
Notes for Ma221, Lecture 2, Aug 28, 2023

Goals: Floating point arithmetic
       Roundoff error analysis for polynomial evaluation
       Beyond basic error analysis: 
         exceptions, high/low/variable precision arithmetic, 
            reproducibility, interval arithmetic,
         exploiting mathematical structure to get accuracy without 
            high precision

Example: Polynomial Evaluation, and polynomial zero finding

   EX: Review how bisection to find a root of f(x)=0 works:
         start with an interval [x1,x2] where f changes sign: 
           f(x1)*f(x2) < 0 
         evaluate at midpoint: f((x1+x2)/2)
         keep bisecting subinterval where f changes sign
       Try it on (x-2)(x-3)(x-4) = x^3 - 9*x^2 + 26*x - 24 
       (Matlab demo)
         rts = [2,3,4]
         coeff = poly(rts)
         help bisect (on web page)
         bisect(coeff,2.6,3.1,1e-12)
         bisect(coeff,2.2,3.2,1e-12)
           ... no surprises, get small intervals around 3

       Now try it on (x-2)^13
         rts = 2*ones(1,13)
         coeff = poly(rts) ... no errors yet, take my word for it
         bisect(coeff,1.7,2.4,1e-12)
         bisect(coeff,1.7,2.2,1e-12)
         bisect(coeff,1.9,2.2,1e-12) ... huh? a very different answer 
            each time?

  Horner's rule to evaluate (x-2)^13 - what is the real graph?
     x = 1.7:1e-4:2.3;
     y = polyval(coeff,x);
     yacc = (x-2).^13;
     plot(x,y,'k.',x,yacc,'r','Linewidth',1.5)
     axis([1.7,2.3,-1e-8,1e-8]), grid
       ... can we explain this?

   To summarize: Try evaluating (x-2)^13 two ways:
       as (x-2)^13 - smooth, monotonic curve, as expected
       as x^13 - 26*x^12 + ... - 8192, with Horner's rule:
           for x in the range [1.8,2.2], basically get random looking 
           numbers in the range [-1e-8,1e-8]
   Actually, they aren't really "random", as the following zoomed-in 
   plot shows:
      s=2^(-45); x=2-256*s:s:2+256*s;



      y=polyval(coeff,x); yacc=(x-2).^13;
      plot(x,y,'k.',x,yacc,'r'), axis([2-256*s,2+256*s,-2e-9,2e-9])
   We will not explore the much less random behavior in this plot, 
   but just try to bound the error. To do so, we need to understand
   the basics of floating point arithmetic. 

   (There is a large body of work studying roundoff in more detail, 
   leading to more accurate algorithms, see additional notes at the 
   end of this lecture and the class webpage for details.) 

Floating Point - How real numbers are represented in a computer

Long ago, computers did floating point in many different ways, making 
it hard to understand bugs and write portable code.  Fortunately 
Prof. Kahan led an IEEE standards committee that convinced all the 
computer manufacturers to agree on one way to do it, called the 
IEEE 754 Floating Point Standard, for which he won the Turing Award. 
This was in 1985. The standard was updated in 2008, and again in 2019. 
We'll say more on the significant changes below. See the class
webpage for links to more details.

Scientific Notation: +- d.ddd x radix^e

Floating point usually uses radix=2 (or 10 for financial applications)
so you need to store the sign bit (+-), exponent (e), and 
mantissa (d.ddd). Both p = #digits in the mantissa and the exponent 
range are limited, to fit into 16, 32, 64 or 128 bits. Historically, 
only 32 and 64 bit precisions have been widely supported in hardware. 
But lately 16 bits have become popular, for machine learning, and
companies like Google, Nvidia, Intel and others are also implementing 
a 16-bit format that differs from the IEEE Standard, called bfloat16,
with even lower precision (p=8 vs p=11). And now there is a new
standards committee exploring 8-bit floating point numbers, which have
become very popular for machine learning, with many companies 
inventing their own slightly different versions. So with the same
motivation as for the 754 standard, consistency and portability 
across platforms, the new committee is trying to find the best 
design for "most" problems. How to use such low precision
to reliably solve linear algebra (and other non-machine learning) 
problems is an area of current research. 

For simplicity, we will initially ignore the limit on exponent range,
i.e. assume no overflow or underflow.

Normalization:  We use 3.1000e0 not  0.0031e3 - i.e. the leading digit
is nonzero. Normalization gives uniqueness of representations, which 
is useful. And in binary, the leading digit must be 1, so it doesn't
need  to be stored, giving us a free bit of precision (called the 
"hidden bit").



Def: rnd(x) = nearest floating point number to x 
     (Note: The default IEEE 754 rule for breaking ties is 
      "nearest even", i.e. the number whose least significant digit 
      is even (so zero in binary).)
Def: Relative Representation Error (RRE):  
     RRE(x) = | x - rnd(x) | / | rnd(x) |
Def: Maximum Relative Representation Error  = max_x  RRE(x)
       (aka machine epsilon, macheps)
       = half distance from 1 to next larger number 1+radix^(1-p)
       = .5 * radix^(1-p) = | (1+.5*radix^(1-p)) - 1 | / 1
       = 2^(-p) in binary
    Note: eps in Matlab = 2^(-52) =  2*macheps

Roundoff error model, assuming no over/underflow:
      fl(a op b) = rnd(a op b) = true result rounded to nearest
                 = (a op b)(1 + delta),   |delta| <= macheps  
      where op may be add, subtract, multiply or divide
We will use this throughout the course, it's all you need for most
algorithms. It's also true for complex arithmetic (but using a
bigger macheps, see Q 1.12 for  details).

Existing IEEE formats: single(S)/double(D)/quad(Q)/half(H) (radix = 2)
      S: 32 bits =1 (for sign) +8 (for exponent) +23 (for mantissa), 
         So there are p=24 = 1 (hidden bit) + 23 bits to represent 
         a number, and so macheps = 2^(-24) ~ 6e-8
         Also -126 <= e <= 127, so
           overflow threshold (OV) ~  2^128 ~ 1e38, 
           underflow threshold (UN) = 2^(-126) ~ 1e-38
      D: 64=1+11+52 bits, so p=53, macheps = 2^(-53) ~ 1e-16
           -1022 <= e <= 1023, OV ~  2^1024 ~ 1e308, and
           UN = 2^(-1022) ~ 1e-308
      Q: 128=1+15+112 bits, p = 113, macheps = 2^(-113) ~ 1e-34
           -16382 <= e <= 16383, OV ~  2^16384 ~ 1e4932, and
           UN = 2^(-16382) ~ 1e-4932                          
      H: 16=1+5+10 bits,  p = 11, macheps = 2^(-11) ~ 5e-4
           -14 <= e <= 15, OV ~  2^15 ~ 1e4, and UN = 2^(-14) ~ 1e-4 

The new bloat16 format has the following parameters:
   16 = 1+8+7, so p=8, macheps = 2^(-8) ~ 4e-3
   The exponent e has the same range as IEEE single (by design:
   converting between bfloat16 and S cannot overflow or underflow).

The committee working on 8-bit floating point for machine learning
is working on a document describing our plans so far, which will
Hopefully be released publicly soon.

Referring back to Lecture 1, where we referred to the approach of
using a few steps of Newton's method to be "guaranteed correct except
in rare cases," a common approach is to try to do most of the work in



lower (and so faster) precision, and then do just a little work
in higher (and so slower) precision, typically to compute accurate
residuals (like A*x-b), during the Newton steps; the goal is to get
the same accuracy as though the entire computation had been done in
higher precision.
         
Even higher precision than 128 bits is available via software 
simulation (see ARPREC, GMP on the class web page)
         
We briefly mention E(xtended), which was an 80-bit format on Intel x86 
architectures, and was in the old IEEE standard from 1985, but is now 
deprecated. See also the IEEE 754 standard for details of decimal 
arithmetic (future C standards will include decimal types, as already 
in gcc).

That's enough information about floating point arithmetic to 
understand the plot of (x-2)^13, but more about floating point later.

Analyze Horner's Rule for evaluating p(x):
  simplest expression:
       p = sum_{i=0 to d} a_i x^i
  algorithm:
       p   = a_d, for i=d-1:-1:0, p   =  x*p       + a_i
  label intermediate results (no roundoff yet):
       p_d = a_d, for i=d-1:-1:0, p_i =  x*p_{i+1} + a_i
  introduce roundoff terms:
       p_d = a_d, 
       for i=d-1:-1:0, p_i = [x*p_{i+1}*(1+d_i) + a_i]*(1+d'_i)
                where |d_i| <= macheps and |d'_i| <= macheps 
Thus
    p_0 = sum_{i=0:d-1} 
          [(1+d'_i)*prod_{j=0:i-1 (1+d_j)*(1+d'_j)]*a_i*x^i
             + prod_{j=0:d-1} (1+d_j)*(1_d'_j)*a_d*x^d
        = sum_{i=0:d-1} [product of 2i+1 terms like 1+d] a_i*x^i
             + [product of 2d terms like (1+d)] a_d*x^d
        = sum_{i=0:d} a'_i * x^i                

In words: Horner is backward stable: you get the exact value of a
polynomial at x but with slightly changed coefficients a'_i from 
input p(x).

How to simplify to get error bound:
      prod_{i=1:n} (1 + delta_i)
         <= prod_{i=1:n} (1 + macheps)
          = 1 + n*macheps + O(macheps^2)  
            ...  usually ignore (macheps^2)
         <= 1 + n*macheps/(1-n*macheps)  if n*macheps < 1 
            ... (lemma left to students)
  Similarly
      prod_{i=1:n} (1 + delta_i)



         >= prod_{i=1:n} (1 - macheps)
          = 1 - n*macheps + O(macheps^2)  
            ...  usually ignore (macheps^2)
         >= 1 - n*macheps/(1-n*macheps)  if n*macheps < 1 
            ... (lemma left to students)

  So  |prod_{1 to n} (1 + delta_i) - 1| <= n*macheps 
         ... ignore macheps^2
  and thus
      |computed p_d - p(x)| <= sum_{i=0:d-1} (2i+1)*macheps*|a_i*x^i|
                               + 2*d*macheps*|a_d*x^d|
                            <= sum_{i=0:d} 2*d*macheps*|a_i*x^i|

 relerr = |computed p_d - p(x)|/|p(x)|
       <=  sum_{i=0:d} |a_i x^i| / |p(x)|   *   2*d*macheps
        =  condition number  *  relative backward error

 How many decimal digits can we trust?
     dd correct digits <=> relative error <= 10^(-dd) 
                       <=> -log_10 (relative error) >= dd

 How to modify Horner to compute (an absolute) error bound:
       p = a_d,  ebnd = |a_d|,
       for i=d-1:-1:1, p = x*p + a_i, ebnd = |x|*ebnd + |a_i|
       ebnd = 2*d*macheps*ebnd

Matlab demo:
  coeff = poly(2*ones(13,1));
  x = [1.6:1e-4:2.4];
  y = polyval(coeff,x);
  yacc = (x-2).^13;
  ebnd = 13*eps*polyval(abs(coeff),abs(x));
  %   note eps in Matlab = 2*macheps
  plot(x,y,'k.',x,yacc,'c',x,y-ebnd,'r',x,y+ebnd,'r')
  axis([1.65 2.35 -1e-8 1e-8]), grid
  %   need to make vertical axis wider to see bounds
  axis([1.65 2.35 -1e-6 1e-6]), grid
  %   conclusion: don't trust sign outside roughly [1.72, 2.33]

Consider Question 1.21: how could we use this error bound to 
  stop iterating in root finding using bisection?
  ... now try wider range, look at actual and estimated # correct 
      digits

  x = -1:.0001:5;
  y = polyval(coeff,x);
  yacc=(x-2).^13;
  ebnd=13*eps*polyval(abs(coeff),abs(x));
  plot(x,-log10(abs((y-yacc)./yacc)),'k.',x,-log10(ebnd./ ...
       abs(yacc)),'r')



  axis([-1 5 0 16]), grid
  title('Number of correct digits in y')

This picture is a foreshadowing of what will happen in linear algebra:
The vertical axis is the number of correct digits, both actual 
(the black dots) and lower-bounded using our error bound (the red 
curve).   The horizontal axis is the problem we are trying to solve, 
in this simple case the value of x at which we are evaluating a fixed 
polynomial p(x). 

The number of correct digits gets smaller and smaller, until no 
leading correct digits are computed, the closer the problem gets to 
the hardest possible problem, in this case the root x=2 of the 
polynomial. This is the hardest problem because the only way to get 
a small relative error in the solution p(2)=0, is to compute 0 
exactly, i.e. no roundoff is permitted. And changing x very slightly
makes the answer p(x) change a lot, relatively speaking. In other 
words, the condition number, sum_i |a_i x^i| / |p(x)| in this simple 
case, approaches infinity as p(x) approaches zero.

In linear algebra the horizontal axis still represents the problem
being solved, but since the problem is typically defined by
an n-by-n matrix, we need n^2 axes to define the problem. There
are now many "hardest possible problems", e.g. singular matrices
if the problem is matrix inversion. The singular matrices form a
set of dimension n^2-1 in the set of all matrices, the surface defined
by det(A)=0.  And the closer the matrix is to this set, i.e. to being 
singular, the harder matrix inversion will be, in the sense that the 
error bound will get worse and worse the closer the matrix is to this 
set. Later we will show how to measure the distance from a matrix to 
the nearest singular matrix "exactly" (i.e. except for roundoff) using 
the SVD, and show that the condition number, and so the error bound, 
is inversely proportional to this distance.

Here is another way the above figure foreshadows linear algebra.
Recall that we could interpret the computed value of the polynomial
p(x) = sum_i a_i*x^i, with roundoff errors, as the exactly right value 
of a slightly wrong polynomial, that is 
      p_alg(x) = sum_{i=0:d} [(1+e_i)*a_i]*x^i,
where |e_i| <= 2*d*macheps. We called this property 
"backward stability", in contrast to "forward stability" which would 
means that the answer itself is close to correct.  So the error bound 
bounds the difference between the exact solutions of two slightly 
different problems p(x) and p_alg(x).

For most linear algebra algorithms, we will also show they are 
backward stable. For example, if we want to solve A*x=b, we will 
instead get the exact solution of (A+Delta)*xhat = b, where the matrix 
Delta is "small" compared to A. Then we will get error bounds by 



essentially taking the first term of a Taylor expansion of 
inv(A+Delta):
    xhat - x = inv(A+Delta)*b - inv(A)*b
To do this, we will need to introduce some tools like matrix and 
vector norms (so we can quantify what "small" means) in the next 
lecture.

To extend the analysis of Horner's rule to linear algebra algorithms, 
note the similarity between Horner's rule and computing dot-products:

  p   = a_d, for i=d-1:-1:1, p   = x*p     + a_i
  s   =  0 , for i=1:d,      s   = x_i*y_i + s

Thus the error analysis of dot products, matrix multiplication,
and other algorithms is very similar (homework 1.10 and 1.11). 

This is all you need to know to analyze the common behavior of many
numerical algorithms. The next part of this lecture goes into more
detail on other properties of floating point, such as exception
handling, which are necessary for making algorithms reliable. 

Next we briefly discuss some properties and uses of floating point 
that go beyond these most basic properties (even more details are at 
the end of these notes). Analyzing large, complicated codes by hand 
to understand all these issues is a challenge, so there is research in 
automating this analysis; there is a day-long tutorial on available 
tools that was held at Supercomputing'19.

(1) Exceptions: IEEE arithmetic has rules for cases like:
    Underflow: Tiny / Big = 0  
         (or "subnormal", special numbers at bottom of exponent range)
    Overflow and Divide-by-Zero
       1/0 = Inf = "infinity", represented as a special case in the 
           usual format, with natural computational rules like: 
       Big + Big = Inf,  Big*Big = Inf,  3 - Inf = -Inf, etc.
    Invalid Operation::
       0/0 = NaN = "Not a Number", also represented as special case
       Inf - Inf = NaN, sqrt(-1) = NaN, 3 + NaN = NaN, etc
    Flags are available to check if such exceptions occurred.

    Impact on software:
      Reliability:
         Suppose we want to compute s = sqrt(sum_i x(i)^2):
         What could go wrong with the following obvious algorithm?
           s = 0, for i=1:n s = s + x(i)^2, end for,  s = sqrt(s) 
         To see how standard libraries deal with this, see snrm2.f 
         in the BLAS.
         For a worst-case example, see Ariane 5 crash on webpage.
         We are currently investigating how to automatically guarantee 



         that libraries like LAPACK cannot "misbehave" because of 
         exceptions (go into infinite loops, give wrong answer without 
         warning, etc.)
      Error analysis: it is possible to extend error analysis to
         take underflow into account by using the formula
           rnd(a op b) = (1+delta)*(a op b) + eta
         where |delta| <= macheps as before, and |eta| is
         bounded by a tiny number, depending on how underflow is
         handled.
      Speed: 
         Run ``reckless'' algorithm, that is fast but ignores possible 
            exceptions
         Check flags to see if exception occurred
         In rare case of exception, rerun with slower, more reliable 
            algorithm

(2) Higher precision arithmetic: possible to simulate using either 
    fixed or floating point, various packages available: MPFR, ARPREC, 
    XBLAS (see web page). There are also special fast tricks just for 
    high precision summation; see Homework 1.18.

(3) Lower precision arithmetic: As mentioned before, many companies
    are building hardware accelerators for machine learning, which
    means they provide fast matrix multiplication. As mentioned in 
    Lecture 1, and will be discussed later, it is possible to 
    reformulate many dense linear algebra algorithms to use
    matrix multiplication as a building block, and so it is natural 
    to want to use these accelerators for other linear algebra
    problems as well. As illustrated in our error analysis of Horner's
    rule, many of our error bounds will be proportional to
    d*macheps, where d is the problem size (eg matrix dimension),
    and often d^2*macheps or more. These bounds are only useful when
    d*macheps (or d^2*macheps) are much smaller than 1.  
    So when macheps is ~4e-3 with bfloat16, this means d must be
    much smaller than 1/macheps = 256, or much smaller than
    1/sqrt(macheps) = 16, for these bounds to be useful. This is
    obviously very limiting, and raises several questions:
    Are our (worst case) error bounds too pessimistic? Can we do
    most of the work in low precision, and little in high precision,
    to get an accurate answer? There are some recent positive answers
    to both these questions.

(4) Variable precision: There have been various proposals over the
    years to support variable precision arithmetic, sometimes with
    variable word lengths, and sometimes encoded in a fixed length 
    word. Variable word lengths make accessing arrays difficult 
    (where is A(100,100), if every entry of A can have a different 
    bit-length?). There has been recent interest in this area, 
    with variable precision formats called unums (variable length) 
    and posits (fixed length), proposed by John Gustavson. Posits



    allocate more bits for the mantissa when the exponent needs few
    bits (so the number is not far from 1 in magnitude) and fewer
    mantissa bits for long exponents. This so-called "tapered 
    precision" complicates error analysis, and it is an open
    question of how error analyses or algorithms could change to
    benefit. See the class webpage for links to more details,
    including a youtube video of a debate between Gustavson and
    Kahan about the pros and cons of unums.  

(5) Reproducibility: Almost all users expect that running the same 
    program more than once gives the bitwise identical answer; this is 
    important for debugging, correctness, even legal reasons 
    sometimes. But this can no longer be expected, even on your 
    multicore laptop, because parallel computers (so nearly all now), 
    may execute sums in different orders, and roundoff makes 
    summation nonassociative:
     (1-1)+1e-20 = 1e-20 neq 0 = (1+1e-20)-1
    There is lots of work on coming up with algorithms that fix this, 
    without slowing down too much, such as ReproBLAS (see web page). 
    The 2019 version of the IEEE 754 standard also added a new 
    "recommended instruction", to accelerate both the tricks 
    for high precision arithmetic in (2), and to make summation 
    associative (see web page).

(6) Guaranteed error bounds from Interval Arithmetic: Represent each 
    floating point number by an interval [x_low,x_high], and use
    special rounding modes in IEEE standard to make sure that lower 
    and upper bounds are maintained throughout the computation:
      [x_low,x_high] + [y_low,y_high] = 
           [round_down(x_low+y_low),round_up(x_high+y_high)]
    Drawback: naively replacing all variables by intervals like this 
    often makes interval widths grow so fast that they are useless. 
    There have been many years of research on special algorithms that 
    avoid this, especially for linear algebra (see web page).
    
(7) Exploiting structure to get high accuracy: Some matrices have 
    special mathematical structure that allows formulas to be used 
    where roundoff is provably bounded so that you get high relative 
    accuracy, i.e. most leading digits correct. For example,
    a Vandermonde matrix has entries V(i,j) = x_i^j, and arises 
    naturally from polynomial interpolation problems. It turns out 
    that this special structure permits many linear algebra problems, 
    even eigenvalues, to be done accurately, no matter how hard 
    (``ill-conditioned'') the problem is using conventional 
    algorithms. See the class webpage for details.

(We end the recorded lecture here. The following notes give more
Details about some of the above floating point issues.)

(1) Exceptions: what happens when computed result would have an 



    exponent that is too big to fit, too small to fit, or isn't 
    mathematically defined, like 0/0? One gets "exceptions", with
    rules about the results and how to compute with them, plus flags 
    to check to see if an exception occurred.
 
    What if answer > OV? get infinity (overflow)
        fl(1e20*1e20) = fl(1/0) = inf    ... in single
        fl(3+inf) = inf, fl(1/inf) = 0, fl(1/-0) = -inf

    What if answer mathematically undefined? get NaN = Not a Number 
        fl(sqrt(-1)) = fl(0/0) = fl(inf-inf) = NaN
        3 + NaN = NaN ... so you see NaN on output if one occurred

    What if answer < UN?  get underflow                             
      What to do: if you return zero, then what happens with code:
          if (a .ne. b) then x = 1/(a-b)   ... can divide by zero, 
      Instead, IEEE standard says you get "subnormal numbers"
         x = +- 0.dddd  * 2^exp_min instead of +- 1.dddd * 2^exp
      Without subnormals, we would do error analysis with
          fl(a op b) = (a op b)(1 + delta) + eta,   
             where |delta| <= macheps,   |eta| <= UN
      With subnormals, can do error analysis with
          fl(a op b) = (a op b)(1 + delta) + eta,   
             Where |delta| <= macheps, and
            |eta| <= UN*macheps for *,/  and eta=0 for +-            
      Thm: With subnormals, for all floats a,b fl(a-b) = 0 iff a=b
      Purpose: simplify reasoning about floating point algorithms

    Why bother with exceptions? Why not always just stop when one 
    occurs?
    (1) Reliability: too hard to have test before each floating point 
        operation to avoid exception
         Ex for control system (see Ariane 5 crash on webpage), 
         Ex Matlab: don't want to go into infinite loop because of an 
            input NaN (caused several fixes to LAPACK, and also helped 
            motivate an on-going CS research project to build tools to 
            prove that NaNs, infinities, etc cannot cause infinite 
            loops or analogous bugs)
    (2) Speed: ditto (too slow to test before each operation)
          (1) run "reckless" code that is fast but assumes no 
              exceptions
          (2) check exception flags
          (3) in case of exception, rerun with slower algorithm
        Ex: s = root-sum-squares = sqrt(sum_{i=1}^n x_i^2)
        What could go wrong? (see Q 1.19)
    (3) Sometimes one can prove code correct with exceptions:
        Ex: Current fastest algorithms to find (some) eigenvalues of 
        symmetric matrices depends on these, including 1/(-0) = -Inf

   Impact on LAPACK: One of the fastest algorithms in LAPACK for 



     finding eigenvalues of symmetric matrices assumes that 
     1/+0 = +infinity, and 1/-0 = -infinity, as specified by the IEEE 
     standard. We tried to port this code to an ATI GPU,
     and discovered that they did not handle exceptions correctly: 
     1/(-0) was +infinity instead of -infinity.
     The code depended on getting -infinity to get the right answer,
     and (until they fixed their hardware) we had to take the quantity
     in the denominator of 1/d and instead compute 1/(d+0), which made
     the -0 turn into a +0, whose reciprocal was correctly computed. 
     See EECS Tech Report EECS-2007-179 for details.

(2) Exploiting lack of roundoff in special cases to get high precision
     Fact: if   1/2 < x/y < 2 then fl(x-y) = x-y  ... no roundoff
     Proof: Cancellation in x-y means exact result fits in p bits
     Fact: Suppose M >= abs(x). Suppose we compute
             S = fl(M+x), q = fl(S-M),  r = fl(x-q)
           In exact arithmetic, we would compute 
           r = x-q = x-(S-M) = x-((M+x)-M) = 0.
           But in floating point, S+r = M+x exactly, with r being 
           the roundoff error, i.e. (S,r) is the double precision sum
           of M+x
     (Proof sketch in special case; only roundoff occurs in S=fl(M+x), 
      other two operations are exact).
     This trick, called "Accurate 2-Sum" can be generalized in a 
     number of ways to get very general algorithms available in the 
     following software packages:
      ARPREC (see class website): provides arbitrary precision 
            arithmetic
      XBLAS (see class website): provides some double-double precision 
            Basic Linear Algebra Subroutines (BLAS), like 
            matrix-vector-multiplication. LAPACK uses these routines 
            to provide high accuracy solvers for Ax=b.
      ReproBLAS (see class website): Provides bit-wise reproducible 
            parallel implementations of some BLAS. The challenge here 
            is that since roundoff makes floating point addition 
            nonassociative, computing a sum in a different order
            will usually give a (slightly) different answer. On a 
            parallel machine, where the number of processors (and 
            other resources) may be scheduled dynamically,
            computing a sum in a different order is likely. Since 
            getting even slightly different results is a challenge for 
            debugging and (in some cases) correctness,
            we and others are working on efficient algorithms that 
            guarantee reproducibility.
      New instruction in IEEE 754 2019: AugmentedAddition: This one 
            instruction takes any values of M and x, and returns 
            S = fl(M+x) and r = M+x-S exactly, a more general version 
            of Accurate 2-Sum (and potentially faster, depending on 
            how it is implemented). It also rounds M+x slightly 
            differently, rounding ties toward zero, instead of the 



            nearest even number, which can be used to make
            floating point addition associative. There are analogous 
            AugmentedSubtraction and AugmentedMultiplication 
            instructions.

     Finally, we point out the paper "Accurate and Efficient Floating 
     Point Summation," J. Demmel and Y. Hida, SIAM J. Sci. Comp, 2003, 
     for a efficient way to get full accuracy in a summation despite 
     roundoff (in brief: to sum n numbers to full accuracy, you need 
     to use log_2(n) extra bits of precision, and sum them in 
     decreasing order by magnitude), and the website 
        www.ti3.tu-harburg.de/rump/ 
     for a variety of papers on linear algebra with guaranteed 
     accuracy.

(3) Guaranteed error bounds (sometimes) via interval arithmetic:
    So far we have used rnd(x) to mean the nearest floating point 
    number to x.
    (Note: Ties are broken by choosing the floating point number whose
    last bit is zero, also called "round to nearest even". This has 
    the attractive property that half the ties are rounded up and half 
    rounded down, so there is no bias in long sums.)
    But the IEEE Floating Point Standard also requires the operations
      rnd_down(x) = largest  floating point number <= x
      rnd_up(x)   = smallest floating point number >= x
    Thus [rnd_down(x+y),rnd_up(x+y)] is an interval guaranteed to 
    contain x+y. And if [x_min,x_max] and [y_min,y_max] are two 
    intervals guaranteed to contain x and y, resp., then 
    [rnd_down(x_min+y_min),rnd_up(x_max+y_max)] is guaranteed
    to contain x+y. So if each floating point number x in a program is 
    represented by an interval [x_min,x_max], and we use rnd_down and 
    rnd_up to get lower and upper bounds on the result of each 
    floating point operation (note: multiply and division are a 
    little trickier than addition), then we can get guaranteed error
    bounds on the overall computation; this is called interval 
    arithmetic.
    Alas, naively converting all variables and operations in a program 
    to intervals often results in intervals whose width grows so 
    rapidly, that they provide little useful information. So there has 
    been much research over time in designing new algorithms that try 
    to compute intervals that are narrow at reasonable 
    cost. Google "interval arithmetic" or see the website 
    www.ti3.tu-harburg.de/rump/ for more information.

(4) Accurate Linear Algebra despite roundoff:
    A natural question is what algebraic formulas have the property 
    that there is some way to evaluate them that, despite round off, 
    the final answer is always correct in most of its leading digits:
     Ex: general polynomial: no, not without higher precision
     Ex: x^2+y^2:  yes, no cancellation, 



     Ex: determinant of a Vandermonde matrix: V(i,j) = x_i^(j-1): 
         General algorithm via Gaussian elimination can lose all 
         digits, but formula det(V) = prod_{i < j} (x_j - x_i) works

   A complete answer is an open question, but there are some necessary 
   and sufficient conditions based on algebraic and geometric 
   properties of the formula, see article by 
   Demmel/Dumitriu/Holtz/Koev on "Accurate and Efficient Algorithms in 
   Linear Algebra" in Acta Numerica v 17, 2008: A class of linear 
   algebra problems are identified that, like det(Vandermonde), permit 
   accurate solution despite roundoff. We will not discuss this 
   further, just say that the mathematics depends on results going 
   back to Hilbert's 17th problem, which asked whether positive 
   rational (or polynomial) functions could always be written as a 
   sum of squares of other rational (or polynomial) functions 
   (answers: rational = yes, polynomial = no). For example, 
   when 0 < x_1 < x_2 < ... in the Vandermonde matrix V , 
   it turns out most any linear algebra operation on V can be done 
   efficiently and to nearly full accuracy despite roundoff, including 
   eig(V).  (This work was cited in coauthor Prof. Olga Holtz's 
   award of the 2008 European Math Society Prize).


