
Notes for Ma221, Lecture 2, Aug 28, 2023

Goals: Floating point arithmetic
 Roundoff error analysis for polynomial evaluation
 Beyond basic error analysis:
 exceptions, high/low/variable precision arithmetic,
 reproducibility, interval arithmetic,
 exploiting mathematical structure to get accuracy without
 high precision

Example: Polynomial Evaluation, and polynomial zero finding

 EX: Review how bisection to find a root of f(x)=0 works:
 start with an interval [x1,x2] where f changes sign:
 f(x1)*f(x2) < 0
 evaluate at midpoint: f((x1+x2)/2)
 keep bisecting subinterval where f changes sign
 Try it on (x-2)(x-3)(x-4) = x^3 - 9*x^2 + 26*x - 24
 (Matlab demo)
 rts = [2,3,4]
 coeff = poly(rts)
 help bisect (on web page)
 bisect(coeff,2.6,3.1,1e-12)
 bisect(coeff,2.2,3.2,1e-12)
 ... no surprises, get small intervals around 3

 Now try it on (x-2)^13
 rts = 2*ones(1,13)
 coeff = poly(rts) ... no errors yet, take my word for it
 bisect(coeff,1.7,2.4,1e-12)
 bisect(coeff,1.7,2.2,1e-12)
 bisect(coeff,1.9,2.2,1e-12) ... huh? a very different answer
 each time?

 Horner's rule to evaluate (x-2)^13 - what is the real graph?
 x = 1.7:1e-4:2.3;
 y = polyval(coeff,x);
 yacc = (x-2).^13;
 plot(x,y,'k.',x,yacc,'r','Linewidth',1.5)
 axis([1.7,2.3,-1e-8,1e-8]), grid
 ... can we explain this?

 To summarize: Try evaluating (x-2)^13 two ways:
 as (x-2)^13 - smooth, monotonic curve, as expected
 as x^13 - 26*x^12 + ... - 8192, with Horner's rule:
 for x in the range [1.8,2.2], basically get random looking
 numbers in the range [-1e-8,1e-8]
 Actually, they aren't really "random", as the following zoomed-in
 plot shows:
 s=2^(-45); x=2-256*s:s:2+256*s;

 y=polyval(coeff,x); yacc=(x-2).^13;
 plot(x,y,'k.',x,yacc,'r'), axis([2-256*s,2+256*s,-2e-9,2e-9])
 We will not explore the much less random behavior in this plot,
 but just try to bound the error. To do so, we need to understand
 the basics of floating point arithmetic.

 (There is a large body of work studying roundoff in more detail,
 leading to more accurate algorithms, see additional notes at the
 end of this lecture and the class webpage for details.)

Floating Point - How real numbers are represented in a computer

Long ago, computers did floating point in many different ways, making
it hard to understand bugs and write portable code. Fortunately
Prof. Kahan led an IEEE standards committee that convinced all the
computer manufacturers to agree on one way to do it, called the
IEEE 754 Floating Point Standard, for which he won the Turing Award.
This was in 1985. The standard was updated in 2008, and again in 2019.
We'll say more on the significant changes below. See the class
webpage for links to more details.

Scientific Notation: +- d.ddd x radix^e

Floating point usually uses radix=2 (or 10 for financial applications)
so you need to store the sign bit (+-), exponent (e), and
mantissa (d.ddd). Both p = #digits in the mantissa and the exponent
range are limited, to fit into 16, 32, 64 or 128 bits. Historically,
only 32 and 64 bit precisions have been widely supported in hardware.
But lately 16 bits have become popular, for machine learning, and
companies like Google, Nvidia, Intel and others are also implementing
a 16-bit format that differs from the IEEE Standard, called bfloat16,
with even lower precision (p=8 vs p=11). And now there is a new
standards committee exploring 8-bit floating point numbers, which have
become very popular for machine learning, with many companies
inventing their own slightly different versions. So with the same
motivation as for the 754 standard, consistency and portability
across platforms, the new committee is trying to find the best
design for "most" problems. How to use such low precision
to reliably solve linear algebra (and other non-machine learning)
problems is an area of current research.

For simplicity, we will initially ignore the limit on exponent range,
i.e. assume no overflow or underflow.

Normalization: We use 3.1000e0 not 0.0031e3 - i.e. the leading digit
is nonzero. Normalization gives uniqueness of representations, which
is useful. And in binary, the leading digit must be 1, so it doesn't
need to be stored, giving us a free bit of precision (called the
"hidden bit").

Def: rnd(x) = nearest floating point number to x
 (Note: The default IEEE 754 rule for breaking ties is
 "nearest even", i.e. the number whose least significant digit
 is even (so zero in binary).)
Def: Relative Representation Error (RRE):
 RRE(x) = | x - rnd(x) | / | rnd(x) |
Def: Maximum Relative Representation Error = max_x RRE(x)
 (aka machine epsilon, macheps)
 = half distance from 1 to next larger number 1+radix^(1-p)
 = .5 * radix^(1-p) = | (1+.5*radix^(1-p)) - 1 | / 1
 = 2^(-p) in binary
 Note: eps in Matlab = 2^(-52) = 2*macheps

Roundoff error model, assuming no over/underflow:
 fl(a op b) = rnd(a op b) = true result rounded to nearest
 = (a op b)(1 + delta), |delta| <= macheps
 where op may be add, subtract, multiply or divide
We will use this throughout the course, it's all you need for most
algorithms. It's also true for complex arithmetic (but using a
bigger macheps, see Q 1.12 for details).

Existing IEEE formats: single(S)/double(D)/quad(Q)/half(H) (radix = 2)
 S: 32 bits =1 (for sign) +8 (for exponent) +23 (for mantissa),
 So there are p=24 = 1 (hidden bit) + 23 bits to represent
 a number, and so macheps = 2^(-24) ~ 6e-8
 Also -126 <= e <= 127, so
 overflow threshold (OV) ~ 2^128 ~ 1e38,
 underflow threshold (UN) = 2^(-126) ~ 1e-38
 D: 64=1+11+52 bits, so p=53, macheps = 2^(-53) ~ 1e-16
 -1022 <= e <= 1023, OV ~ 2^1024 ~ 1e308, and
 UN = 2^(-1022) ~ 1e-308
 Q: 128=1+15+112 bits, p = 113, macheps = 2^(-113) ~ 1e-34
 -16382 <= e <= 16383, OV ~ 2^16384 ~ 1e4932, and
 UN = 2^(-16382) ~ 1e-4932
 H: 16=1+5+10 bits, p = 11, macheps = 2^(-11) ~ 5e-4
 -14 <= e <= 15, OV ~ 2^15 ~ 1e4, and UN = 2^(-14) ~ 1e-4

The new bloat16 format has the following parameters:
 16 = 1+8+7, so p=8, macheps = 2^(-8) ~ 4e-3
 The exponent e has the same range as IEEE single (by design:
 converting between bfloat16 and S cannot overflow or underflow).

The committee working on 8-bit floating point for machine learning
is working on a document describing our plans so far, which will
Hopefully be released publicly soon.

Referring back to Lecture 1, where we referred to the approach of
using a few steps of Newton's method to be "guaranteed correct except
in rare cases," a common approach is to try to do most of the work in

lower (and so faster) precision, and then do just a little work
in higher (and so slower) precision, typically to compute accurate
residuals (like A*x-b), during the Newton steps; the goal is to get
the same accuracy as though the entire computation had been done in
higher precision.

Even higher precision than 128 bits is available via software
simulation (see ARPREC, GMP on the class web page)

We briefly mention E(xtended), which was an 80-bit format on Intel x86
architectures, and was in the old IEEE standard from 1985, but is now
deprecated. See also the IEEE 754 standard for details of decimal
arithmetic (future C standards will include decimal types, as already
in gcc).

That's enough information about floating point arithmetic to
understand the plot of (x-2)^13, but more about floating point later.

Analyze Horner's Rule for evaluating p(x):
 simplest expression:
 p = sum_{i=0 to d} a_i x^i
 algorithm:
 p = a_d, for i=d-1:-1:0, p = x*p + a_i
 label intermediate results (no roundoff yet):
 p_d = a_d, for i=d-1:-1:0, p_i = x*p_{i+1} + a_i
 introduce roundoff terms:
 p_d = a_d,
 for i=d-1:-1:0, p_i = [x*p_{i+1}*(1+d_i) + a_i]*(1+d'_i)
 where |d_i| <= macheps and |d'_i| <= macheps
Thus
 p_0 = sum_{i=0:d-1}
 [(1+d'_i)*prod_{j=0:i-1 (1+d_j)*(1+d'_j)]*a_i*x^i
 + prod_{j=0:d-1} (1+d_j)*(1_d'_j)*a_d*x^d
 = sum_{i=0:d-1} [product of 2i+1 terms like 1+d] a_i*x^i
 + [product of 2d terms like (1+d)] a_d*x^d
 = sum_{i=0:d} a'_i * x^i

In words: Horner is backward stable: you get the exact value of a
polynomial at x but with slightly changed coefficients a'_i from
input p(x).

How to simplify to get error bound:
 prod_{i=1:n} (1 + delta_i)
 <= prod_{i=1:n} (1 + macheps)
 = 1 + n*macheps + O(macheps^2)
 ... usually ignore (macheps^2)
 <= 1 + n*macheps/(1-n*macheps) if n*macheps < 1
 ... (lemma left to students)
 Similarly
 prod_{i=1:n} (1 + delta_i)

 >= prod_{i=1:n} (1 - macheps)
 = 1 - n*macheps + O(macheps^2)
 ... usually ignore (macheps^2)
 >= 1 - n*macheps/(1-n*macheps) if n*macheps < 1
 ... (lemma left to students)

 So |prod_{1 to n} (1 + delta_i) - 1| <= n*macheps
 ... ignore macheps^2
 and thus
 |computed p_d - p(x)| <= sum_{i=0:d-1} (2i+1)*macheps*|a_i*x^i|
 + 2*d*macheps*|a_d*x^d|
 <= sum_{i=0:d} 2*d*macheps*|a_i*x^i|

 relerr = |computed p_d - p(x)|/|p(x)|
 <= sum_{i=0:d} |a_i x^i| / |p(x)| * 2*d*macheps
 = condition number * relative backward error

 How many decimal digits can we trust?
 dd correct digits <=> relative error <= 10^(-dd)
 <=> -log_10 (relative error) >= dd

 How to modify Horner to compute (an absolute) error bound:
 p = a_d, ebnd = |a_d|,
 for i=d-1:-1:1, p = x*p + a_i, ebnd = |x|*ebnd + |a_i|
 ebnd = 2*d*macheps*ebnd

Matlab demo:
 coeff = poly(2*ones(13,1));
 x = [1.6:1e-4:2.4];
 y = polyval(coeff,x);
 yacc = (x-2).^13;
 ebnd = 13*eps*polyval(abs(coeff),abs(x));
 % note eps in Matlab = 2*macheps
 plot(x,y,'k.',x,yacc,'c',x,y-ebnd,'r',x,y+ebnd,'r')
 axis([1.65 2.35 -1e-8 1e-8]), grid
 % need to make vertical axis wider to see bounds
 axis([1.65 2.35 -1e-6 1e-6]), grid
 % conclusion: don't trust sign outside roughly [1.72, 2.33]

Consider Question 1.21: how could we use this error bound to
 stop iterating in root finding using bisection?
 ... now try wider range, look at actual and estimated # correct
 digits

 x = -1:.0001:5;
 y = polyval(coeff,x);
 yacc=(x-2).^13;
 ebnd=13*eps*polyval(abs(coeff),abs(x));
 plot(x,-log10(abs((y-yacc)./yacc)),'k.',x,-log10(ebnd./ ...
 abs(yacc)),'r')

 axis([-1 5 0 16]), grid
 title('Number of correct digits in y')

This picture is a foreshadowing of what will happen in linear algebra:
The vertical axis is the number of correct digits, both actual
(the black dots) and lower-bounded using our error bound (the red
curve). The horizontal axis is the problem we are trying to solve,
in this simple case the value of x at which we are evaluating a fixed
polynomial p(x).

The number of correct digits gets smaller and smaller, until no
leading correct digits are computed, the closer the problem gets to
the hardest possible problem, in this case the root x=2 of the
polynomial. This is the hardest problem because the only way to get
a small relative error in the solution p(2)=0, is to compute 0
exactly, i.e. no roundoff is permitted. And changing x very slightly
makes the answer p(x) change a lot, relatively speaking. In other
words, the condition number, sum_i |a_i x^i| / |p(x)| in this simple
case, approaches infinity as p(x) approaches zero.

In linear algebra the horizontal axis still represents the problem
being solved, but since the problem is typically defined by
an n-by-n matrix, we need n^2 axes to define the problem. There
are now many "hardest possible problems", e.g. singular matrices
if the problem is matrix inversion. The singular matrices form a
set of dimension n^2-1 in the set of all matrices, the surface defined
by det(A)=0. And the closer the matrix is to this set, i.e. to being
singular, the harder matrix inversion will be, in the sense that the
error bound will get worse and worse the closer the matrix is to this
set. Later we will show how to measure the distance from a matrix to
the nearest singular matrix "exactly" (i.e. except for roundoff) using
the SVD, and show that the condition number, and so the error bound,
is inversely proportional to this distance.

Here is another way the above figure foreshadows linear algebra.
Recall that we could interpret the computed value of the polynomial
p(x) = sum_i a_i*x^i, with roundoff errors, as the exactly right value
of a slightly wrong polynomial, that is
 p_alg(x) = sum_{i=0:d} [(1+e_i)*a_i]*x^i,
where |e_i| <= 2*d*macheps. We called this property
"backward stability", in contrast to "forward stability" which would
means that the answer itself is close to correct. So the error bound
bounds the difference between the exact solutions of two slightly
different problems p(x) and p_alg(x).

For most linear algebra algorithms, we will also show they are
backward stable. For example, if we want to solve A*x=b, we will
instead get the exact solution of (A+Delta)*xhat = b, where the matrix
Delta is "small" compared to A. Then we will get error bounds by

essentially taking the first term of a Taylor expansion of
inv(A+Delta):
 xhat - x = inv(A+Delta)*b - inv(A)*b
To do this, we will need to introduce some tools like matrix and
vector norms (so we can quantify what "small" means) in the next
lecture.

To extend the analysis of Horner's rule to linear algebra algorithms,
note the similarity between Horner's rule and computing dot-products:

 p = a_d, for i=d-1:-1:1, p = x*p + a_i
 s = 0 , for i=1:d, s = x_i*y_i + s

Thus the error analysis of dot products, matrix multiplication,
and other algorithms is very similar (homework 1.10 and 1.11).

This is all you need to know to analyze the common behavior of many
numerical algorithms. The next part of this lecture goes into more
detail on other properties of floating point, such as exception
handling, which are necessary for making algorithms reliable.

Next we briefly discuss some properties and uses of floating point
that go beyond these most basic properties (even more details are at
the end of these notes). Analyzing large, complicated codes by hand
to understand all these issues is a challenge, so there is research in
automating this analysis; there is a day-long tutorial on available
tools that was held at Supercomputing'19.

(1) Exceptions: IEEE arithmetic has rules for cases like:
 Underflow: Tiny / Big = 0
 (or "subnormal", special numbers at bottom of exponent range)
 Overflow and Divide-by-Zero
 1/0 = Inf = "infinity", represented as a special case in the
 usual format, with natural computational rules like:
 Big + Big = Inf, Big*Big = Inf, 3 - Inf = -Inf, etc.
 Invalid Operation::
 0/0 = NaN = "Not a Number", also represented as special case
 Inf - Inf = NaN, sqrt(-1) = NaN, 3 + NaN = NaN, etc
 Flags are available to check if such exceptions occurred.

 Impact on software:
 Reliability:
 Suppose we want to compute s = sqrt(sum_i x(i)^2):
 What could go wrong with the following obvious algorithm?
 s = 0, for i=1:n s = s + x(i)^2, end for, s = sqrt(s)
 To see how standard libraries deal with this, see snrm2.f
 in the BLAS.
 For a worst-case example, see Ariane 5 crash on webpage.
 We are currently investigating how to automatically guarantee

 that libraries like LAPACK cannot "misbehave" because of
 exceptions (go into infinite loops, give wrong answer without
 warning, etc.)
 Error analysis: it is possible to extend error analysis to
 take underflow into account by using the formula
 rnd(a op b) = (1+delta)*(a op b) + eta
 where |delta| <= macheps as before, and |eta| is
 bounded by a tiny number, depending on how underflow is
 handled.
 Speed:
 Run ``reckless'' algorithm, that is fast but ignores possible
 exceptions
 Check flags to see if exception occurred
 In rare case of exception, rerun with slower, more reliable
 algorithm

(2) Higher precision arithmetic: possible to simulate using either
 fixed or floating point, various packages available: MPFR, ARPREC,
 XBLAS (see web page). There are also special fast tricks just for
 high precision summation; see Homework 1.18.

(3) Lower precision arithmetic: As mentioned before, many companies
 are building hardware accelerators for machine learning, which
 means they provide fast matrix multiplication. As mentioned in
 Lecture 1, and will be discussed later, it is possible to
 reformulate many dense linear algebra algorithms to use
 matrix multiplication as a building block, and so it is natural
 to want to use these accelerators for other linear algebra
 problems as well. As illustrated in our error analysis of Horner's
 rule, many of our error bounds will be proportional to
 d*macheps, where d is the problem size (eg matrix dimension),
 and often d^2*macheps or more. These bounds are only useful when
 d*macheps (or d^2*macheps) are much smaller than 1.
 So when macheps is ~4e-3 with bfloat16, this means d must be
 much smaller than 1/macheps = 256, or much smaller than
 1/sqrt(macheps) = 16, for these bounds to be useful. This is
 obviously very limiting, and raises several questions:
 Are our (worst case) error bounds too pessimistic? Can we do
 most of the work in low precision, and little in high precision,
 to get an accurate answer? There are some recent positive answers
 to both these questions.

(4) Variable precision: There have been various proposals over the
 years to support variable precision arithmetic, sometimes with
 variable word lengths, and sometimes encoded in a fixed length
 word. Variable word lengths make accessing arrays difficult
 (where is A(100,100), if every entry of A can have a different
 bit-length?). There has been recent interest in this area,
 with variable precision formats called unums (variable length)
 and posits (fixed length), proposed by John Gustavson. Posits

 allocate more bits for the mantissa when the exponent needs few
 bits (so the number is not far from 1 in magnitude) and fewer
 mantissa bits for long exponents. This so-called "tapered
 precision" complicates error analysis, and it is an open
 question of how error analyses or algorithms could change to
 benefit. See the class webpage for links to more details,
 including a youtube video of a debate between Gustavson and
 Kahan about the pros and cons of unums.

(5) Reproducibility: Almost all users expect that running the same
 program more than once gives the bitwise identical answer; this is
 important for debugging, correctness, even legal reasons
 sometimes. But this can no longer be expected, even on your
 multicore laptop, because parallel computers (so nearly all now),
 may execute sums in different orders, and roundoff makes
 summation nonassociative:
 (1-1)+1e-20 = 1e-20 neq 0 = (1+1e-20)-1
 There is lots of work on coming up with algorithms that fix this,
 without slowing down too much, such as ReproBLAS (see web page).
 The 2019 version of the IEEE 754 standard also added a new
 "recommended instruction", to accelerate both the tricks
 for high precision arithmetic in (2), and to make summation
 associative (see web page).

(6) Guaranteed error bounds from Interval Arithmetic: Represent each
 floating point number by an interval [x_low,x_high], and use
 special rounding modes in IEEE standard to make sure that lower
 and upper bounds are maintained throughout the computation:
 [x_low,x_high] + [y_low,y_high] =
 [round_down(x_low+y_low),round_up(x_high+y_high)]
 Drawback: naively replacing all variables by intervals like this
 often makes interval widths grow so fast that they are useless.
 There have been many years of research on special algorithms that
 avoid this, especially for linear algebra (see web page).

(7) Exploiting structure to get high accuracy: Some matrices have
 special mathematical structure that allows formulas to be used
 where roundoff is provably bounded so that you get high relative
 accuracy, i.e. most leading digits correct. For example,
 a Vandermonde matrix has entries V(i,j) = x_i^j, and arises
 naturally from polynomial interpolation problems. It turns out
 that this special structure permits many linear algebra problems,
 even eigenvalues, to be done accurately, no matter how hard
 (``ill-conditioned'') the problem is using conventional
 algorithms. See the class webpage for details.

(We end the recorded lecture here. The following notes give more
Details about some of the above floating point issues.)

(1) Exceptions: what happens when computed result would have an

 exponent that is too big to fit, too small to fit, or isn't
 mathematically defined, like 0/0? One gets "exceptions", with
 rules about the results and how to compute with them, plus flags
 to check to see if an exception occurred.

 What if answer > OV? get infinity (overflow)
 fl(1e20*1e20) = fl(1/0) = inf ... in single
 fl(3+inf) = inf, fl(1/inf) = 0, fl(1/-0) = -inf

 What if answer mathematically undefined? get NaN = Not a Number
 fl(sqrt(-1)) = fl(0/0) = fl(inf-inf) = NaN
 3 + NaN = NaN ... so you see NaN on output if one occurred

 What if answer < UN? get underflow
 What to do: if you return zero, then what happens with code:
 if (a .ne. b) then x = 1/(a-b) ... can divide by zero,
 Instead, IEEE standard says you get "subnormal numbers"
 x = +- 0.dddd * 2^exp_min instead of +- 1.dddd * 2^exp
 Without subnormals, we would do error analysis with
 fl(a op b) = (a op b)(1 + delta) + eta,
 where |delta| <= macheps, |eta| <= UN
 With subnormals, can do error analysis with
 fl(a op b) = (a op b)(1 + delta) + eta,
 Where |delta| <= macheps, and
 |eta| <= UN*macheps for *,/ and eta=0 for +-
 Thm: With subnormals, for all floats a,b fl(a-b) = 0 iff a=b
 Purpose: simplify reasoning about floating point algorithms

 Why bother with exceptions? Why not always just stop when one
 occurs?
 (1) Reliability: too hard to have test before each floating point
 operation to avoid exception
 Ex for control system (see Ariane 5 crash on webpage),
 Ex Matlab: don't want to go into infinite loop because of an
 input NaN (caused several fixes to LAPACK, and also helped
 motivate an on-going CS research project to build tools to
 prove that NaNs, infinities, etc cannot cause infinite
 loops or analogous bugs)
 (2) Speed: ditto (too slow to test before each operation)
 (1) run "reckless" code that is fast but assumes no
 exceptions
 (2) check exception flags
 (3) in case of exception, rerun with slower algorithm
 Ex: s = root-sum-squares = sqrt(sum_{i=1}^n x_i^2)
 What could go wrong? (see Q 1.19)
 (3) Sometimes one can prove code correct with exceptions:
 Ex: Current fastest algorithms to find (some) eigenvalues of
 symmetric matrices depends on these, including 1/(-0) = -Inf

 Impact on LAPACK: One of the fastest algorithms in LAPACK for

 finding eigenvalues of symmetric matrices assumes that
 1/+0 = +infinity, and 1/-0 = -infinity, as specified by the IEEE
 standard. We tried to port this code to an ATI GPU,
 and discovered that they did not handle exceptions correctly:
 1/(-0) was +infinity instead of -infinity.
 The code depended on getting -infinity to get the right answer,
 and (until they fixed their hardware) we had to take the quantity
 in the denominator of 1/d and instead compute 1/(d+0), which made
 the -0 turn into a +0, whose reciprocal was correctly computed.
 See EECS Tech Report EECS-2007-179 for details.

(2) Exploiting lack of roundoff in special cases to get high precision
 Fact: if 1/2 < x/y < 2 then fl(x-y) = x-y ... no roundoff
 Proof: Cancellation in x-y means exact result fits in p bits
 Fact: Suppose M >= abs(x). Suppose we compute
 S = fl(M+x), q = fl(S-M), r = fl(x-q)
 In exact arithmetic, we would compute
 r = x-q = x-(S-M) = x-((M+x)-M) = 0.
 But in floating point, S+r = M+x exactly, with r being
 the roundoff error, i.e. (S,r) is the double precision sum
 of M+x
 (Proof sketch in special case; only roundoff occurs in S=fl(M+x),
 other two operations are exact).
 This trick, called "Accurate 2-Sum" can be generalized in a
 number of ways to get very general algorithms available in the
 following software packages:
 ARPREC (see class website): provides arbitrary precision
 arithmetic
 XBLAS (see class website): provides some double-double precision
 Basic Linear Algebra Subroutines (BLAS), like
 matrix-vector-multiplication. LAPACK uses these routines
 to provide high accuracy solvers for Ax=b.
 ReproBLAS (see class website): Provides bit-wise reproducible
 parallel implementations of some BLAS. The challenge here
 is that since roundoff makes floating point addition
 nonassociative, computing a sum in a different order
 will usually give a (slightly) different answer. On a
 parallel machine, where the number of processors (and
 other resources) may be scheduled dynamically,
 computing a sum in a different order is likely. Since
 getting even slightly different results is a challenge for
 debugging and (in some cases) correctness,
 we and others are working on efficient algorithms that
 guarantee reproducibility.
 New instruction in IEEE 754 2019: AugmentedAddition: This one
 instruction takes any values of M and x, and returns
 S = fl(M+x) and r = M+x-S exactly, a more general version
 of Accurate 2-Sum (and potentially faster, depending on
 how it is implemented). It also rounds M+x slightly
 differently, rounding ties toward zero, instead of the

 nearest even number, which can be used to make
 floating point addition associative. There are analogous
 AugmentedSubtraction and AugmentedMultiplication
 instructions.

 Finally, we point out the paper "Accurate and Efficient Floating
 Point Summation," J. Demmel and Y. Hida, SIAM J. Sci. Comp, 2003,
 for a efficient way to get full accuracy in a summation despite
 roundoff (in brief: to sum n numbers to full accuracy, you need
 to use log_2(n) extra bits of precision, and sum them in
 decreasing order by magnitude), and the website
 www.ti3.tu-harburg.de/rump/
 for a variety of papers on linear algebra with guaranteed
 accuracy.

(3) Guaranteed error bounds (sometimes) via interval arithmetic:
 So far we have used rnd(x) to mean the nearest floating point
 number to x.
 (Note: Ties are broken by choosing the floating point number whose
 last bit is zero, also called "round to nearest even". This has
 the attractive property that half the ties are rounded up and half
 rounded down, so there is no bias in long sums.)
 But the IEEE Floating Point Standard also requires the operations
 rnd_down(x) = largest floating point number <= x
 rnd_up(x) = smallest floating point number >= x
 Thus [rnd_down(x+y),rnd_up(x+y)] is an interval guaranteed to
 contain x+y. And if [x_min,x_max] and [y_min,y_max] are two
 intervals guaranteed to contain x and y, resp., then
 [rnd_down(x_min+y_min),rnd_up(x_max+y_max)] is guaranteed
 to contain x+y. So if each floating point number x in a program is
 represented by an interval [x_min,x_max], and we use rnd_down and
 rnd_up to get lower and upper bounds on the result of each
 floating point operation (note: multiply and division are a
 little trickier than addition), then we can get guaranteed error
 bounds on the overall computation; this is called interval
 arithmetic.
 Alas, naively converting all variables and operations in a program
 to intervals often results in intervals whose width grows so
 rapidly, that they provide little useful information. So there has
 been much research over time in designing new algorithms that try
 to compute intervals that are narrow at reasonable
 cost. Google "interval arithmetic" or see the website
 www.ti3.tu-harburg.de/rump/ for more information.

(4) Accurate Linear Algebra despite roundoff:
 A natural question is what algebraic formulas have the property
 that there is some way to evaluate them that, despite round off,
 the final answer is always correct in most of its leading digits:
 Ex: general polynomial: no, not without higher precision
 Ex: x^2+y^2: yes, no cancellation,

 Ex: determinant of a Vandermonde matrix: V(i,j) = x_i^(j-1):
 General algorithm via Gaussian elimination can lose all
 digits, but formula det(V) = prod_{i < j} (x_j - x_i) works

 A complete answer is an open question, but there are some necessary
 and sufficient conditions based on algebraic and geometric
 properties of the formula, see article by
 Demmel/Dumitriu/Holtz/Koev on "Accurate and Efficient Algorithms in
 Linear Algebra" in Acta Numerica v 17, 2008: A class of linear
 algebra problems are identified that, like det(Vandermonde), permit
 accurate solution despite roundoff. We will not discuss this
 further, just say that the mathematics depends on results going
 back to Hilbert's 17th problem, which asked whether positive
 rational (or polynomial) functions could always be written as a
 sum of squares of other rational (or polynomial) functions
 (answers: rational = yes, polynomial = no). For example,
 when 0 < x_1 < x_2 < ... in the Vandermonde matrix V ,
 it turns out most any linear algebra operation on V can be done
 efficiently and to nearly full accuracy despite roundoff, including
 eig(V). (This work was cited in coauthor Prof. Olga Holtz's
 award of the 2008 European Math Society Prize).

