0 for a rank deficient matrix, so the condition number is 
formally infinite. To illustrate this, compare the (minimum norm)  
least square solutions of 
   argmin || [ 1 0 ] * [ x1 ] - [ 1 ] ||      = [ 1 ] 
                 || [ 0 0 ]    [ x2 ]   [ 1 ] ||         [ 0 ] 
                 || [ 0 0 ]                [ 1 ] ||_2 
and 
   argmin || [ 1 0 ] * [ x1 ] - [ 1 ] ||     = [ 1   ] 
                 || [ 0 e ]    [ x2 ]   [ 1 ] ||        [ 1/e ] 
                 || [ 0 0 ]                [ 1 ] ||_2 
which are arbitrarily different as e approaches 0.  Given this sensitivity,  
it is natural to ask what sense it can make to solve a rank deficient least  
squares problem, when the solution can change discontinuously? In particular,  
we usually only know A to within some tolerance tol, i.e. the true A' 
could satisfy || A - A' || <= tol. When A is nearly singular, what should we do? 
 
Def: Given A and some tolerance tol bounding the uncertainty in A, the "truncated SVD" 
of A is defined as A(tol) = U * Sigma(tol) * V^T, where A = U*Sigma*V^T is the usual  
SVD, and Sigma(tol) = diag(sigma_i(tol)), where 
     sigma_i(tol) = { sigma_i if sigma_i >= tol 
                              {    0          if sigma_i <  tol 
In other words, we "truncate" all the singular values smaller than tol to zero. Or,  
we replace A by the lowest rank matrix A(tol) within a distance tol (measured by the  
2-norm) of A.  
 
Using the truncated SVD effectively replaces the usual condition number  
sigma_max(A)/sigma_min(A) by sigma_max(A)/tol, which can be much smaller, depending on 
the choice of tol. In other words, tol is a "knob" one can turn to trade off  
conditioning with how closely A*x can approximate b (raising tol, and so lowering the 
rank of A, decreases the dimension of the space that can be approximated by A*x).  
Replacing A by an "easier" matrix is also called "regularization" (using the truncated 
SVD is just one of several mechanisms). The following Lemma illustrates this in a  
special case, where just vector b changes. The general case depends on whether one  
picks tol in a "gap" between singular values, since otherwise a small perturbation  
could change the number of singular values > tol. 
 
 
 
 
 



Lemma: The difference between   
        x1 = argmin_x ||A(tol)*x-b1||_2 and x2 = argmin_x ||A(tol)*x-b2||_2 
     (where we choose the solution of smallest norm in both cases) 
     is bounded by ||b1-b2||_2 / tol. 
     So choosing a larger tol limits the sensitivity of the solution. 
Proof: Let A = U*Sigma*V^T and A(tol) = U*Sigma(tol)*V^T as above. Then 
|| x1-x2 ||_2 = || (A(tol))^+(b1-b2) ||_2 = || V*(Sigma(tol))^+*U^T*(b1-b2) ||_2 
  = || diag(1/sigma(1) , 1/sigma(2) , ... , 1/sigma(k), 0 ... 0 ) *U^T*(b1-b2) ||_2 
              where sigma(k) >= tol 
 <= (1/sigma(k)) * || U^T*(b1-b2) ||_2 
 <= (1/tol) * || b1-b2 ||_2 
 
Setting small singular values to zero also compresses the matrix, since it costs  
just m*k + k + k*n numbers to store, as opposed to m*n.  So tol is also a "knob"  
that trades off compression with approximation accuracy. 
 
The SVD is the most precise and most accurate way to approximate a matrix by one of  
lower rank, costing O(mn^2), with a big constant. Now we explore other cheaper ones,  
both deterministic and randomized. 
 
Solving a Least Squares Problem when A is (nearly) rank deficient,  
   with (Tikhonov) regularization, aka ridge regression 
 
Another common way to deal with the drawback of the solution becoming unbounded 
as the smallest singular values of A approach 0, is regularization, or computing 
   x = argmin_x  norm(A*x-b,2)^2 + lambda^2*norm(x,2)^2   
     = argmin_x  norm([A ; lambda*I]*x - [b;0], 2)^2 
where I is an n-by-n identity matrix, and where lambda is a "tuning parameter"  
to be chosen by the user. The larger lambda is chosen, the more weight is placed  
on norm(x,2), so the more important it is to minimize relative to norm(A*x-b,2). 
From the second line above, we can easily write down the normal equations: 
   x = ([A ; lambda*I]^T * [A ; lambda*I])^(-1) * [A ; lambda_I]^T * [b ; 0] 
     = (A^T*A + lambda^2*I)^(-1)* A^T * b 
Adding lambda^2 to the diagonal of A^T*A before Cholesky just increases all the 
eigenvalues of A^T*A by lambda^2, pushing it farther away from being singular. 
If A = U*Sigma*V^T is the thin SVD of A, then substituting this for A yields 
   x = V * (Sigma*inv(Sigma^2 + lambda^2*I)) * U^T * b 
     = V * diag(sigma_i / (sigma_i^2 + lambda^2) ) * U^T * b 
which reduces to the usual solution x = V * inv(Sigma)*U^T*b when lambda = 0. Note  
that when sigma_i >> lambda, the above expression is close to 1 / sigma_i as expected,  
and when sigma_i < lambda, it is bounded by sigma_i / lambda^2, so it can't get larger  
than 1/lambda. Thus lambda and tol in A(tol) play similar roles. 
 
 



Solving a Least Squares Problem when A is (nearly) rank deficient, with QR 
 
Our next alternative to the truncated SVD is QR with column pivoting: 
Suppose we did A = QR exactly, with A of rank r < n; what would R look like? 
If the leading r columns of A were full rank (true for "most" such A), then 
  R = [ R11 R12 ] with R11 r x r and full rank, so R22 = 0. 
        [  0     R22 ] 
If A is nearly low-rank, we can hope that || R22 || < tol, and set R22 to zero. 
Assuming that this works for a moment, write 
A = QR = [Q,Q']*[ R ] with [Q,Q'] = [Q1,Q2,Q'] square and orthogonal as before, 
                             [ 0 ] 
with Q1 m x r, Q2 m x (n-r) and Q' m x (m-n). Thus 
     argmin_x || Ax-b ||_2 = argmin_x || [Q1,Q2,Q']*[ R ] * x - b ||_2 
                                                                                              [ 0 ] 
                           = argmin_x || [ R11 R12 ] * [ x1 ] - [ Q1^T*b ] || 
                                                || [  0        0  ]     [ x2 ]   [ Q2^T*b ] || 
                                                || [  0        0  ]                 [ Q'^T*b ]  ||_2 
      = argmin_x  || [ R11*x1 + R12*x2 - Q1^T*b ] || 
                            || [                                 - Q2^T*b ] || 
                            || [                                 - Q'^T*b ]  ||_2 
with solution x1 = inv(R11)*Q1^T*b - inv(R11)*R12*x2 for any x2. 
But how do we pick x2 to minimize || x ||_2? 
Ex: A = [ e  1 ] = [ R11 R12 ], b = [ b1 ] , so we get x = [ (b1 - x2)/e ] 
             [ 0  0 ]    [  0     R22 ]        [ b2 ]                            [         x2       ] 
and so if e is tiny, we better pick x2 carefully (close to b1) to keep norm(x) small. 
But if we permute the columns of A to A*P and minimize  || A*P*xhat - b ||_2 we get 
 A*P = [ 1 e ] = [ R11 R12 ] so we get xhat = [ b1 - e*x2hat ] 
            [ 0 0 ]    [  0     R22 ]                               [          x2hat     ] 
so norm(x) is much less sensitive to the choice of x2hat.  
 
What would a "perfect" R factor look like? We know the SVD gives us the best possible 
answer, so comparing [ R11 R12 ; 0 R22] to [ Sigma_1 , 0 ; 0 , Sigma_2 ] makes sense. 
These observations motivate the following (informal) definition: 
 
(Informal) Def: A Rank Revealing QR Factorization (RRQR) of A is A*P = Q*R where 
P is a permutation, Q orthogonal, R = [ R11 R12 ] with R11 k x k where 
                                                                    [  0    R22 ]  
(1) R22 is "small", ideally sigma_max(R22) = O( sigma_(k+1)(A) ), i.e. R22 "contains" 
    the n-k smallest singular values of A 
(2) R11 is "large", ideally sigma_min(R11) not much smaller than sigma_k(A) 
If in addition to (1) and (2) we have 
(3) norm(inv(R11)*R12) is "not too large" 
then we call A*P = Q*R a "strong rank revealing QR" 
 



(Informal) Thm: If (1), (2) and (3) hold, then   
    sigma_i(A) >= sigma_i(R11) >= sigma_i(A)/sqrt(1+norm(inv(R11)*R12)^2) for i=1:k 
    sigma_i(A) <= sigma_max(R22)*sqrt(1+norm(inv(R11)*R12)^2) for i=k+1:n 
In other words, the singular values of R11 are good approximations of the 
largest k singular values of A, and the smallest n-k singular values of A 
are roughly bounded by norm(R22). Or, the leading k columns of A*P  
contain most of the information of the range space of A:  
  A*P=[A1,A2]=Q*R=[Q1,Q2]*[R11 R12] ~ [Q1,Q2]*[R11 R12] = Q1*R11*[I,inv(R11)*R12] 
                                                     [ 0    R22]                      [ 0        0 ] 
     = A1*[I,inv(R11)*R12] 
 
But how do we compute the permutation P? 
 
Simplest: QR with column pivoting (QRCP). This is the oldest and simplest way, 
and often works, but like LU with partial pivoting, there are some rare matrices 
where it fails by a factor near 2^n. And it maximizes communication. 
At the first step, the algorithm chooses the column of A of largest norm;  
at each following step, the algorithm picks the column with the biggest component  
orthogonal to all the columns already chosen.  
Intuitively, this "greedy algorithm" picks the column with the biggest 
projection in a direction not spanned by previously chosen columns. 
The algorithm is simply 
  for i=1:min(m-1,n) or until the trailing submatrix (R22) is small enough 
      Choose largest column in trailing matrix, i.e. argmax_{j>=i} norm(A(i:m,j)) 
      if i neq j, swap columns i and j 
      Multiply A(i:m,i:n) by a Householder reflection to zero out A(i+1:m,i) 
  endfor 
If the algorithm stops after k steps, because the trailing matrix A(k+1:m,k+1:n) 
has no column larger than some tolerance, the cost is about 4mnk, versus O(mn^2) 
for the SVD, so much cheaper if k ~ rank(A) << n. 
To understand why this works: the first multiplication by a Householder reflection 
decomposes trailing columns into a part parallel to first column (now just parallel to  
e_1) and an orthogonal part (in rows 2:m). Choosing the column of biggest norm in  
rows 2:m chooses the column with the biggest component orthogonal to the first column. 
At each step we similarly choose the trailing column with the biggest component  
orthogonal to the previously chosen columns.  The arithmetic cost is low, since we can 
just update norm(A(i:m,j)) from iteration to iteration for O(m*n) cost, rather than  
recomputing them for O(mn^2) cost. 
But this simple algorithm "maximizes communication", since we read and write the 
entire trailing matrix A(i:m,i:n) at each step. This is available in LAPACK's geqpf 
and Matlab's [Q,R,P]=qr(A). 
 
Here is a typical example, which shows how well each R(i,i) approximates sigma(i): 
   A = randn(50)*diag(.5.^(1:50))*randn(50);[Q,R,P]=qr(A);r=abs(diag(R));s=svd(A); 



   figure(1),semilogy(1:50,r,'r',1:50,s,'k'),title('red = diag(r), black = svd') 
   figure(2),plot(r./s),title('diag(r)/svd'), figure(3), spy(P) 
 
As a (rare) example where QRCP fails to pivot well, consider A = S*C*D where 
  cs = 1/sqrt(2); sn = 1/sqrt(2); n=30; 
  S = diag(sn.^(0:n-1)); C = eye(n)-cs*triu(ones(n,n),1); D = diag(.9999.^(0:n-1)); 
  A = S*C*D; [Q,R,P]=qr(A);figure(2),spy(P);pause, r=abs(diag(R));s=svd(A); 
  figure(1),semilogy(1:n,r,'r+-',1:n,s,'k+-'),title('red = diag(R), black = svd') 
  figure(3),semilogy(1:n,r./s,'k+-'), title('diag(r)/svd') 
i.e. C has ones on the diagonal and -cs above the diagonal. sn and cs satisfy 
sn^2+cs^2=1.  D is not necessary in exact arithmetic, but avoids roundoff problems. 
A is upper triangular, and QRCP does not permute any columns, so A = Q*R = I*A. 
and letting k=n-1 yields R22 = sn^(n-1) but  
sigma_n(A) = 1/norm(inv(A)) ~ 1/norm(inv(C)*inv(S)) <= 1/(norm(inv(C)(:,n))*sn^(1-n)) 
           = 1/(norm([cs*(1+cs)^(n-2),cs*(1+cs)^(n-3),...])*sn^(1-n)) 
           < sn^(n-1)/[cs*(1+cs)^(n-2)] 
so sigma_n(A) can be smaller than R22 by an exponentially large factor 
cs*(1+cs)^(n-2), which can grow as fast as 2^(n-2) when cs ~ 1. 
So QRCP has two weaknesses: (rare) failure to pivot well, and high communication  
cost.  We address these in turn. 
 
Gu/Eisentat Strong RRQR Algorithm. This algorithm deals with the rare failure to  
pivot correctly. It uses a more complicated pivoting scheme, that depends on 
the norms of columns of R22, rows of inv(R11), and entries of inv(R11)*R12, 
and guarantees a strong RRQR.  It does so by cheaply exchanging a column in R11 and 
another column not in R11 if that increases det(R11) by a sufficient factor. 
It still costs only 4mnk (plus lower order terms), about the same as QRCP when m >> n. 
 
Avoiding communication in QR with column pivoting: Neither of the last two algorithms 
was designed with minimizing communication in mind, and so both access the entire  
matrix each time a column is chosen, and so the number of read/writes is also O(mn^2), 
same as the number of flops, instead of the hoped for factor of  
sqrt(fast_memory_size) smaller.  
 
The first attempt to fix this is in LAPACK's geqp3.f. This uses matrix multiply to  
update the trailing submatrix, as do LU and plain QR, but only reduces the number  
of reads/writes by 2x compared to the simple routine. Still, it is often faster. 
 
 
But to approach the lower bound, we seem to need a different pivoting strategy, which 
can choose multiple pivot columns for each matrix access, not just 1. 
The approach is similar to the TSLU algorithm described earlier.  
We present the sequential version, which chooses b pivot columns with one 
pass through the matrix (the parallel version is analogous) 



 
  BestColumnsSoFar = (1:b) ... b is a blocksize to be chosen for accuracy/performance 
  for k = b+1 to n-b+1 step b  ... assume b | n for simplicity 
     form m x 2b matrix A_2b from columns in BestColumnsSoFar and columns k:k+b-1 
     ... choose the b "best columns" among the 2b columns in A_2b, for example by: 
     factor A_2b = Q*R, using TSQR 
     choose best b columns of R (just 2b x 2b), using RRQR or Strong RRQR, 
     update BestColumnsSoFar based on result 
 
After each outer iteration, BestColumnsSoFar contains the indices of the b best  
columns found so far among columns 1 to k+b-1. The parallel version takes pairs 
of m x b submatrices, chooses the best b columns from each set of 2b, and 
proceeds to pair these up and choose the best (which is why we call it 
"tournament pivoting" by analogy to having a "tournament" where at each round 
we choose the best). However, the flop count roughly doubles compared to QRCP. 
 
So far we have only considered low rank factorizations where (at least) one factor 
is an orthogonal matrix, say Q in QR.  Q can be thought of as linear combinations  
of columns of A, which approximate the column space of A. But not all data analysis  
questions can best be answered by such linear combinations. Suppose the rows represent 
individual people, and the columns represent some of their characteristics, like age, 
height and income.  If one of the columns of Q happens to be 
   .2*age - .3*height + .1*income + ... 
then it can be hard to interpret what this means, as a ``predictor'' of the other 
columns/characteristics, like "been treated for disease X" . And if there are  
thousands of columns, it is even harder.  Instead, it would be good to be able to  
approximate the other columns by linear combinations of as few columns as possible,  
and analogously to approximate the other rows by a subset of the rows.  
This leads to the following decomposition: 
 
Def: A CUR decomposition of a matrix A is consists of the matrices 
       C is a subset of k columns of A 
       R is a subset of k rows of A 
       U is a kxk matrix 
     where norm(A - C*U*R) is "small", i.e. close to the lower bound sigma_(k+1), 
     which is attained by the SVD truncated to rank k. 
 
A number of algorithms for computing a CUR decomposition have developed over time, 
see the class webpage for details. Here we highlight two, because they are easy to  
implement given the tools we have already presented: 
   (1) Perform QR with some kind of column pivoting, to pick the k ``most linearly 
       independent'' columns of A; let J = [j_1, j_2, ... , j_k] be the indices of 
       these columns, and let C consist of these columns of A. 
   (2) Perform GEPP, or TSLU, on C, to pick the k most linearly independent 



       rows of C; let  I = [i_1, i_2, ... , i_k] be the indices of these rows, 
       and let R consist of these rows of A. 
Having chosen C and R, we still need to choose U so that C*U*R approximates A. 
Here are two approaches: 
   (1) The best possible U is given by the solution to HW 3.12: the U that  
       minimizes the Frobenious norm of A - C*U*R is U=pinv(C)*A*pinv(R), 
       where pinv(C) is the Moore-Penrose pseudo-inverse of C. 
   (2) A cheaper approximation is just to choose U so that C*U*R equals A in 
       columns J and rows I. Since the 3 k-by-k matrices C(I,1:k) = R(1:k,J) = A(I,J) 
       are equal, we just let U be the inverse of this common matrix. 
 
Now we consider randomized algorithms.  Related reading is posted on the class  
webpage.  The basic idea for many randomized algorithms is as follows: 
Let Q be an m x k random orthogonal matrix, with k << n. Then we approximate A  
by Q*(Q^T*A), the projection of A's columns onto the space spanned by Q. Since 
Q^T*A has k << n rows, solving the LS problem is much cheaper than with A. 
Multiplying Q^T*A costs 2*m*n*k flops if done straightforwardly, which is only 
about 2x cheaper than QRCP above. So there has been significant work on 
finding structured or sparse Q, and not necessarily orthogonal, to make computing  
Q^T*A much cheaper. To date the best (and surprising result) says that you can 
solve a LS problem approximately, where A is sparse, with just O(nnz(A)) flops,  
where nnz(A) is the number of nonzeros in A.  
 
We give some motivation for why such a random projection should work by some  
low-dimensional examples, and then state the Johnson-Lindenstrauss Lemma,  
a main result in this area. 
 
Suppose x is a vector in R^2, and q is a random unit vector in R^2, i.e. 
q = [sin t; cos t] where t is uniformly distributed on [0,2*pi). What is the  
distribution of |x^T*q|^2 = (norm(x)*|cos(angle(x,q))|)^2? It is easy to see that  
angle(x,q) is also uniformly distributed on [0,2*pi), so the expected value  
E(|x^T*q|^2) = .5*norm(x)^2, and more importantly, the probability that |x^T*q|^2  
underestimates norm(x)^2 by a tiny factor e, is Prob(|cos(t))|^2 < e) ~ 2*sqrt(e)/pi,  
so tiny too. 
 
Now suppose x is a vector in R^3, and Q represents a random plane, i.e. Q is a  
random 3x2 orthogonal matrix, and x^T*Q is the projection of x onto the plane of Q. 
We again ask how well the size of the projection norm(x^T*Q)^2 approximates norm(x)^2: 
Now the probability that norm(x^T*Q)^2<e*norm(x)^2 is the same as the probability 
that x is nearly parallel to the perpendicular to the plane of Q, which can be 
thought of as a random point on the unit sphere in R^3. This probability is O(e),  
much tinier, because x needs to be nearly orthogonal to both columns of Q. 
 
 



Intuitively, as the number of columns of Q increases, the chance that norm(x^T*Q)^2 
greatly underestimates norm(x)^2 decreases rapidly. The Johnson-Lindenstrauss Lemma 
captures this, not just for one vector x, but for many vectors: 
           
J-L Lemma: Let 0 < eps < 1, and x_1,..,.x_n be any n vectors in R^m, and 
k >= 8*ln(n)/eps^2. Let F be a random k x m orthogonal matrix multiplied by 
sqrt(m/k). Then with probability at least 1/n,  for all 1 <= i, j <= n, i neq j, 
    1 - eps <= norm(F*(x_i - x_j))^2/norm(x_i - x_j)^2 <= 1 + eps 
 
The point is that for F*x to be an eps approximation of x in norm, the number of rows 
of F grows "slowly", proportional to ln(n) = ln(# vectors) and 1/eps^2. The  
probability 1/n seems small, but being positive it means that F exists (the original  
goal of Johnson and Lindenstrauss).  And it comes from showing that the probability  
of a large error for any one vector x_i - x_j is tiny, just 2/n^2.  
This justifies using a single random F in the algorithms below. 
 
(The proof follows by observing that we can think of F as fixed and each vector 
x = x(i)-x(j) as random, and simply take F as the first k rows of the mxm identity,  
and each entry of x an i.i.d. (independent, identically distributed) Gaussian N(0,1), 
i.e. with 0 mean and unit standard deviation, reducing the problem to reasoning about  
sums of squares of i.i.d. N(0,1) variables. See the paper by Dasgupta and 
Gupta on the class webpage for details.) 
 
There is a range of different F matrices that can be used, which tradeoff cost and 
statistical guarantees, and are useful in different applications. The presentation 
below is based on the 2011 and 2020 survey articles by Tropp et al posted on the 
class web page, and other papers posted there. 
 
One can construct a random orthogonal m x k matrix Q, with m >= k, simply as follows: 
Let A be m x k, with each entry i.i.d. N(0,1), and factor A = Q*R (and there are  
LAPACK routines for this). Then F = sqrt(m/k)*Q^T in the J-L Lemma. 
But this costs O(mk^2) to form F, which is too expensive in general. 
 
 
In some applications, it is enough to let each entry of F be i.i.d. N(0,1), without 
doing QR until later in the algorithm, we will see an example of this below. But 
multiplying F*x still costs O(mk) flops, when x is dense. 
 
The next alternative is the subsampled randomized Fourier Transform (SRFFT), 
for which F*x only costs O(m*log(m)) or even O(m*log(k)). (We will talk more about 
the FFT later in the semester.) In this case F = R*FFT*D where 
  D is m x m diagonal with entries uniformly distributed on the unit circle in the complex plane 
  FFT is the m x m Fast Fourier Transform 
  R is k x m, a random subset of k rows of the m x m identity 



There are also variations in the real case where the FFT is replaced by an even cheaper 
real (scaled) orthogonal matrix, the Hadamard transform, all of whose entries are +-1,  
and D's diagonal is also +-1; this is called SRHT.  The only randomness is in D and R.  
The intuition for why this works is that multiplying by D and then the FFT "mixes" the 
entries of x sufficiently randomly that sampling k of them (multiplying by R) is good enough. 
 
Finally, when x is sparse, we would ideally like an algorithm whose cost only grew 
proportionally to nnz(x). In the real case, we can take F = S*D where 
  D is m x m diagonal with entries randomly +-1 (analogous to above) 
  S is k x m, where each column is a randomly chosen column of the k x k identity 
Note that S and R above are similar, but not the same. Multiplying y = S*D*x can be 
interpreted as initializing y=0 and then adding or subtracting each entry of x to a  
randomly selected entry of y. If x is sparse, the cost is nnz(x) additions or  
subtractions.  This is called Randomized Sparse Embedding in the literature. 
This F is not as "statistically strong" as the F's described above, so we may need to 
choose a larger k to prove any approximation properties. 
 
Given these options for F, we give some examples of their use. We will give more 
examples in the context of iterative methods (Chap 6) later in the semester. 
 
Consider the dense least squares problem x_true = argmin_x || A*x-b ||_2 where  
A is m x n.  We approximate this by  
   x_approx = argmin_x || F*(A*x-b) ||_2 = argmin_x || (F*A)*x - F*b ||_2.  
Using results based on the J-L Lemma, we can take F to have k = n*log(n)/eps^2 rows 
in order to get || A*x_approx - b ||_2 <= (1+eps) * || A*x_true - b ||_2, in other 
words the residual is nearly as small as the true residual with high probability.  
But there is no guarantee about how far apart x_true and x_approx are.  
 
Now we consider the cost. Given a dense F, forming F*A using dense matmul costs  
O(kmn) = O(mn^2*log(n)/eps^2), so more than solving the original problem using QR,  
O(mn^2).  If we use SRFFT or SRHT and A is dense, forming F*A costs just O(mn*log(m)). 
Next, F*A has dimension k x n and so solving using QR costs  
O(kn^2) = O(n^3*log(n)/eps^2), for a total cost of  
O(mn*log(m) + n^3*log(n)/eps^2), potentially much less than O(mn^2) 
when m >> n and eps is not too small. In other words, if high accuracy is needed, 
a randomized algorithm like this may not help (we discuss randomized 
iterative algorithms later, which help address this). 
 
Finally, we mention a least squares algorithm that costs just just O(nnz(A)), plus  
lower order terms.  For details also see the papers by Clarkson and Woodruff, and by  
Meng and Mahoney on the class webpage.  This uses the F called a Randomized Sparse 
Embedding above, where we take k = O((n/eps)^2*log^6(n/eps)).  
Then forming F*A and F*b costs nnz(A) and nnz(b), resp., much less than SRFFT when  
A is sparse. But note that k grows proportionally to n^2, much faster than with the  



SRFFT, where k grows like n.  If we solved argmin_x || (F*A)*x - F*x||_2  
using dense QR, that would cost O(kn^2) = O(n^4*log^6(n/eps)/eps^2),  
which is much larger than with SRFFT.  So instead we use a randomized algorithm  
again (say SRFFT) to solve argmin_x || (F*A)*x - F*x ||_2. 
 
Thm: With probability at least 2/3,  
   || A*x_approx - b ||_2 <= (1+eps) * || A*x_true - b ||_2 
 
How can we make the probability of getting a good answer much closer to 1? 
Just run the algorithm repeatedly: After s iterations, the probability that 
at least one iteration will have a small error rises to 1 - (1/3)^s, 
and of the s answers x_1,...,x_s, the one that minimizes norm(A*x_i-b,2) is 
obviously the best one. 
 
Next we consider the problem of using a randomized algorithm for computing a  
low rank factorization of the mxn matrix A, with m >> n. 
We assume we know the target rank k, but since we often don't know k accurately in 
practice, we will often choose a few more columns k+p to see if a little larger 
(or smaller) k is more accurate. 
This algorithm is of most interest when k << n, i.e. the matrix is low rank. 
Note that in the following, the F matrices will be tall-and-skinny, and 
applied on the right (eg A*F), so the transpose of the cases so far. 
 
Randomized Low-Rank Factorization: 
1.choose a random nx(k+p) matrix F 
2.form Y = A*F, which is mx(k+p); we expect Y to accurately span the column space of A 
3.factor Y = Q*R, so Q also accurately spans the column space of A. 
4.form B = Q^T*A, which is (k+p)xn 
We now approximate A by Q*B = Q*Q^T*A, the projection of A onto the column space of Q. 
In fact by computing the small SVD B = U*Sigma*V^T, we can write  
Q*B = (Q*U)*Sigma*V^T as an approximate SVD of A. 
 
The best possible approximation for any Q is when Q equals the first k+p left  
singular vectors of A = U_A*Sigma_A*V_A^T, in which case  
Q*Q^T*A = U_A(1:m,1:k+p)*Sigma_A(1:k+p,1:k+p)*(V_A(1:n,1:k+p))^T, and 
norm(A - Q*Q^T*A,2) = sigma(k+p+1). But our goal is to only get a good rank k  
approximation, so we are willing to settle for an error like sigma(k+1). 
 
Thm: If we choose each F(i,j) to be i.i.d. N(0,1), then the expected value of 
  norm(A - Q*Q^T*A,2) is 
  E(norm(A -Q*Q^T*A,2)) <= (1 + 4*sqrt(k+p)/(p-1)*sqrt(min(m,n)))*sigma(k+1) 
and  
  Prob(norm(A-Q*Q^T*A,2) <= (1+11*sqrt(k+p)*sqrt(min(m,n)))*sigma(k+1)) >= 1 - 6/p^p 
So for example choosing just p=6 makes the probability about .9999. 



 
When is a Randomized Low Rank Factorization cheaper than a deterministic algorithm  
like QRCP, which costs O(m*n*(k+p))? When A is sparse, with nnz(A) nonzero entries, 
the last 3 steps of the algorithm cost:  
  (2) 2*nnz(A)*(k+p) 
  (3) 2*m*(k+p)^2 
  (4) 2*nnz(A)*(k+p) 
each of which can be much smaller than m*n*(k+p). 
Whether the cost of (3) dominates (2) and (4) depends on the density of A; 
if A averages (k+p) or more nonzeros per row, then (2) and (4) dominate (3). 
Later in Chap 7 we will consider other, so-called Krylov subspace algorithms 
that also attempt to compute an approximate SVD of a sparse matrix, whose cost is 
also dominated by a number of matrix-vector multiplications by A, each one costing 
2*nnz(A) flops. We will see that the ideas of Krylov subspace methods and randomized 
algorithms can be combined. 
 
When A is dense, we need another approach. As mentioned above, forming an explicit  
dense F, and multiplying it by a dense A*F, will cost 2*m*n*(k+p) flops, comparable  
to QRCP.  If we use SRFFT or SRHT for F, the cost of forming Y=A*F drops to  
O(m*n*log(n)), potentially much less than QRCP. Factoring Y=Q*R is still O(m*(k+p)^2), 
also potentially much less than QRCP when k+p << n. But the cost of B = Q^T*A is  
still O(m*n*(k+p)), like QRCP. So we need another idea: 
 
Randomized Low-Rank Factorization via Row Extraction 
1.choose a random nx(k+p) matrix F 
2.form Y = A*F, which is mx(k+p); we expect Y to accurately span the column space of A 
3.factor Y = Q*R, so Q also accurately spans the columns space of A. 
 
 
4.find the "most linearly independent" k+p rows of Q; write P*Q = [Q1;Q2] where 
  P is a permutation and Q1 contains these k+p rows; we can use GEPP on Q or  
  QRCP on Q^T for this 
5.let X = P*Q*inv(Q1) = [I;Q2*inv(Q1)]; we expect norm(X) to be O(1) 
  (eg if QRCP yields a strong rank revealing decomposition) 
6.let P*A = [A1;A2] where A1 has k+p rows; our low rank factorization of A is 
  A ~ P^T*X*A1 
 
The cost of the algorithm on a dense matrix is 
 (2) O(m*n*log(n)) or O(m*n*log(k+p)) if F is SRFFT or SRHT 
 (3) 2*m*(k+p)^2 
 (4) 2*m*(k+p)^2 
 (5) O(m*(k+p)^2) 
which is much better than the previous O(m*n*(k+p)) cost when the rank k+p is low 
compared to n. 



 
The next theorem tells us that if QRCP or GEPP works well in step 5,  
ie. norm(X) = O(1), then we can't weaken the approximation by a large factor: 
Thm: norm(A - P^T*X*A1) <= (1 + norm(X))*norm(A - Q*Q^T*A) 
Proof: suppose for simplicity that P = I. Then 
  norm(A - X*A1)  = norm(A - Q*Q^T*A + Q*Q^T*A - X*A1) 
                 <= norm(A - Q*Q^T*A) + norm(Q*Q^T*A - X*A1) 
                  = norm(A - Q*Q^T*A) + norm(X*Q1*Q^T*A - X*A1) 
                 <= norm(A - Q*Q^T*A) + norm(X)*norm(Q1*Q^T*A - A1) 
                 <= norm(A - Q*Q^T*A) + norm(X)*norm(Q*Q^T*A - A) 
                  = (1+norm(X))*norm(A - Q*Q^T*A) 


