
Notes for Math 221, Lecture 5, Sep 18, 2023

Last time we spoke about dense matrix multiplication, and how to make 
it go fast, by doing as little communication as possible, or by doing 
asymptotically fewer floating point operations too (eg Strassen's 
method). Our goals for the rest of dense linear algebra (solving Ax=b, 
least squares, etc) will include these. But we have more goals:
   Backward stability: get the right answer for a slightly different 
      problem A + E where norm(E) = O(macheps) * norm(A)
   Exploit structure: go faster when matrix is symmetric, positive 
      definite, or "sparse". Here sparse means that matrix depends on 
      << n^2 parameters, either because most matrix entries are zero, 
      or if it is dense but the entries depend on few parameters. 
      For example, the Vandermonde matrix V(i,j) = x(i)^(j-1) is dense
      but depends on just n parameters x(1:n), and there is an O(n^2) 
      algorithm to solve V*y=b (hint: it is just polynomial 
      interpolation in disguise).

One of the linear algebra problems will be computing the SVD 
A = U*Sigma*V^T, which  is one example of a matrix factorization of 
A into a product of simpler matrices. All the other algorithms we 
discuss will also explicitly or implicitly compute matrix 
factorizations:
   Gaussian elimination: A = P*L*U where P is a permutation, 
      L lower triangular, U upper triangular (with variations if 
      A is symmetric, or positive definite too)
   Least Squares: A = Q*R, Q orthogonal, R upper triangular
   Eigenvalue problem: A = Q*T*Q^H where Q unitary, T (nearly) 
      triangular

And there are others, for example for computing modes of vibration 
(eigenvalues and eigenvectors) of a system with two matrices (mass 
and stiffness) or three (damping too), or deciding whether a linear 
control system with feedback can be made stable.

We begin with Gaussian elimination for a general (rectangular) matrix.
Def: Permutation matrix: identity matrix with permuted rows
Facts: let P, P1 etc be permutation matrices
    P*X = row permutation of X and  X*P = column permutation of X
    P1*P2 also a permutation matrix
    inv(P) = P^T, i.e. P is orthogonal (enough to check that
       diag(P*P^T) = all ones)
    det(P) = +-1
    to store and multiply by P, just keep track of locations of ones 
      (cheap)

Thm (LU decomposition): Given any m x n full rank matrix A, with 
m >= n, there exist
    m x m permutation matrix P
    m x n unit lower triangular matrix L (unit means L(i,i)=1)



    n x n nonsingular upper triangular matrix U
  such that A = P*L*U
In the proof below, we will use induction, which is just Gaussian 
elimination.

Cor: If A n x n and nonsingular, there exist an n x n permutation P, 
     unit lower triangular L, and nonsingular upper triangular U 
     such that A = P*L*U

To solve A*x = b:
  (1) factor A = P*L*U (expensive part, cost = (2/3)n^3)
  (2) Solve P*L*U*x = b for L*U*x = P^T*b by permuting b 
      ... cost = O(n)
  (3) Solve L*U*x = P^T*b for U*x = inv(L)*P^T*b using  
      forward substitution with L ... cost = n^2 flops
  (4) Solve U*x = inv(L)*P^T*b for x = inv(U)*inv(L)*P^T*b = inv(A)*b 
      using back substitution with U ... cost = n^2 flops
If we are given another b' vector, we can solve A*x'=b' in 2n^2 more 
flops.

Note: We do not compute inv(A) and multiply x = inv(A)*b because it is
(1) 3x more expensive in dense case, can be much worse in sparse case 
    (O(n^2) times!)
(2) not as numerically stable

Proof of Theorem:
  If A is full rank, the first column is nonzero, so there is a 
  permutation P such that (P*A)(1,1) is nonzero. Write
   P*A = [ A11 A12 ] = [ 1       0 ] * [ A11 A12              ]
         [ A21 A22 ]   [ A21/A11 I ]   [  0  A22 -A21*A12/A11 ]
  where A11 is 1 x 1, A21 is (m-1) x 1, A12 is 1 x (n-1) and 
  A22 is (m-1) x (n-1).
  Now A full (column) rank => P*A full rank => S = A22 - A21*A12/A11  
  is full rank. (Otherwise, if some nonzero linear combination of 
  columns of S were 0, say S*x=0, then a linear combination of columns 
  of A would be zero, A*[-A12*x/A11 ; x] = 0, contradicting A being 
  full column rank.) More simply in the square case: 
     det(A) nonzero => 0 neq det(first factor) * det(second factor)
                             =  1 * A11 * det(S)   => det(S) nonzero )
  Notation: S called Schur complement
  Now apply induction: S = P'*L'*U', so
  P*A = [ 1       0 ] * [ A11 A12     ]
        [ A21/A11 I ]   [  0  P'*L'*U']
      = [ 1         0   ] * [ A11 A12 ]
        [ A21/A11 P'*L' ]   [  0  U'  ]
      = [ 1 0  ] * [ 1              0  ] * [ A11 A12 ]
        [ 0 P' ]   [ P'^T*(A21/A11) L' ]   [  0  U'  ]
      = P''      *      L                *     U
      = permutation * unit_lower_triangular * upper_triangular
 where U is nonsingular.



 So A = P^T*P'' * L * U = permutation * L * U    QED.

Expressing this as an algorithm, we get the following (ignore 
permutations first)
 for i = 1 to n 
   ... i = 1 performs algebra shown above, 
   ... i>1 applies the same algorithm recursively to the Schur 
   ...   complement
   L(i,i) = 1, L(i+1:n,i) = A(i+1:n,i)/A(i,i)
   U(i,i:n) = A(i,i:n)
   if (i < n)  A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - L(i+1:n,i)*U(i,i+1:n)

Add permutations: after "for i=1 to n", add:
      if A(i,i) zero and A(j,i) nonzero, swap rows i and j of L and A;   
          record swap
        ... choosing A(j,i) is called "pivoting", more on this below

Don't waste space:
   row i of U overwrites row of i A: omit U(i,i:n) = A(i,i:n)
   col i of L (below diagonal) overwrites same entries of A, which are 
      zeroed out: change first line to A(i+1:n,i) = A(i+1:n,i)/A(i,i)
   only need to loop from i = 1 to n-1, and change last line from
       A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - L(i+1:n,i)*U(i,i+1:n)
   to
       A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - A(i+1:n,i)*A(i,i+1:n)

Finally, we get
  for i=1 to n-1
    if A(i,i) zero and A(j,i) nonzero, swap rows i and j of A; 
        record swap
    A(i+1:n,i) = A(i+1:n,i)/A(i,i)  ...  call to BLAS1 routine scal
    A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - A(i+1:n,i)*A(i,i+1:n)  
        ... call BLAS2 ger
(draw picture of intermediate step)

When we're done:
    U overwrites upper triangle and diagonal of A
    L (below diagonal) overwrites A (below diagonal)
       The unit diagonal entries L(i,i)=1 are not stored. 

To see that this is the same Gaussian Elimination you learned long 
ago, start from
   for i=1 to n-1 ... for each column i
     for j=i+1 to n ... add a multiple of row i to row j to zero out
                    ... entry (j,i) below diagonal
        m = A(j,i)/A(i,i)
        A(j,i:n) = A(j,i:n) - m*A(i,i:n)
"Optimize" this by
  (1) not bothering to compute the entries below the diagonal you know 
      are zero:



      change last line to A(j,i+1:n) = A(j,i+1:n) - m*A(i,i+1:n)
  (2) compute all the multipliers m first, store them in zeroed-out 
      locations:
      for i=1 to n-1
        for j=i+1 to n
           A(j,i) = A(j,i)/A(i,i)
        for j=i+1 to n
           A(j,i+1:n) = A(j,i+1:n) - A(j,i)*A(i,i+1:n)
  (3) combine loops into single expressions to get same as before:
      for i=1 to n-1
        A(i+1:n,i) = A(i+1:n,i)/A(i,i)
        A(i+1:n,i+1:n) = A(i+1:n,i+1:n) - A(i+1:n,i)*A(i,i+1:n)

The cost is sum_{i=1 to n-1} 2(n-i)^2 = (2/3)n^3 + O(n^2) multiplies 
and adds.

We need to do pivoting carefully, i.e. choosing which nonzero to put 
on the diagonal, even if A(i,i) is nonzero, to get a backward stable 
result, i.e. P*L*U = A + E where E is small compared to A.
For example, if we run in single precision, so with 7 decimal digits, 
and take
      A = [ 1e-8   1 ],  inv(A) ~ [ -1   1  ] ,
          [    1   1 ]            [  1 -1e-8]
then cond(A) ~ 2.6, really small, so we expect a good answer. But
      L = [    1   0 ]   U = [ 1e-8  1                 ]
          [  1e8   1 ]       [  0  fl(1-1e8*1) = -1e8  ]
     and so L*U = [  1e-8   1 ]
                  [   1     0 ]
which is very different from A in the (2,2) entry. In fact, we'd get 
the same (wrong) L and U if A(2,2) were .5, -1, etc. because the 
operation fl(A(2,2)-1e8*1) "forgets" A(2,2) if A(2,2) is small enough, 
say O(1). So going on to solve A*x=b using L and U will give very 
wrong answers.

If we instead pivot (swap rows 1 and 2) so A(1,1)=1, then we get full 
accuracy. The intuition is that we want to pick a large entry of A to 
be the "pivot" A11, and repeat this at each step, for reasons we 
formalize below. To motivate the statement of the result, recall 
HW 1.10, where you showed C = fl(A*B) = A*B + E where 
|E| <= n*macheps*|A|*|B|.
Since A = P*L*U in exact arithmetic, it is perhaps no surprise that

Thm (backward error analysis of LU decomposition): 
If P, L and are computed by the above algorithm, then 
  A - E = P*L*U where |E| <= n*macheps*P*|L|*|U|.

Before proving this, we state and prove a corollary, bounding the 
backward error of solving A*x=b:

Corollary: Suppose we solve A*x=b by Gaussian elimination, following 



by forward and back substitution with L and U as described above. 
Then the computed results xhat satisfies 
    (A-F)*xhat = b where |F| <= 3*n*macheps*P*|L|*|U|.

Proof: Here, and in the proof of the Thm, we assume P=I for simplicity 
of notation; just imagine running without pivoting on the matrix 
P^T*A. In HW 1.11, you showed that the computed solution yhat of L*y=b 
satisfied 
  (L+dL)*yhat = b with |dL| <= n*macheps*|L|, 
and that the computed solution xhat of U*x=yhat satisfied
  (U+dU)*xhat = yhat with |dU| <= n*macheps*|U|. 
Thus
   b = (L+dL)*yhat = (L+dL)*(U+dU)*xhat 
     = (L*U + dL*U + L*dU + dL*dU)*xhat
     = (A - E + dL*U + L*dU + dL*dU)*xhat    by the Thm
     = (A - F)*xhat
where F = E - dL*U - L*dU - dL*dU
so |F| <= |E| + |dL*U| + |L*dU| + |dL*dU|
       <= |E| + |dL|*|U| + |L|*|dU| + |dL|*|dU|
       <= n*macheps*|L|*|U|       ... by the Thm
          + n*macheps*|L|*|U|     ... from the bound on |dL|
          + n*macheps*|L|*|U|     ... from the bound on |dU|
          + (n*macheps)^2*|L|*|U| ... from the bounds on |dL| and |dU|
       = (3*n*macheps + O(macheps^2))*|L|*|U|

What the Thm (proven below) and Corollary tell us is that we need 
   norm(F) <= 3*norm(macheps*|L|*|U|) = O(macheps*norm(A)) 
for the algorithm to be backward stable, i.e. 
   norm(|L|*|U|) = O(norm(A)). 
This in turn depends on pivoting carefully.

Proof of Thm: Recall that for simplicity we assume P=I. If we trace 
through the algorithm and ask how U(i,j) is computed, we see that we 
start with A(i,j) when i <= j and repeatedly subtract L(i,k)*U(k,j) 
for k=1,2,...,i-1 until we get
   U(i,j) = A(i,j) - sum_{k=1 to i-1} L(i,k)*U(k,j)
which, not surprisingly, is what you get when you take the (i,j) entry 
of A = L*U and solve for U(i,j). So U(i,j) is essentially computed by 
a dot product of the (previously computed) i-th row L and j-th column 
of U, and using the same error analysis approach for dot products as 
in HW 1.10, we get the result.

Similarly, when i > j we get L(i,j) by 
  starting with A(i,j) and subtracting L(i,k)*U(k,j) for k=1,2,...,j-1
  dividing the resulting sum by A(i,i)
or
  L(i,j) = (A(i,j) - sum_{k=1 to j-1} L(i,k)*U(i,j))/A(i,i)
so again we have a dot product, followed by a division, and a similar 
approach works.



Now we discuss how to pivot so that norm(|L|*|U|) = O(norm(A)), 
or not much larger.
Def: we call g = norm(|L|*|U|)/norm(A) the pivot growth factor.
(Note: this is defined somewhat differently in the literature, 
but is very similar).

The unstable 2x2 example above, where L(2,1) = 1/1e-8 = 1e8, 
suggests that we choose the pivot A11 to be as large as possible, 
so entries of L are as small as possible.
(1) Simplest, and standard, approach, used in most libraries:
    "Partial pivoting" (also called GEPP).
    At each step, permute rows so A11 is the largest (in absolute 
       value) entry in column
    Then L21 = A21/A11 has |L21| <= 1
    Theorem (easy): with GEPP, |L| <= 1 and 
       max(|U(:,i)|) <= 2^(n-1)*max(|A(:,i)|)
    Bad news: worst case is terrible; even for n=24 in singular 
      precision, all wrong
    Good news: hardly ever happens (only very small family of matrices 
      where this occurs)
    Empirical observation, with some justification: gPP < n^(2/3)
    If all entries of matrix were "random", this would be true; as you 
      perform pivoting, they seem to get more random
(2) Complete pivoting (GECP): permute rows and columns so that A11 
    largest entry in the whole matrix; again repeat at every step.
    Get A = P_r*L*U*P_c where P_r and P_c are both permutations.
    Theorem:    gCP < n^(log n /4)
    Empirical:  gCP < n^(1/2)
    Long-standing Conjecture: gCP < n (false, but nearly true)
    More expensive, hardly used, not in most libraries
(3) Tournament pivoting - something new, needed to minimize 
    communication (#messages): will present it later.
(4) Threshold pivoting: this and similar schemes try to preserve 
    sparsity while maintaining stability
Figures 2.1 and 2.2 in the book show empirical results that 
demonstrate that these bounds for GEPP and GECP are "worst case", and 
pessimistic in general.

Altogether, our worst-case error bound is
   norm(x-xhat)/norm(x) <= cond(A)*(backward error)
                        <= cond(A)*3*n*macheps*pivot_growth
where we can estimate cond(A) with O(n^2) flops after LU 
decomposition, and can bound pivot growth in O(n^2) work too. 

What if this error is too large for your application, or too slow?
We can run iterative refinement, aka Newton's method, using
mixed precision, doing most of the work (the O(n^3) part) in 
low (fast) precision, and a little more (O(n^2)) in high precision.
In the following algorithm, low/high precision could
mean single/double, half/single, bfloat16/single,



double/quad, or other combinations:

  Do GEPP to solve Ax=b in low precision, call solution x(1)
     ... this is the O(n^3) part
  i = 1
  repeat
    r = A*x(i) - b    ... in high precision, but costs just O(n^2); 
                      ... round final result r to low precision
    solve A*d = r     ... in low precision using existing LU 
                          factors, costs just O(n^2)
    update x(i+1) = x(i) - d ... in low precision, costs O(n)
  until "convergence"

We compute r in high precision, because otherwise the computed 
residual r may be mostly roundoff error, so the correction d is 
mostly noise, and there is no guarantee of progress (though some 
benefits have been proven, and so both versions are in LAPACK).

Testing "convergence" depends on one's goals. We mention two:

(1) Getting a small backward error in high precision:
     norm(A*x_computed - b) = O(macheps_high)*norm(A)*norm(x_computed)
or a warning that the matrix is too ill-conditioned to converge. 
This is straightforward to implement, since we need to compute
the residual anyway. This is motivated by the availability of 
hardware accelerators for machine learning (from Google, Nvidia,
Intel, etc.) that can do 16-bit arithmetic much faster than higher 
precisions. Some of them also accumulate dot-products internally in
32-bit precision, giving us the high precision residual automatically.
There is also recent work on alternatives to the simple Newton's
iteration above, with better convergence behavior, see the links to
"A Survey of Numerical Methods Utilizing Mixed Precision Arithmetic"
on the class webpage, or the recent Nvidia blog post.
(The algorithm used, GMRES, will be discussed in Chap. 6.)

(2) Getting a small relative error in low precision:
      norm(x_computed - x_true)/norm(x_true) = O(macheps_low)
or a warning that the matrix is too ill-conditioned to do this. 
This is tricky, because we have to avoid getting fooled by a very 
ill-conditioned matrix that appears to "accidentally" 
converge; for details see www.netlib.org/lapack/lawnspdf/lawn165.pdf.
Slides 33-35 of www.cs.berkeley.edu/~demmel/Future_Sca-LAPACK_v7.ppt 
show empirical results for millions of randomly generated test 
cases, using single/double, with condition numbers ranging from 
1 to well beyond 1/macheps_low:  The relative error of LU without 
refinement is indeed usually close to condition_number * macheps_low, 
but LU with refinement is much better: the relative error is 
O(macheps_low) as long as the condition number is less than about 
1/macheps_low, which the algorithm reports to the user; 
when the condition number is larger, the relative error can rise 



as high as 1, and this lack of convergence is also reported to the 
user. This algorithm is available in LAPACK as sgesvxx, dgesvxx, etc.

Now we return to minimizing communication. Historically, GEPP was 
rewritten to do most of its work by calling the matrix multiplication 
routine in the BLAS3, which often led to high performance in libraries 
like LAPACK and ScaLAPACK. The idea is based on a similar induction 
proof as for classical LU decomposition, but instead of working on
one column at a time, the algorithm works b columns at a time,
where b is a block size analogous to one used in matrix 
multiplication.  Ignoring pivoting for simplicity we write
  A = [ A11, A12 ]  
      [ A21, A22 ]  
... where A11 is b-by-b, A21 (n-b)-by-b, A12 b-by-(n-b) and 
...       A22 (n-b)-by-(n-b)
    = [ L11*U11,  A12 ] 
      [ L21*U11,  A22 ]  
... where we have performed LU decomposition on the n-by-b matrix
...     [ A11 ] = [ L11 ] * U11 
...     [ A21 ]   [ L12 ] 
...     by using the previous "unblocked" algorithm
    = [ L11*U11,  L11*U12 ] 
      [ L21*U11,  A22     ]
... where we have solved the triangular system of equations
... A12 = L11*U12 for U12 by calling BLAS3 routine TRSM
    = [ L11,  0 ] * [ U11, U12          ]
      [ L21,  I ]   [ 0  , A22 - L21*U12]
... where we compute A22hat = A22 - L21*U12 by calling BLAS3 GEMM

The inductive step then applies the same procedure to A22hat.
While this often works well in practice, since most of the work is 
done by the BLAS3, it turns out that there are some combinations of 
dimension n and cache size M for which b cannot be chosen to attain 
the lower bound.

Just as there was a recursive, cache oblivious version of matmul that 
minimized communication without explicitly depending on the 
cache size M, we can do the same for LU (due to Toledo, 1997):

Here is a high level description of the algorithm:   
   "Do LU on left half of matrix
    Update right half (U at top, Schur complement at bottom)
    Do LU on Schur complement"

function [L,U] = RLU(A) ... RLU = Recursive LU
 ... assume A is n by m with n >= m, m a power of 2
 if m=1 ... one column
   pivot so largest entry on diagonal, update rest of matrix
   L = A/A11, U = A11
 else



   ... write A = [ A11 A12 ], L1 = [ L11 ]
   ...           [ A21 A22 ]       [ L12 ]
   ... where A11, A12, L11, U1 and U2 are m/2 by m/2
   ...       A21, A22 and L12 are n-m/2 by m/2
   [L1,U1] = RLU([ A11 ]) ... LU of left half of A
                 [ A21 ]
   Solve A12=L11*U12    ... update U, in upper part of right half of A
   A22 = A22 - L21*U12  ... update Schur complement
   [L2,U2] = RLU( A22 } ... LU on Schur complement
   L = [ L1, [0;L2] ]   ... return complete nxm L factor
   U = [ U1  U12 ]      ... return complete mxm U factor
       [  0  U2  ]

Correctness follows by induction on m, as does showing when m=n:
  A(n) = #arithmetic operations = (2/3)n^3 + O(n^2), and
  W(n) = #words moved = O(n^3/sqrt(M))
As stated, this algorithm only minimizes the #words moved, not the 
#messages. To minimize #messages, we either need to use a different 
pivoting scheme (tournament pivoting, to be discussed later, see 
"CALU: A communication optimal LU Factorization Algorithm") 
or a more complicated data structure, (see 
"Communication efficient Gaussian elimination with Partial Pivoting 
using a Shape Morphing Data Layout"); 
both papers are at bebop.cs.berkeley.edu.

Fact: if we do L21*U12 by Strassen, and L11\A12 by
     (1) inverting L11 by divide-and-conquer:
          inv([ T11 T12 ]) = [ inv(T11) -inv(T11)*T12*inv(T22) ]
             ([  0  T22 ])   [    0            inv(T22)        ]
     (2) multiplying inv(L11)*A12 etc by Strassen
then the RLU algorithm costs O(n^(log2 7)) like Strassen, but can be 
slightly less stable than usual O(n^3) version of GEPP 
(see arxiv.org/abs/math.NA/0612264).

Where to find all this implemented (all "blocked" algorithms, unless
marked as "recursive"):
  Matlab: A\b  or [P,L,U]=lu(A), rcond or condest
  LAPACK: 
   xGETRF just for GEPP where x = S/D/C/Z
   xGETRF2 recursive
   xGESV to solve A*x=b
   xGESVX for condition estimation, iterative refinement with 
      no extra precision
   xGESVXX for condition estimation, iterative refinement with 
      extra precision
   xGECON for condition estimation alone
  ScaLAPACK: PxGETRF etc


