
22

Algorithms for Efficient Reproducible Floating Point

Summation

PETER AHRENS, Massachusetts Institute of Technology, USA

JAMES DEMMEL and HONG DIEP NGUYEN, University of California Berkeley, USA

We define “reproducibility” as getting bitwise identical results from multiple runs of the same program, per-

haps with different hardware resources or other changes that should not affect the answer. Many users de-

pend on reproducibility for debugging or correctness. However, dynamic scheduling of parallel computing

resources, combined with nonassociative floating point addition, makes reproducibility challenging even for

summation, or operations like the BLAS. We describe a “reproducible accumulator” data structure (the “binned

number”) and associated algorithms to reproducibly sum binary floating point numbers, independent of sum-

mation order. We use a subset of the IEEE Floating Point Standard 754-2008 and bitwise operations on the

standard representations in memory. Our approach requires only one read-only pass over the data, and one

reduction in parallel, using a 6-word reproducible accumulator (more words can be used for higher accuracy),

enabling standard tiling optimization techniques. Summing n words with a 6-word reproducible accumulator

requires approximately 9n floating point operations (arithmetic, comparison, and absolute value) and ap-

proximately 3n bitwise operations. The final error bound with a 6-word reproducible accumulator and our

default settings can be up to 229 times smaller than the error bound for conventional (recursive) summation

on ill-conditioned double-precision inputs.

CCS Concepts: • Mathematics of computing → Numerical analysis; Arbitrary-precision arithmetic;

Mathematical software; • Computing methodologies → Parallel algorithms; Distributed computing method-

ologies;

Additional Key Words and Phrases: Reproducible summation, binned number, binned summation, floating

point number, floating point summation, reproducibility, parallel, computer arithmetic, summation

ACM Reference format:

Peter Ahrens, James Demmel, and Hong Diep Nguyen. 2020. Algorithms for Efficient Reproducible Floating

Point Summation. ACM Trans. Math. Softw. 46, 3, Article 22 (July 2020), 49 pages.

https://doi.org/10.1145/3389360

This research is supported in part by a DOE Computational Science Graduate Fellowship DE-FG02-97ER25308, NSF grants

NSF ACI-1339676, NSF DMS-1312831, DOE grants DOE DE-SC0010200, DOE DE-SC0008699, DOE DE-SC0008700, DOE

AC02-05CH11231, an Intel ITSC grant, a Darpa XDATA grant, DARPA grant HR0011-12-2-0016, and ASPIRE Lab industrial

sponsors and affiliates Intel, Google, HP, Huawei, LGE, Nokia, NVIDIA, Oracle, and Samsung. Other industrial sponsors

include Mathworks, Cray, and Aramco. Any opinions, findings, conclusions, or recommendations in this article are solely

those of the authors and do not necessarily reflect the position or the policy of the sponsors.

Authors’ addresses: P. Ahrens, Massachusetts Institute of Technology, Computer Science and Artificial Intelligence Labora-

tory, 32 Vassar Street, Room 32-G604, Cambridge, MA, 02139; email: pahrens@mit.edu; J. Demmel, University of California

Berkeley, Computer Science Division, Mathematics, 564 Soda Hall, Berkeley, CA, 94720; email: demmel@berkeley.edu;

H. D. Nguyen, Electrical Engineering and Computer Science, University of California Berkeley, Berkeley, CA, 94720; email:

hdnguyen@eecs.berkeley.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

0098-3500/2020/07-ART22 $15.00

https://doi.org/10.1145/3389360

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

https://doi.org/10.1145/3389360
mailto:permissions@acm.org
https://doi.org/10.1145/3389360
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3389360&domain=pdf&date_stamp=2020-07-21

22:2 P. Ahrens et al.

1 INTRODUCTION

Reproducibility, i.e., getting bitwise identical results from multiple runs of the same program, is
important for several reasons. First, it can be very hard to debug and test a program if results (in-
cluding errors) cannot be reproduced. Reproducibility may also be needed for producing correct
results, such as simulations that produce rare events that must then be reproduced and studied
more carefully, or when a quantity is computed redundantly on different processors and assumed
to be identical in subsequent tests and branches. Reproducibility may also be required for con-
tractual reasons when multiple parties must agree on a result (such as a simulation evaluating
the earthquake safety of a proposed building design). Finally, reproducibility can be important for
replicating previously published results. There have been numerous recent meetings at confer-
ences addressing the need for reproducibility and proposed ways to achieve it [12]. In response
to this demand, Intel has introduced a version of their Math Kernel Library (MKL) that supports
reproducibility under certain restrictive conditions [2]. NVIDIA’s CuBLAS routines are, by default,
reproducible under the same conditions [3]. We will see that neither of these solutions meet all
our design goals.

There are many potential sources of nonreproducibility, so we need to define the scope of our
work. For example, taking the source code for an arbitrary parallel program on one machine and
moving it to a different machine with a different compiler or compiler flags, different floating point
semantics, and different math libraries (e.g., trigonometric functions) is beyond what we address
here [7].

Instead, we limit ourselves to nonreproducibility caused by binary floating point summation (ad-
dressing decimal floating point summation is future work). Since roundoff makes floating point
summation non-associative, summing the same summands in different orders frequently gives
different answers. On a parallel machine with a variable (e.g., dynamically allocated) number of
processors, a dynamic execution schedule, or even a sequential machine where different data align-
ments may cause a different use of SIMD instructions, the order of summation can easily vary from
run-to-run or even subroutine-call-to-subroutine-call in the same run.

Our goal is to formally describe a data structure (and associated algorithms) for reproducible
floating point summation that could be used in existing software patterns for summation. An accu-

mulator is a data structure used to store the intermediate results of summation. A reproducible

accumulator is an accumulator that can produce a reproducible sum [8–10, 14, 15, 21–23, 26].
Our reproducible accumulator and algorithms are efficient, accurate, and behave sensibly on all
floating point values.

A modular reproducible accumulator can be used to construct reproducible versions of higher-
order linear algebra operations, including matrix-matrix and matrix-vector multiplication, dot
products, and stable norms of vectors. For example, to implement a reproducible dot product xᵀy,
we can sum the products xiyi using our reproducible accumulator. Since we will always sum the
same results xiyi , the output will be the same regardless of summation order. We can general-
ize this algorithm for the dot product to higher-order operations like matrix multiplication using
several reproducible accumulators to represent the necessary partial inner products. Performance
optimizations used in highly tuned non-reproducible BLAS implementations such as tiling might
be performed using tiles of reproducible accumulators that can be added together pointwise. If
more accuracy in the dot product is desired, we may use a “TwoMul” operation to multiply xi and
yi to produce floating point numbers hi and li such that hi + li = xiyi exactly, and sum the result-
ing hi and li using a reproducible accumulator [28]. Since the hi and li do not depend on the order
of summation, this result should also be reproducible, and, since the pointwise multiplication was
exact, the only error in the dot product will come from summation.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:3

Our work builds on Reference [15], which attained some but not all of our design goals. So in
the following summary, we point out which goals were attained in Reference [15] and which ones
are attained here for the first time.

(1) Reproducible summation, independent of summation order, assuming only a subset of the
IEEE Floating Point Standard 754.

Our algorithms, based on Reference [15] and originally inspired by References [30, 31],
use only arithmetic operations on binary floating point numbers (any precision) and bit-
wise operations on their underlying representations in current IEEE Floating Point Stan-
dard 754-2008 [1]. We require only a “to-nearest” rounding mode; the default rounding
mode (rounding to the nearest value, breaking ties to even values) is sufficient.

In Appendix A, we show how to use a new operation in the new Standard 754-2019
[5, Section 9.5], which was introduced to accelerate both our core algorithm [20, 29] and
the widely used two-sum operation [11, 17, 19, 21, 24, 25, 31]. We note that this operation
needs to use a new rounding mode, round “to-nearest” with ties broken toward zero, that
was not previously required for any floating point operations. The new operation changes
only the innermost loop.

(2) Accuracy at least as good as recursive summation, and tunable.
The size of the reproducible accumulator in Reference [15] may be selected based on

the desired accuracy. However, Reference [15] did not give any algorithm to convert this
reproducible accumulator to a single floating point result.

Our contribution here is a very simple and nearly optimally accurate algorithm for this
conversion, which introduces an additional error in the computed sum S of at most 7 ulps
(units in the last place) of the exact sum

∑n−1
j=0 x j . Although we could perform the conver-

sion exactly and produce a correctly rounded result, our algorithm is very efficient. It uses
no more floating point operations than the naive conversion algorithm. Since our default
accumulator has at least 80 bits of precision, after using our new conversion algorithm,
we have �������S −

n−1∑
j=0

x j

������� < n2−80 max |x j | + 7ϵ

�������
n−1∑
j=0

x j

������� , (6.1)

where ϵ = 2−53. In contrast, the sum Snaiveconv computed using a naive conversion algo-
rithm only satisfies�������Snaiveconv −

n−1∑
j=0

x j

������� < n(2−80 + 5ϵ) max |x j | ≈ 5nϵ max |x j |, (6.2)

which can be over 229 times larger for very ill-conditioned problems (i.e., when there is a
great deal of cancellation, such as n ·max |x j | ≈ 232 |∑x j | in this example).

The error bound for the conventionally (nonreproducibly) computed sum using recur-

sive summation Srecur is even larger. By recursive summation, we mean that the sum is
computed in the order: Srecur = 0, for j = 0 to n − 1, Srecur = Srecur ⊕ x j (where ⊕ represents
floating point addition, discussed in more detail later).�������Srecur −

n−1∑
j=0

x j

������� < nϵ
n−1∑
j=0

|x j | ≤ n2ϵ max |x j | [18, (2.6)]

These error bounds are discussed in more detail in Section 6.1.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:4 P. Ahrens et al.

Appendix A.6 also shows that the arithmetic cost for arbitrarily high precision is
roughly the same as using our 6-word reproducible accumulator, plus a term that only
grows proportionally to the size of the reproducible accumulator, not the number of sum-
mands n.

(3) Handle overflow, underflow, and other exceptions reproducibly.
It is easy to construct small sets of finite floating point numbers, where depending

on the order of summation, one might compute +Inf (positive infinity), -Inf (negative
infinity), NaN (Not-a-Number), 0, or 1 (the correct answer): Consider [X ,X , 1,−X ,−X]
where X is any finite floating point number greater than half the overflow threshold.
The reproducible summation algorithm in Reference [15] (Algorithms 6 and 7) could not
handle exceptions, very large summands, or very large intermediate results. In contrast,
our algorithms guarantee that no overflows can occur until the final rounding to a single
floating point number. Summands that are +Inf, -Inf, or NaN propagate in a reproducible
way to the final sum.

We note that when we guarantee that a NaN will either always, or never, appear as
the result of a reproducible sum, we are not making any guarantees about the bitwise
representation of the resulting NaN being reproducible, just that the result is a NaN. This is
because the IEEE Floating Point Standard 754 does not specify a unique representation for
NaN (there are several) or guarantee which operand in the sum NaN + NaN will propagate
to the result.

Underflows are handled reproducibly by assuming default gradual underflow semantics,
but a slightly modified version of our algorithms work with abrupt or gradual underflow.

(4) One read-only pass over the summands.
This property is critical for efficient implementation of the BLAS, where summands

(like Aik · Bk j in matrix multiply C = A · B) are computed once on the fly and discarded
immediately. The algorithm in Reference [15] has this desirable property.

(5) One reduction.
A parallel reduction is an operation that uses a binary operator to combine multiple

values (stored on different processors) into one. Any arbitrary reduction tree combining
values and intermediates may be used. In parallel environments, the cost of a parallel
reduction may dominate the total cost of a sum, so analogously to performing a single
read-only pass over the data, it is important to be able to perform one parallel reduction
operation (processing the data in any order) to compute a reproducible sum. The algorithm
in Reference [15] again has this desirable property.

(6) Use as little memory as possible to enable tiling.
Many existing algorithms for reproducible summation represent intermediate sums

with a reproducible accumulator. BLAS3 operations like matrix-multiplication require
many reproducible accumulators to exploit common optimizations like tiling; otherwise,
they are forced to run at the much slower speeds of BLAS1 or BLAS2.

To fit as many of these reproducible accumulators into the available fast memory as
needed, they need to be as small as possible. Our default-sized reproducible accumula-
tor occupies 6 double precision floating point words, which is small enough for these
optimization purposes.

(7) Use a modular design, so reproducible summation can be applied in a variety of use cases.
Floating point summation is very common, so we want to make it easy to be repro-

ducible whenever required. Also, in some applications only some parts of a sum may
require modification to be reproducible. For example, in a parallel sum where the data

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:5

assigned to each processor is known to be fixed, only the parallel reduction of the partial
sums from each processor may require modification.

Since we can add floating point numbers to our reproducible accumulator and we can
add two of our reproducible accumulators together, our algorithms can be used in most
software patterns for summation. Reference [15] also had these algorithms, but lacked a
formal description of the accumulator data structure, how it was initialized, and how to
convert it back to a floating point number. Our algorithm to add a floating point number
to a reproducible accumulator is described in smaller, more modular functions than in
Reference [15]. All of our algorithms have clear requirements and guarantees in terms of
our reproducible accumulator.

We need to make some assumptions on the maximum number of summands. These turn
out to be 264 and 233 for double and single precision, respectively, which is more than
enough in practice, and 4× more than in Reference [15] (see Section 6.2).

Previous alternative approaches to reproducible summation fail to attain all these goals. For ex-
ample, the Intel Math Kernel Library (MKL) introduced a feature called Conditional Numerical Re-
producibility (CNR) in version 11.0 [2]. When enabled, the code returns the same results from run-
to-run as long as calls to MKL come from the same executable and the number of computational
threads used by MKL is constant. Performance is degraded by these features by at most a factor of 2.
However, these routines cannot offer reproducible results if the data ordering or the number of pro-
cessors changes, violating Goal 1 above. MKL also does not have a distributed memory implemen-
tation. NVIDIA’s CuBLAS [3] routines are reproducible by default, because they use a deterministic
order of summation. This approach is limited in the same ways as MKL with CNR. A correctly

rounded sum is the sum computed exactly and then rounded to a floating point number. The
correctly rounded sum is reproducible by definition, but this approach involves either an accumu-
lator big enough to accumulate all possible floating point sums exactly [8, 10, 26] (violating Goal 6),
and/or multiple passes over the data rewriting it to eliminate cancellation [8, 30] (violating Goal 4).
Pre-rounding the sum to a fixed precision before summing exactly can reduce the necessary size
of the superaccumulator used in exact summation; however, this also requires more than one pass
over the data [14, 27, 31], violating Goal 4. A hardware instruction for computing pre-rounded
sums is presented in Reference [27], and while pre-rounding violates Goal 4, such an instruction
could be used as an alternative to floating point operations as the building block for our approach.

We summarize our reproducible summation algorithm informally as follows:
We break the range of floating point exponents into fixed bins all of some widthW (see Figure 1).

Each summand is then rewritten as the exact sum of a small number of slices, where each slice
corresponds to the significant bits of the summand lying (roughly) in a bin. Since we choose W
to be smaller than the number of floating point significand bits, we can then exactly sum a large
number of slices corresponding to the same bin in one floating point number. We can also use this
floating point number to hold any +Inf, -Inf, or NaN that we encounter along the way. To avoid
overflow, we use scaling to represent the sum of slices in the most significant bin that is very close
to the overflow threshold. Notice that we do not need to sum the slices in all bins, only the bins
corresponding to the largest exponents (the number of bins summed can be chosen based on the
desired accuracy). Slices lying in bins with smaller exponents are discarded or not computed in the
first place. For example, if sums of slices were computed on separate processors and then combined,
we would only keep the sums of slices corresponding to the most significant bins. Independent of
the order of summation, or of parallelism, we end up with the same sums of slices in the same bins,
all computed exactly and so reproducibly. Finally, we convert from our accumulator to a standard

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:6 P. Ahrens et al.

floating point number by carefully summing the separate sums of slices in each bin. As we will
see, this idea, while it sounds simple, requires significant effort to implement and prove correct.

The rest of this article is organized as follows: Section 2 introduces notation used later. Sec-
tion 3 gives a formal discussion of the bins and slices on which our algorithms are based. Section 4
describes the data structure (the binned number) used to store the sums of the slices. Section 5
contains several algorithms for basic manipulations of a binned number. These algorithms allow
the user to, for instance, extract the slices of a floating point number and add them to the binned
number, to add two binned numbers together, or to convert from the binned number to a floating
point number. By extract, we informally mean any one of several ways of computing a slice. Sec-
tion 6 contains the analysis of our algorithms. Section 6.1 shows that the absolute error of the repro-
ducibly computed sum is bounded as in Equation (6.1). Section 6.2 provides and explains our recom-
mended default parameter settings and considers bfloat16 summands and mixed precision. Ap-
pendix A contains notes on the design choices we made in formalizing our algorithms. For exam-
ple, it shows how our algorithms can be implemented in different floating point rounding modes,
with the new augmented addition operation in the IEEE 754-2019 standard, using simpler excep-
tion handling, to support denormalized numbers, using abrupt underflow, or to support very high
accuracy. Appendix A.7 contains detailed operation counts for each of our presented algorithms.

2 NOTATION AND BACKGROUND

All indices start at 0 in correspondence with several programming language implementations.
Let R and Z denote the sets of real numbers and integers, respectively. For all r ∈ R, let rZ

denote the set of all integer multiples of r .
Let F denote the set of binary floating point numbers with precision p and exponent range

[emin, emax]. Each f ∈ F is represented using three fields: the sign s ∈ {−1,+1}, the significand

(also called mantissa) m ∈ [0, 2), and the exponent e ∈ [emin − 1, emax + 1]. The sign is repre-
sented by one bit s0 ∈ {0, 1} where s = 1 − 2 · s0. The mantissa is represented by the binary fixed
point number m =m0.m1m2 . . .mp−1. The exponent is represented using the unsigned integer
e0e1e2 . . ., where e = (emin − 1) + (e0e1e2 . . .). We will use the function getexp(f) to refer to e .

When e ∈ [emin, emax], f is interpreted as f = s ·m · 2e . In this case, f is said to be normalized

ifm0 = 1 (m ∈ [1, 2)) and unnormalized ifm0 = 0 andm � 0.
When e = emin − 1, f is interpreted as f = s ·m · 2emin . In this case, f is said to be denormalized

or subnormal ifm0 = 0 andm � 0.
Note that F includes the exceptional values +Inf, -Inf, and NaN. When e = emax + 1 and

m1m2 . . .mp−1 = 0, then f = s · Inf. When e = emax + 1 and m1m2 . . .mp−1 � 0, then f = NaN (a
special value meaning “Not a Number”). We say f is finite when it is not exceptional. Equiva-
lently, f is finite when f ∈ F ∩R.

In the IEEE 754-2008 Floating Point Standard [1], floating point numbers follow the “hidden
bit” convention, meaning that m0 = 0 only when e = emin − 1. This implies that f is normalized
only when e ∈ [emin, emax], denormalized only when e = emin − 1 and m � 0, and zero only when
e = emin − 1 andm = 0. The “hidden bit” convention also disallows the existence of unnormalized
numbers. Finally, it means thatm0 need not be stored, and the underlying bitwise representation of
the floating point number is therefore s0e0e1e2 . . .m1m2 . . .mp−1. We define bits(f) as the unsigned
integer corresponding to this bitwise representation of f .
r ∈ R is representable as a floating point number if there exists f ∈ F such that r = f as real

numbers. For all r ∈ R, e ∈ Z such that emin − p < e and |r | < 2 · 2emax , if r ∈ 2eZ and |r | ≤ 2e+p ,
then r is representable.

Machine epsilon, ϵ , the difference between 1 and the greatest floating point number smaller
than 1, is defined as ϵ = 2−p .

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:7

The unit in the last place of f ∈ F , ulp(f), is the spacing between two consecutive floating

point numbers of the same exponent as f . Thus, ulp(f) = 2getexp(f)−p+1 = 2ϵ2getexp(f) . If f is finite,
ϵ | f | < ulp(f). If f is normalized, ulp(f) ≤ 2ϵ | f |.

The unit in the first place of f ∈ F , ufp(f), is the value of the first significant bit of f . In this

text, we define ufp(f) only on normalized floating point numbers as ufp(f) = 2getexp(f) . Since f is
normalized, ufp(f) ≤ | f |.

We define the operations ⊕, �, and � to be the IEEE floating point addition, subtraction, and
multiplication operations. Thus, e.g., x ⊕ y is an operation that returns a floating point approxima-
tion to the real number x + y. When x + y lies between two floating point numbers, the rounding

mode defines which number to choose. We assume any “to-nearest” IEEE rounding mode (no spe-
cific tie-breaking behavior is required; see Lemma 5.1 for how tie-breaking is avoided in the critical
part of Algorithm 5.4). We assume gradual underflow, meaning that when the nearest floating
point number to x + y is subnormal, that number is returned by ⊕. If ⊕ were to return a zero in-
stead of returning subnormal numbers, we would call this behavior abrupt underflow. Methods
to handle abrupt underflow and alternate rounding modes will be considered in Appendix A.

For all f0, f1 ∈ F and, e.g., ⊕ and +, if f0 + f1 is representable, we have f0 ⊕ f1 = f0 + f1. Un-
der our rounding assumptions, if f0 ⊕ f1 is finite, then we have that |(f0 ⊕ f1) − (f0 + f1) | ≤
0.5ulp(f0 ⊕ f1). This bound accounts for underflow, as the magnitude of ulp(f) reflects the ap-
propriate loss of accuracy when f is in the denormal range.

We will refer to the various IEEE formats as follows: We refer to Binary16 as half, Binary32 as
single, Binary64 as double, and Binary128 as quad.

We define f |m and f &m as the floating point result of applying the logical “or” and “and” oper-
ators to the underlying bitwise representation of f using the integer mask m. We assume that
f is stored in the standard binary interchange format [1]. If >> and << are the logical shift
operators on integers, we can implement ufp(f) as ufp(f) = f &((emax − emin + 2) << (p − 1)),
using the fact that the representation of the binary integer (emax − emin + 2) << (p − 1) can be
used to mask the bits corresponding to the exponent field. Thus, we can implement getexp(f)
as getexp(f) = (bits(f &((emax − emin + 2) << (p − 1))) >> (p − 1)) + (emin − 1). Note that getexp
differs from the IEEE operation loдB on exceptional and tiny inputs, since getexp(+Inf) = emax + 1
while loдB (+Inf) = +Inf and getexp(0) = emin − 1 while loдB (0) = -Inf. We can check if a float-
ing point value is exceptional by checking that bits(f &((emax − emin + 2) << (p − 1))) is equal to
(emax − emin + 2) << (p − 1). This could be implemented with IEEE operations, as the logical nega-
tion of isFinite , or the logical disjunction of isNan or isIn f , but we use our bitwise check for
operation counting.

We define the function R±∞ (r , e), r ∈ R, e ∈ Z as

R±∞ (r , e) =

{

r/2e + 1/2�2e if r ≥ 0,
r/2e − 1/2�2e otherwise.

(2.1)

R±∞ (r , e) rounds r to the nearest multiple of 2e, breaking ties away from 0. Properties of such
rounding are shown in Equation (2.2). Let sr be the sign of r , so sr = 1 if r ≥ 0 and sr = −1 if r < 0.
Let z ∈ Z.

|r − R±∞ (r , e) | ≤ 2e−1

|r − R±∞ (r , e) | ≤ |r |
R±∞ (r , e) ∈ 2nZ if r ∈ 2nZ,n ∈ Z
R±∞ (r , e) = 0 if |r | < 2e−1

R±∞ (r , e) = r + sr 2e−1 if |r − R±∞ (r , e) | = 2e−1. (2.2)

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:8 P. Ahrens et al.

Fig. 1. The binning process.

3 BINNING

We achieve reproducible summation of floating point numbers through binning. Each number is
split into several components corresponding to predefined exponent ranges, then the components
corresponding to each range are summed separately. We begin in Section 3.1 by explaining the
particular set of ranges (referred to as bins; see Figure 1) used. Section 3.2 develops mathemati-
cal theory to describe the components (referred to as slices) corresponding to each bin. The data
structure (referred to as a binned number) to represent slices in bins will be explained in Section 4.
In this section, we develop theory to concisely describe and prove correctness of the algorithms
throughout the article.

3.1 Bins

We start by dividing an expanded range of floating point exponents, (emin − p, . . . , emax + 1] into
bins (ai ,bi] of widthW according to Equations (3.1), (3.2), and (3.3).

Definition 3.1. We define the bins (ai ,bi] used by our algorithms as follows:

0 ≤ i ≤ imax =
⌊
(emax − emin + p − 1)/W

⌋
− 1, (3.1)

ai = emax + 1 − (i + 1)W , (3.2)

bi = ai +W . (3.3)

Note that Equations (3.2) and (3.3) imply that for 1 ≤ i ≤ imax, ai−1 = bi .
We say the bin (ai0 ,bi0] is greater than the bin (ai1 ,bi1] if ai0 > ai1 (which is equivalent to either

bi0 > bi1 or i0 < i1).
We say the bin (ai0 ,bi0] is less than the bin (ai1 ,bi1] if ai0 < ai1 (which is equivalent to either

bi0 < bi1 or i0 > i1).
The greatest bin, (a0,b0], is

(emax + 1 −W , emax + 1] (3.4)

and the least bin, (aimax ,bimax], is

(emin − p + 2+ ((emax − emin +p − 1) mod W), emin − p + 2+W + ((emax − emin +p − 1) mod W].
(3.5)

For reasons explained later, we require that

W < p − 2 (3.6)

and

2W > p + 1. (3.7)

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:9

Table 1. Proposed Binning Scheme

Floating Point Type single double quad
emax 127 1,023 16,383
emin −126 −1,022 −16,382
p 24 53 113
emin − p −150 −1,075 −16,495
W 13 40 100
imax 20 51 327
(a0,b0] (115, 128] (984, 1,024] (16,284, 16,384]
(aimax ,bimax] (−145,−132] (−1,056,−1,016] (−16,416,−16,316]

Notice that to satisfy Equations (3.6) and (3.7), we must have

p ≥ 8. (3.8)

Equation (3.8) is satisfied in all binary IEEE floating point formats.
Since

aimax = emin − p + 2 +
(
(emax − emin + p − 1) mod W

)
≥ emin − p + 2, (3.9)

we ignore the least exponents in our expanded range,(
emin − p, emin − p + 2 +

(
(emax − emin + p − 1) mod W

)]
. (3.10)

However, Equations (3.6) and (3.5) ensure that our least bin will always extend below emin.

aimax = emin − p + 2 +
(
(emax − emin + p − 1) mod W

)
≤ emin − p + 2 + (W − 1)

≤ emin − p + 2 + (p − 2 − 1 − 1) = emin − 2. (3.11)

A possible division of expanded exponent ranges for various binary IEEE floating point formats
is shown in Table 1. The choices of W are discussed in detail in Section 6.2, when the effects of
such choices can be more accurately described.

We do not consider half precision floating point numbers, because it is easier to sum them
exactly. Since the half format has emin = −14, emax = 15, and p = 11, it can be represented in fixed-
point arithmetic using 40 bits of precision. Thus, we could sum our half summands using a double
and it would be exact, and so reproducible, to at least 213 summands. One could sum even more of
them exactly by converting the summands to (scaled) 64-bit integers.

3.2 Slices

Throughout the text, we will refer to the slice of some x ∈ R in the bin (ai ,bi] (see Figure 1). x can
be split into several slices, each slice corresponding to a bin (ai ,bi] and expressible as the (possi-
bly negated) sum of a subset of {2e , e ∈ (ai ,bi]}, such that the sum of the slices equals x exactly
or provides a good approximation of x , possibly dropping bits at the very bottom of the expo-
nent range, (emin, emin − p]. Specifically, the slice of x ∈ R in the bin (ai ,bi] is defined recursively
as d (x , i) in Equation (3.12). We must define d (x , i) recursively, because it is not a simple bitwise
extraction. The extraction is more complicated, because the splitting is performed using floating
point instructions. There are many ways to implement the splitting (using only integer instruc-
tions, only floating point instructions, a mix of the two, or even special purpose hardware). This

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:10 P. Ahrens et al.

article focuses on using a majority of floating point instructions, allowing us to take advantage of
the rounding operations built in to floating point arithmetic.

Definition 3.2. We define the slice d (x , i) of x ∈ R in the bin (ai ,bi] as follows:

d (x , 0) = R±∞ (x ,a0 + 1)

d (x , i) = R±∞ ���x −
i−1∑
j=0

d (x , j),ai + 1
	
� for i > 0.

(3.12)

We make three initial observations on the definition of d (x , i). First, we note that d (x , i) is well
defined recursively on i with base case d (x , 0) = R±∞ (x ,a0 + 1).

Next, notice that d (x , i) ∈ 2ai+1Z.
Finally, it is possible that d (x , 0) may be too large to represent as a floating point number. For

example, if x is the greatest finite floating point number, then d (x , 0) = R±∞ (x ,a0 + 1) would be
2emax+1. We will have to handle the 0 bin using scaling.

Lemmas 3.1 and 3.2 follow from the definition of d (x , i).

Lemma 3.1. For all i ∈ {0, . . . , imax} and x ∈ R such that |x | < 2ai , d (x , i) = 0.

Proof. We show the claim by induction on i .
In the base case, |x | < 2a0 , by Equation (2.2), we have d (x , 0) = R±∞ (x ,a0 + 1) = 0.
In the inductive step, we have |x | < 2ai+1 < · · · < 2a0 by Equation (3.2) and by inductiond (x , i) =
· · · = d (x , 0) = 0. Thus,

d (x , i + 1) = R±∞ ���x −
i∑

j=0

d (x , j),ai+1 + 1
	
� = R±∞ (x ,ai+1 + 1).

Again, since x < 2ai+1 , by Equation (2.2), we have d (x , i + 1) = R±∞ (x ,ai+1 + 1) = 0. �

Lemma 3.2. For all i ∈ {0, . . . , imax} and x ∈ R such that |x | < 2bi , d (x , i) = R±∞ (x ,ai + 1).

Proof. The claim is a simple consequence of Lemma 3.1.
By Equations (3.2) and (3.3), |x | < 2bi = 2ai−1 < · · · < 2a0 . Therefore, Lemma 3.1 impliesd (x , 0) =
· · · = d (x , i − 1) = 0 and we have

d (x , i) = R±∞ ���x −
i−1∑
j=0

d (x , j),ai + 1
	
� = R±∞ (x ,ai + 1). �

Lemma 3.1, Lemma 3.2, and Equation (3.12) can be combined to yield an equivalent definition
of d (x , i) for all i ∈ {0, . . . , imax} and x ∈ R.

d (x , i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if |x | < 2ai

R±∞ (x ,ai + 1) if 2ai ≤ |x | < 2bi

R±∞
(
x −

i−1∑
j=0

d (x , j),ai + 1
)

if 2bi ≤ |x |
(3.13)

Theorem 3.3 shows that the sum of the slices of x ∈ R in the i + 1 lowest bins approximates x
to within an absolute error of 2ai .

Theorem 3.3. For all i ∈ {0, . . . , imax} and x ∈ R, |x −∑i
j=0 d (x , j) | ≤ 2ai .

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:11

Proof. We apply Equations (3.12) and (2.2)�������x −
i∑

j=0

d (x , j)

������� =
�������
���x −

i−1∑
j=0

d (x , j)	
� − d (x , i)

�������
=

�������
���x −

i−1∑
j=0

d (x , j)	
� − R±∞
���x −

i−1∑
j=0

d (x , j),ai + 1
	
�
������� ≤ 2ai . �

Combining Theorem 3.3 with Equation (3.11), we see that for any x ∈ R,������x −
imax∑
i=0

d (x , i)
������ ≤ 2aimax ≤ 2emin−2. (3.14)

Although the bins do not extend all the way to emin − p, we can still approximate finite x ∈ F
using the sum of its slices to the nearest multiple of 2emin−1 or better (see aimax in Table 1).

As the slices of x provide a good approximation of x , the sum of the slices of some x0, . . . ,xn−1 ∈
R provide a good approximation of

∑n−1
j=0 x j . This is the main idea behind the reproducible summa-

tion algorithm presented here. Since the largest nonzero slices of x provide the best approximation
to x , we compute the sum of the slices of each x0, . . . ,xn−1 corresponding to the largest K bins
such that at least one slice in the largest bin is nonzero. If such an approximation can be computed
exactly, then it is necessarily reproducible. Notice that we do not necessarily compute the exact
sum as in References [9, 21, 26]. We compute a well-defined approximation of the sum exactly.

If the sums of slices corresponding to each bin are kept separate, we can compute the repro-
ducible sum iteratively, only storing sums of nonzero slices in the K largest bins seen so far. When
a summand is encountered with nonzero slices in a larger bin than what has been seen previously,
we abandon sums of slices in smaller bins to store the sums of slices in the larger ones.

Before moving on to discussions of how to store and compute the slices and sums of slices, we
must show a bound on their size. Theorem 3.4 shows a bound on d (x , i).

Theorem 3.4. For all i ∈ {0, . . . , imax} and finite x ∈ F , |d (x , i) | ≤ 2bi .

Proof. First, we show that |x −∑i−1
j=0 d (x , j) | ≤ 2bi .

If i = 0, we use Equation (3.4) to get�������x −
i−1∑
j=0

d (x , j)

������� = |x | < 2 · 2emax = 2b0 .

Otherwise, we can apply Equations (3.2) and (3.3) and Theorem 3.3 to get�������x −
i−1∑
j=0

d (x , j)

������� ≤ 2ai−1 = 2bi .

As 2bi ∈ 2ai+1Z, Equation (3.12) can be used:

|d (x , i) | =
�������R±∞

���x −
i−1∑
j=0

d (x , j),ai + 1
	
�
������� ≤ 2bi . �

Combining Theorem 3.4 with the earlier observation that d (x , i) ∈ 2ai+1Z, we see that the slice
d (x , i) can be represented by bits lying in the bin (ai ,bi] as desired.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:12 P. Ahrens et al.

4 THE BINNED NUMBER

The binned number is used to represent the intermediate sum during reproducible summa-
tion. A binned number Y is a data structure composed of several slice-collecting data structures
Y0, . . . ,YK−1. Each collectorYk is a data structure used to extract and sum the slices of the input in
the bin (aI+k ,bI+k] where I is the index of Y , 0 ≤ I ≤ imax − K + 1 (so all of the bins in the binned
number are defined) and 0 ≤ k < K .

A binned number with K collectors is referred to as a K-fold binned number. Due to their low
accuracy, 1-fold binned numbers are not considered. K can be at most imax + 1, when all collectors
are included. The collectors in a binned number correspond to contiguous bins in decreasing or-
der. If Y has index I , then Yk sums slices of the input in the bin (aI+k ,bI+k]. The binned number
corresponding to the reproducibly computed sum of x0, . . . ,xn−1 ∈ F is referred to as the binned

sum of x0, . . . ,xn−1.
Section 4.1 elaborates on the specific fields that make up the binned number and the values

they represent in the finite case. Sections 4.1.1 and 4.1.2 show that the fields in the binned number
are normalized floating point numbers below the overflow threshold, and Section 4.1.3 contains
sentinel values for the binned number to handle exceptions. Section 4.2 explains why the index
does not need to be stored explicitly. Section 4.3 explains how the binned number can be used to
represent the sum of several floating point numbers.

4.1 Primary and Carry

The fields of the binned number are of the same floating point type as the numbers it is sum-
ming. The collectors Yk of a binned number Y are each implemented using two underlying float-
ing point fields. The primary field Yk P is used during slice extraction, while the carry field Yk C

holds overflow from the primary field. Because primary fields are frequently accessed sequentially,
the primary fields and carry fields are each stored contiguously in separate arrays. The notation
for the primary field Yk P and carry field Yk C corresponds to the “S j ” and “Cj ” of Algorithm 6 in
Reference [15].

The numerical value Yk P represented by finite data stored in the primary field Yk P is an offset
from 1.5ϵ−12aI+k , where I is the index of Y . We store the field using an offset to set the exponent
of Yk P so we may use Yk P for both splitting and storage of summands. To keep the exponent of
Yk P constant, it must be constrained to a range of numbers with the same exponent as 1.5ϵ−12aI+k .
Because the offset corresponding to I + k = 0 is too large to be representable as a floating point
number, we must store the collector corresponding to index 0 using a scaled representation.

Yk P =

{
Yk P − 1.5ϵ−12aI+k if I + k > 0
2p−W +1 (Y0P − 1.5 · 2emax) if I + k = 0

Yk P ∈
{

(ϵ−12aI+k , 2ϵ−12aI+k) if I + k > 0
(2emax , 2 · 2emax) if I + k = 0

(4.1)

Representing the primary field value as an offset from 1.5ϵ−12aI+k simplifies the process of ex-
tracting the slices of input in bins (aI+k ,bI+k]. If we have finite r ∈ F , |r | ≤ 2bI+k and ensure that
Equation (4.1) stays satisfied, then it will be shown that the operation Yk P = Yk P + (r |1) in a “to-
nearest” rounding mode will add to Yk P the value R±∞ (r ,aI+k), where I + k > 0 and r |1 is r with
the least significant bit of the significand set to 1. We will show how to use this observation to
efficiently extract and sum the slices belonging to each collector in Algorithm 5.4.

Because d (x , I + k) = 0 for bins with |x | < 2aI+k , the values in the greatest K nonzero collectors
can be computed reproducibly by computing the values in the greatest K collectors needed for the
largest x seen so far. Upon encountering an x ≥ 2bI , the collectors can then be shifted towards

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:13

index 0 as necessary. Since the maximum absolute value operation is always reproducible, so is
the index of the greatest collector.

To keep the primary fields in the necessary range while the slices are extracted and to keep the
representation of Yk unique, when Yk P strays too far from 1.5ϵ−12aI+k it is renormalized to the
range

Yk P ∈
{

[1.5ϵ−12aI+k , 1.75ϵ−12aI+k) if I + k > 0
[1.5 · 2emax , 1.75 · 2emax) if I + k = 0.

This renormalization is performed periodically during summation. To renormalize,Yk P is incre-
mented or decremented by 0.25ϵ−12aI+k , leaving the carry field Yk C to record the number of such
adjustments (where Yk C is decremented or incremented by 1, respectively). The numerical value
Yk C represented by finite data stored in the carry field Yk C of a binned number Y of index I is

Yk C = (0.25ϵ−12aI+k)Yk C . (4.2)

Combining Equations (4.1) and (4.2), we get that the valueYk of the collectorYk of a binned number
Y of index I is

Yk = Yk P +Yk C =

{
Yk P − 1.5ϵ−12aI+k + (0.25ϵ−12aI+k)Yk C if I + k > 0
2p−W +1 (Y0P − 1.5 · 2emax) + (0.25ϵ−12a0)Y0C if I + k = 0.

(4.3)

Therefore, using Equation (4.3), the numerical value Y represented by data stored in a K-fold
binned number Y of index I (the sum of Y ’s collectors) is

Y =
K−1∑
k=0

Yk =

K−1∑
k=0

{
Yk P − 1.5ϵ−12aI+k + (0.25ϵ−12aI+k)Yk C if I + k > 0
2p−W +1 (Y0P − 1.5 · 2emax) + (0.25ϵ−12a0)Y0C if I + k = 0.

(4.4)

Depending on the data format used to storeYk C , the number of updates to one collector without
overflow is limited, which determines the possible maximum number of inputs that can be repro-
ducibly added to one collector. AsYk C must be able to record additions of absolute value 1 without
error, Yk C must stay in the range [−ϵ−1, ϵ−1]. As the absolute value of a slice d (x , i) is bounded by
2ai+W as in Theorem 3.4 and a value of 1 in the carry field has a value of 2ai+p−2, each collector is
capable of representing the sum of at least

22p−W −2 (4.5)

slices, and thus the binned number can represent the sum of at least the same number of floating
point numbers. Equation (4.5) is 264 in double and 233 in single precision using the values in
Table 1.

4.1.1 Overflow. Here, we show that none of the primary fields in a binned number may over-
flow.

Theorem 4.1. For any binned numberY of index I and anyYk P satisfying Equation (4.1), if I + k ≥
1, |Yk P | < 2emax . If I + k = 0, |Yk P | < 2 · 2emax .

Proof. If I + k ≥ 1, a1 = emax + 1 − 2W by Equation (3.2), therefore, a1 < emax − p using Equa-
tion (3.7) and, since all quantities are integers, a1 ≤ emax − p − 1. Thus, aI+k ≤ a1 ≤ emax − p − 1
by Equation (3.2).

By Equation (4.1), Yk P is kept within the range (ϵ−12aI+k , 2ϵ−12aI+k), therefore

|Yk P | < 2ϵ−12aI+k ≤ 21+p2emax−1−p = 2emax .

If I + k = 0, the result is given directly by Equation (4.1). �

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:14 P. Ahrens et al.

4.1.2 Underflow. Although we sum numbers in the denormalized range, Algorithms 5.4 and 5.5
require that the primary fields Yk P are normalized to work correctly. Theorem 4.2 shows that the
primary fields will always be normalized.

Theorem 4.2. Any primary field Yk P of a binned number Y of index I satisfying Equation (4.1) is
normalized.

Proof. If I + k ≥ 1, by Equation (4.1), we haveYk P ∈ (ϵ−12aI+k , 2ϵ−12aI+k) and we can use Equa-
tion (3.9) to show getexp(Yk P) = aI+k + p > emin + 1, so Yk P is normalized.

If I + k = 0, by Equation (4.1), we have Yk P ∈ (2emax , 2 · 2emax) and clearly it is normalized. �

4.1.3 Exceptions. Binned numbers are capable of representing exceptional cases such as +Inf,
-Inf, or NaN. A binned number Y stores its exception status in its first primary field Y0P .

A value of 0 in Y0P indicates that nothing has been added to Y yet (Y0P is initialized to 0). By
Equation (4.1), the value of 0 in a primary field is unused in any previously specified context and
may be used as a sentinel value.

A value of +Inf or -Inf inY0P indicates that one or more +Inf or -Inf (and no other exceptional
values) have been added to Y , respectively.

A value of NaN in Y0P indicates that one or more NaN s have been added to Y and/or one or more
of both +Inf and -Inf have been added to Y . Note that we treat all bitwise representations of NaN
as identical.

This behavior follows the behavior for exceptional values in IEEE 754-2008 floating point arith-
metic. The result of adding some exceptional values using floating point arithmetic, therefore,
matches the result obtained from binned summation. As +Inf, -Inf, and NaN add associatively,
this behavior is reproducible.

As the Yk P are kept finite to store finite values and to indicate that nothing has been added to
Y yet, +Inf, -Inf, and NaN are unused in any previously specified context and are valid sentinel
values.

Notice that Equation (4.1) implies that the binned number is capable of expressing values that
are too large to represent with the floating point type it is composed with. The partial sums in
reproducible summation can grow much larger than the overflow threshold and then cancel back
down. In fact, as long as the sum itself is below overflow (beyond the margin of error), the sum-
mands are finite, and the number of summands is bounded by Equation (4.5), the reproducible
summation will not overflow.

However, as we have just described, if the inputs to summation are already infinite, the summa-
tion will return +Inf or -Inf.

If the final value of the summation is too large to express as a floating point number, we will
also return +Inf or -Inf. We can determine whether or not the real number Y is too large to be
representable in the desired floating point format when converting Y to a floating point number.
This procedure is described in Section 5.8.

4.2 Implicit Index Storage

Here, we make the observation that there exists a bijection between the index I of a binned number
Y and the exponent of Y0P .

By Equation (4.1) and Theorem 4.1, we see that if I = 0, Y0P has exponent emax, whereas if I > 0,
YI P < 2emax . Equation (4.1) and Theorem 4.2 imply that if I > 0,Y0P has exponent aI + p. If nothing
has been added to Y , Y0P is 0 and Theorem 4.2 tells us this is a previously unused exponent. Since
all of the previous exponents have corresponded to finite values, the exceptional values have an
unused exponent.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:15

Thus, we do not need to explicitly store the index of a binned number, as it can be determined
by examining the exponent of Y0P . Algorithm 5.1 will show how to do this explicitly.

4.3 Binned Sum

We have previously explained the binned number, a data structure we will use for reproducible
summation. We now define a quantity that can be expressed using the binned number, called the
binned sum. We show that if an algorithm returns the binned sum of its inputs, it is reproducible.

Definition 4.1. Assume 1 ≤ n ≤ 22p−W −2 (4.5). TheK-fold binned sum of finite x0, . . . ,xn−1 ∈ F
is defined to be a K-fold binned number Y such that for all k where 0 ≤ k < K , the following
equations are satisfied:

I is the greatest integer such that max(|x j |) < 2bI and I ≤ imax − K + 1

Yk P ∈
{

[1.5ϵ−12aI+k , 1.75ϵ−12aI+k) if I + k > 0
[1.5 · 2emax , 1.75 · 2emax) if I + k = 0

Yk =

n−1∑
j=0

d (x j , I + k) (4.6)

Recall that Equation (4.3) defines the value Yk in terms of I , Yk P , and Yk C .
The K-fold binned sum of x0, . . . ,xn−1 ∈ F (with at least one exceptional value +Inf, -Inf, or

NaN) is defined to be a K-fold binned number Y such that

Y0P =

⎧⎪⎪⎨⎪⎪⎩
+Inf if there is at least one +Inf and no other exceptional values,
-Inf if there is at least one -Inf and no other exceptional values,
NaN otherwise.

(4.7)

And the K-fold binned sum of no numbers (the empty sum) is defined to be the K-fold binned
number Y such that

Y0P = 0. (4.8)

Theorem 4.3 shows that the binned sum is well-defined in the sense that the fields in the binned
number corresponding to the summands x0, . . . ,xn−1 (in any order) are unique.

Theorem 4.3. Let Y be the binned sum of some x0, . . . ,xn−1 ∈ F . Let σ0, . . . ,σn−1 be some permu-
tation of the first n nonnegative integers. Let Z be the binned sum of xσ0 , . . . ,xσn−1 .

If n � 0 and x0, . . . ,xn−1 are all finite, we have that for all k , 0 ≤ k < K , Yk P = Zk P and Yk C =

Zk C . Otherwise, Y0P = Z0P and Y0P is either 0 or exceptional.

Proof. If n = 0, then by Equation (4.8), we have that Y0P = Z0P = 0.
Ifn ≥ 1 and at least one xi is exceptional, then, since the conditions in Equation (4.7) depend only

on the number of each type of exceptional value and not on their order, we have that Y0P = Z0P .
Since at least one xi is exceptional, all of the possible cases in Equation (4.7) specify that Y0P is
exceptional.

The rest of the proof deals with the remaining case when n ≥ 1 and all xi are finite.
Since max(|x j |) = max(|xσj

|), both Y and Z have the same index I , since I is the greatest integer

such that max(|x j |) < 2bI and I ≤ imax − K + 1.
Using the associativity of addition of real numbers,

Yk =

n−1∑
j=0

d (x j , I + k) =
n−1∑
j=0

d (xσj
, I + k) = Zk .

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:16 P. Ahrens et al.

If I + k ≥ 1, assume for contradiction that there exists some k , 0 ≤ k < K , such that Yk C � Zk C .
Since Yk = Zk , Equation (4.3) yields

(Yk P − 1.5ϵ−12aI+k) + (0.25ϵ−12aI+k)Yk C = (Zk P − 1.5ϵ−12aI+k) + (0.25ϵ−12aI+k)Zk C ,

Yk P − Zk P = (0.25ϵ−12aI+k) (Zk C − Yk C),

|Yk P − Zk P | ≥ 0.25ϵ−12aI+k .

Since Yk P ∈ [1.5ϵ−12aI+k , 1.75ϵ−12aI+k), Zk P � [1.5ϵ−12aI+k , 1.75ϵ−12aI+k), a contradiction.
Therefore, we have that Yk C = Zk C . Along with the fact that Yk = Zk , application of Equa-

tion (4.3) implies that Yk P = Zk P .
If I = 0, assume for contradiction that Y0C � Z0C . Since Y0 = Z0, Equation (4.3) yields

2p−W +1 (Y0P − 1.5 · 2emax) + (0.25ϵ−12a0)Y0C = 2p−W +1 (Z0P − 1.5 · 2emax) + (0.25ϵ−12a0)Z0C ,

Y0P − Z0P = 2W −p−1 (0.25ϵ−12a0) (Z0C − Y0C),

|Y0P − Z0P | ≥ 2W −p−1 (0.25ϵ−12a0),

and by Equation (3.4), we have

|Y0P − Z0P | ≥ 0.25 · 2emax .

Since Y0P ∈ [1.5 · 2emax , 1.75 · 2emax), Zk P � [1.5 · 2emax , 1.75 · 2emax), a contradiction.
Therefore, we have that Y0C = Z0C . Along with the fact that Y0 = Z0, application of Equa-

tion (4.3) implies that Y0P = Z0P . �

Theorem 4.3 implies that any algorithm that can compute the binned sum of a list of floating
point numbers is a reproducible summation algorithm, as the binned sum is well-defined, unique,
and independent of the ordering of the summands.

5 OPERATIONS

Here, we present a set of basic operations on a binned number. Our intent is to make it easy to build
high-level reproducible operations with different requirements for reproducibility, data ordering,
and reduction tree shapes due to platform differences. For example, if on a parallel machine, the
summands on each processor are created and summed deterministically, with the only source of
nonreproducibility in the parallel reduction, then we want to be able to use reproducible summa-
tion only in the parallel reduction. If the subset of summands on each processor were different from
run to run, we want to be able to use reproducible summation throughout the whole summation
routine.

Two simple original algorithms relating to the index of a binned number are given in Section 5.1.
In Sections 5.2 to 5.7, algorithms from Reference [15] have been modified to handle very large
summands (summands close to the overflow threshold ≈ 2 · 2emax) and exceptional cases. These
algorithms have also been modified to use the bins presented in Section 3 and the binned num-
ber presented in Section 4. To obtain a general reproducible algorithm for summation, one must
design for reproducibility under both data ordering and reduction tree shape. Section 5.5 pro-
vides algorithms to sum numbers regardless of ordering (a more efficient algorithm is presented
in Section 5.6), while Section 5.7 provides methods to sum numbers regardless of reduction tree
shape. Section 5.8 provides an original algorithm to obtain the floating point value represented by
a binned number. This conversion algorithm is more accurate than Reference [15] and leads to a
much improved error bound.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:17

5.1 Index

When operating on binned numbers it is sometimes necessary to compute their index. Algo-
rithm 5.1 yields the index of a binned number in constant time.

ALGORITHM 5.1. Given a binned number Y , calculate its index I .

1: function BinnedNumberIndex(Y)
2: if Y0P = 0 then

3: return imax + 1
4: end if

5: return
(emax + p − getexp(Y0P) −W + 1)/W � � Index I of Y
6: end function

Ensure:

Returned result I is

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
imax + 1 if Y0P = 0

0 if Y0P is not finite

the index of Y otherwise

Note that the floor function is necessary in Algorithm 5.1 to account for the case when Y has
index 0, which has getexp(Y0P) = emax by Equation (4.1). This uses the assumptions (3.6) and (3.7)

(
p+1

2 <W < p − 2), so 2 < p −W + 1 <W .
Another useful operation is, given some finite x ∈ F , to find the unique bin (a J ,b J] where J

is the greatest integer such that |x | < 2b J and J ≤ imax − K + 1. Algorithm 5.2 yields such a J in
constant time.

ALGORITHM 5.2. Given x ∈ F , calculate the greatest index sufficient for storing x in a binned
number.

1: function FloatingPointIndex(x)
2: return max(0,min(imax − K + 1,
(emax − getexp(x))/W �)) � Index J of x
3: end function

Ensure:

Returned result J is
⎧⎪⎨⎪⎩

0 if x is not finite

the greatest integer such that |x | < 2b J and J ≤ imax − K + 1, otherwise

The behavior of Algorithm 5.2 in the case when x < 2aimax is consistent with the following al-
gorithms, since values smaller than the least bin will not be extracted.

Both Algorithms 5.1 and 5.2 satisfy their exceptional cases, because the function getexp() is as-
sumed to return emax + 1 when its argument is exceptional. These algorithms are used infrequently,
usually being called once at the beginning of a routine.

Although the algorithms are presented using integer division for clarity, Appendix A.7 shows
how each floored integer division can be replaced by an integer multiplication and shift in these
particular circumstances for binned single, double, and quad.

5.2 Update

Sometimes it is necessary to adjust the index of Y . For example, when adding x ∈ F to a K-fold
binned number Y of index I in Algorithm 5.4, we will make the assumption that |x | < 2bI , which
might require decreasing I to increasebI . As another example, a new binned numberY is initialized
to have Y0P set to 0; therefore, before adding any value to Y , we must update the primary and
carry fields of Y first. The process of updating Y to the necessary index is summarized succinctly
in Algorithm 5.3.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:18 P. Ahrens et al.

ALGORITHM 5.3. Update K-fold binned sum Y of x0, . . . ,xn−1 ∈ F to have an index J sufficient
to store the binned sum of x0, . . . ,xn ∈ F . Y may be modified by this function.

1: function Update(xn , Y)
2: I = BinnedNumberIndex(Y)
3: L = FloatingPointIndex(xn)
4: if L < I then � J = min(I ,L)
5: [Ymin(I−L,K)P

, . . . ,YK−1P] = [Y0P , . . . ,YK−1−min(I−L,K)P
]

6: [Y0P , . . . ,Ymin(I−L,K)−1P
] =

⎧⎪⎨⎪⎩
[1.5ϵ−12aL , . . . , 1.5ϵ−12amin(I ,K+L)−1] if L > 0

[1.5 · 2emax , 1.5ϵ−12aL+1 , . . . , 1.5ϵ−12amin(I ,K+L)−1] otherwise

7: [Ymin(I−L,K)C
, . . . ,YK−1C] = [Y0C , . . . ,YK−1−min(I−L,K)C

]
8: [Y0C , . . . ,Ymin(I−L,K)−1C

] = [0, . . . , 0]
9: end if

10: end function

Ensure: If Y0P was exceptional, it is unchanged. If Y0P was finite and xn is exceptional, Y0P is finite.
Otherwise, if xn is finite, the following hold:

Y has index J where J is the greatest integer such that |xn | < 2b J , max(|x j |) < 2b J , and J ≤
imax − K + 1.
Yk =

∑n−1
j=0 d (x j , J + k)

Yk P ∈
⎧⎪⎨⎪⎩

[1.5ϵ−12a J+k , 1.75ϵ−12a J+k) if J + k > 0

[1.5 · 2emax , 1.75 · 2emax) if J + k = 0

The update operation is described in the “Update” section (lines 7 to 17) of Algorithm 6 in
Reference [15]. We have modified this algorithm to use our new functions BinnedNumberIndex
and FloatingPointIndex and handle exceptional values.

Although the “Ensure” claim looks similar to Equation (4.6), the index J is not necessarily the
same as I in Equation (4.6).

It should be noted that if Y0P is 0, then the update initializes all K collectors of Y . If Y0P is
exceptional, the “Ensure” holds, since I is 0. If Y0P was finite and xn is +Inf, -Inf, or NaN, then the
above “Ensure” statement holds, since the update only sets Y0P to finite values.

IfY represents the binned sum of finite values and xn is finite, then the index J sufficient to store
the binned sum of x0, . . . ,xn is the greatest integer such that max(|x0 |, . . . , |xn |) < 2b J , which is
the minimum of L and I . If L ≥ I , then we do not need to adjustY , since I = J . If L < I , then we must
adjust the index of Y by shifting Y ’s K collectors to represent the sums of slices in greater bins.
Since Y represents the sum of x0, . . . ,xn−1, the new collectors Yk with 0 ≤ k < I − J are shifted in
with value 0 (as described in Equation (4.3)) as the slices of x0, . . . ,xn−1 in these higher bins are
zero. More formally, we know these greater bins have value 0, because |x j | < 2bI ≤ 2aI−1 ≤ 2a J+k

so
∑n−1

j=0 d (x j , J + k) = 0 by Lemma 3.1. Note that we lose the lesser collectors when we shift in the

greater collectors.

5.3 Deposit

The deposit operation is used to extract the slices of a floating point number and add them to the
appropriate collectors of a binned number. Here, we refer to the deposit operation as Algorithm 5.4.
Algorithm 5.4 deals with very large inputs (i.e., with exponents near emax) and exceptions, unlike
the simpler version described in the “Extract K first bins” section (lines 18 to 20) of Algorithm 6
in Reference [15], which produces NaN on very large inputs. Algorithm 6 in Reference [15] was
originally inspired by Rump’s algorithm “ExtractVector” for error-free vector transformation [30,
31]. To give some intuition about variable names, the variable S will hold the “sum” and r will

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:19

hold the “remainder” after splitting. Thus, we split some number q + r into a leading part q and a
trailing part r .

ALGORITHM 5.4. Extract slices of x ∈ F and add them to a K-fold binned number Y . Here, (r |1)
represents the result of setting the last bit of the significand (mp−1) of a floating point number r to 1.
Y may be modified by this function.

Require: If Y0P is finite, there exists I such that |x | < 2bI and

Yk P ,Yk P + d (x , I + k) ∈
⎧⎪⎨⎪⎩

(ϵ−12aI+k , 2ϵ−12aI+k) if I + k > 0

(2emax , 2 · 2emax) if I + k = 0,
(5.1)

for all k such that 0 ≤ k < K .
Operations are performed in any “to-nearest” rounding mode (no specific tie-breaking behavior
is required).

1: function Deposit(x , Y)
2: if x is exceptional or Y0P is exceptional then

3: Y0P = Y0P ⊕ x
4: else

5: if BinnedNumberIndex(Y) = 0 then

6: r = x � 2W −p−1

7: S = Y0P ⊕ (r |1)
8: q = S � Y0P

9: Y0P = S
10: q = q � 2p−W

11: r = x � q
12: r = r � q
13: k = 1
14: else

15: r = x
16: k = 0
17: end if

18: while k ≤ (K − 2) do

19: S = Yk P ⊕ (r |1)
20: q = S � Yk P

21: Yk P = S
22: r = r � q
23: k = k + 1
24: end while

25: Yk P = Yk P ⊕ (r |1)
26: end if

27: end function

Ensure: If Y0P or x was exceptional, x was added to Y0P as a floating point number. Otherwise, for
all k such that 0 ≤ k < K , the amount added to Yk P by this algorithm is exactly d (x , I + k).

Algorithm 5.4 is very similar to the “Extract K first bins” section (lines 18 to 20) of Algorithm 6
in Reference [15] except for when the index of Y is 0, which is rare. In that case, the first collector
Y0 will be scaled by a factor of 2W −p−1 so the value of the first primary field Y0P stays in the range
[2emax , 2 · 2emax) to avoid overflow. The slices corresponding to the first collector will also need to

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:20 P. Ahrens et al.

be scaled by the same factor before being added. Since the scaling is by a power of 2, it does not
change any significands of either the primary field or the input value.

If the slice q is scaled back by 2p−W +1 and does not overflow, we can simply subtract q from
x and continue with the rest of the algorithm. However, if x is equal to the biggest value below
the overflow threshold, then d (x , 0) = 2 · 2emax , scaling q back by 2p−W +1 would cause overflow.
To handle this special case, instead of scaling q back by 2p−W +1, we only scale q back by 2p−W to
obtain a value of d (x , 0)/2 and subtract q twice in lines 11 to 12 to compute r . Note that if an FMA
(Fused Multiply-Add) instruction is available, we would not have to explicitly scale q back; one
single FMA instruction suffices to compute r = x − q · 2p−W +1 without any overflow.

Algorithm 5.4 sets the last bit of intermediate results (i.e., forms (r |1)) before adding them
to Yk P to fix the direction in which ties are broken during rounding. To show why this is nec-
essary for reproducibility, consider what would happen if we did not fix the direction of tie-
breaking. Suppose Yk P = 1.5, x1 = ulp(Yk P), and x2 = 0.5ulp(Yk P). Notice that (Yk P ⊕ x1) ⊕ x2 =

1.5 + 2ulp(1.5), whereas (Yk P ⊕ x2) ⊕ x1 = 1.5 + ulp(1.5). Since the addition of x2 results in a tie,
tie-breaking in round-to-nearest even depends on the current value ofYk P and is nonreproducible.

When adding r to Yk P , setting the last bit of r only avoids ties in rounding when ulp(r) is less
than the rounding error in Yk P . Mathematically, we will require ulp(r) < 0.5ulp(Yk P) to prove
Theorem 5.2. This is why we must enforce aimax ≥ emin − p + 2 so the smallest denormalized num-
ber is smaller than half of the least significant bit of the least bin. To show why this is necessary
for accuracy, consider Yk P = 1.25 and r = 0.5 + ulp(Yk P). Notice that ulp(r) = 0.5ulp(Yk P). While
Yk P ⊕ r = 1.75 + ulp(1.5) = Yk P + r exactly, Yk P ⊕ (r |1) = 1.75 + 2ulp(1.5), an error of ulp(1.5)
when we could have achieved an exact result! In this case, setting the last bit of r has introduced
a tie into our rounding procedure.

Note that we present line 5 using BinnedNumberIndex for clarity, but an equivalent condition
can be written using getexp, since we are only checking that Y0P has a large enough exponent for
Y to have an index of 0. For instruction-counting purposes in Appendix A.7, we count line 5 as the
equivalent condition, emax + p − 2W + 1 < getexp(Y0P).

Algorithm 5.4 uses at most 3K + 1 = 10 floating point operations whenK = 3,K + 9 = 12 integer
operations, and 2 branches, potentially changing floating point and integer registers 2K + 3 = 9
times. If the index of Y is known to be greater than 0 and Y and x are known to be finite, then no
branches are necessary and we need only 3K − 2 = 7 floating point operations and K = 3 integer
operations. Notice that we do not count operations related to the loops in Algorithm 5.4, since
they may be unrolled as K is constant. A full count of operations is given in Appendix A.7.

In Appendix A.6, we will show that the assumption (3.7) implies that depositing any floating
point number will modify at most 3 collectors, since one floating point number can have at most
3 nonzero slices. Appendix A.6 contains discussion of how to modify Algorithm 5.4 to only de-
posit to those collectors, such that the cost of using the modified algorithm will still be 7 FLOPs
independent of K ≥ 3, i.e., independent of how much accuracy is desired.

Showing the correctness of Algorithm 5.4 is a nontrivial task. However, the main piece of the
argument is described in Lemma 5.1, which explains how the last bit of r is set to break ties when
rounding to-nearest so the amount added to Yk P does not depend on the size of Yk P so far.

Lemma 5.1. LetYk P , r ∈ F be such thatYk P ,Yk P + R±∞ (r , e + 1) ∈ (2e+p , 2 · 2e+p) where ulp(r) <
0.5ulp(Yk P). Then the operation S = Yk P ⊕ (r |1) computed with any “to-nearest” rounding mode sets
S to Yk P + R±∞ (r , e + 1) exactly.

Proof. We will make repeated use of Equation (2.2) and the fact that because ulp(r) <
0.5ulp(Yk P), ulp(r) ≤ 2e−1. Let sr be the sign of r , so sr = 1 if r ≥ 0 and sr = −1 if r < 0.

We start by showing that |R±∞ (r , e + 1) − (r |1) | < 2e .

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:21

If r = (r |1), then |R±∞ (r , e + 1) − (r |1) | = |R±∞ (r , e + 1) − r | ≤ 2e . Notice that we cannot have
|R±∞ (r , e + 1) − r | = 2e , because this would imply that r ∈ 2eZ when r − ulp(r) ∈ 2ulp(r)Z and
ulp(r) ≤ 2e−1.

If r � (r |1), this means that r ∈ 2ulp(r)Z. Since we have |R±∞ (r , e + 1) − r | ≤ 2e , we consider
two cases.

If |R±∞ (r , e + 1) − r | = 2e , then R±∞ (r , e + 1) = r + sr 2e . Since (r |1) � r , (r |1) = r + sr ulp(r), so
|R±∞ (r , e + 1) − (r |1) | = |sr 2e − sr ulp(r) | = |2e − ulp(r) | < 2e , since ulp(r) ≤ 2e−1.

Otherwise, |R±∞ (r , e + 1) − r | < 2e . Since R±∞ (r , e + 1) ∈ 2e+1Z ⊆ 2ulp(r)Z and r ∈ 2ulp(r)Z,
we have that |R±∞ (r , e + 1) − r | ∈ 2ulp(r)Z. Thus, |R±∞ (r , e + 1) − r | ≤ 2e − 2ulp(r). Since |r −
(r |1) | ≤ ulp(r), |R±∞ (r , e + 1) − (r |1) | ≤ 2e − ulp(r) < 2e by the triangle inequality.

Since we have just shown |R±∞ (r , e + 1) − (r |1) | < 2e , we have |(Yk P + R±∞ (r , e + 1)) − (Yk P +

(r |1)) | < 2e . Since Yk P + R±∞ (r , e + 1) ∈ 2e+1Z and Yk P + R±∞ (r , e + 1) ∈ (2e+p , 2 · 2e+p), Yk P ⊕
(r |1) computed with any to-nearest rounding mode sets S to Yk P + R±∞ (r , e + 1) exactly. �

With Lemma 5.1 in hand, we can show the correctness of Algorithm 5.4.

Theorem 5.2. If the requirements of Algorithm 5.4 are satisfied, then after running the algorithm
the “Ensure” claim holds.

Proof. If Y0P or x is exceptional, the proof is trivial. We therefore focus on the case when
neither is exceptional. Let I be defined as in the requirements.

The proof proceeds by induction on k for all 0 ≤ k < K . We show that at the top of the loop
on line 18, I + k > 0 and for all l < k , the amount d (x , I + l) has been added to Yk P and that r =
x −∑I+k−1

i=0 d (x , i). Note that this claim applies even at the end of the loop when the loop condition
is false.

We start by showing the base case both when I = 0 and when I > 0.
If I = 0, the algorithm will execute lines 6 to 12. Equation (5.1) provides us with the fact that

Y0P ,Y0P + d (x , 0) ∈ (2emax , 2 · 2emax). Note that d (x , 0) = R±∞ (x ,a0 + 1) by Equation (3.12).
If |x | < 2a0 , then we have d (x , 0) = 0 by Lemma 3.1. After line 6, we also have that
|r | < 2a0−p+W −1 = 2emax−p . Thus, Lemma 5.1 implies that line 7 adds R±∞ (r , emax − p + 1) = 0 =
d (x , 0)/2p−W +1 to Yk P , and, therefore, d (x , 0) is added to Yk P .

If |x | ≥ 2a0 , then line 6 sets r = x/2p−W +1 exactly, as there is no underflow. Since x is finite,
|x | < 2 · 2emax and thus |r | < 2emax+1−p+W −1 < 2emax−2 by Equation (3.6). Thus, ulp(r) < 0.5ulp(Y0P)
and Lemma 5.1 implies that in line 7, R±∞ (r ,a0 + 1 − p +W − 1) = d (x , 0)/2p−W +1 is added toYk P ,
and, therefore, d (x , 0) is added to Yk P .

By Equation (3.12), Theorem 3.4, and Equation (3.6), d (x , 0)/2p−W +1 ∈ 2a0+1−p+W −1Z =
2emax−p+1Z and |d (x , 0)/2p−W +1 | ≤ 2emax+1−p+W −1 < 2emax−2. Thus, S − Y0P = d (x , 0)/2p−W +1 is rep-
resentable and q is computed exactly in line 8. Again by Theorem 3.4, |d (x , 0)/2| ≤ 2emax . Thus,
in line 10, we have that q = d (x , 0)/2 exactly, since we scale by a power of two. By Theorem 3.3,
|x − d (x , 0) | ≤ |x |.

If x ≥ 0, we have x ≥ x − d (x , 0)/2 ≥ x − d (x , 0) ≥ −x .
If x ≤ 0, we have −x ≥ x − d (x , 0) ≥ x − d (x , 0)/2 ≥ x .
In either case, we have |x − d (x , 0)/2| ≤ |x |.
Using Equation (3.6) and the fact that |x | < 2b0 , d (x , 0)/2 = R±∞ (x ,a0 + 1)/2 ∈ 2a0Z ⊂

2b0−p+1Z ⊆ ulp(x)Z. Therefore, x − d (x , 0)/2 ∈ ulp(x)Z. Combined with |x − d (x , 0)/2| ≤ |x | this
implies that x − d (x , 0)/2 is representable, and that r = x − q exactly in line 11. Again, since
d (x , 0)/2,x − d (x , 0)/2 ∈ ulp(x)Z and |x − d (x , 0) | ≤ |x |, x − d (x , 0) is representable and r = r − q
exactly in line 12.

Thus, when I = 0, the inductive claim is satisfied the first time, we hit the loop in line 18.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:22 P. Ahrens et al.

If I > 0, we can satisfy the inductive claim by setting k = 0 and r = x −∑I+k−1
i=0 d (x , i) = x .

We have shown the base case and proceed to the inductive step that relies on the lines 19 to 22.
By Equation (5.1), Yk P ,Yk P + d (x , I + k) ∈ (ϵ−12aI+k , 2ϵ−12aI+k). If r is normalized, by The-

orem 3.3, |r | = |x −∑I+k−1
i=0 d (x , j) | ≤ 2aI+k−1 . Thus, using Equation (3.6), ulp(r) ≤ 2aI+k−1−p+1 =

2aI+k+W −p+1 < 2aI+k−1 < 0.5ulp(Yk P). If r is denormalized, we have ulp(r) = 2emin−p+1, the unit
in the last place of a denormalized number. Using Equation (3.9), ulp(r) = 2emin−p+1 ≤ 2aimax−1 ≤
2aI+k−1 < 0.5ulp(Yk P). Thus, we have ulp(r) < 0.5ulp(Yk P) and by Lemma 5.1 and Equa-

tion (3.12), line 19 sets S = Yk P + R±∞ (r ,aI+k + 1) = Yk P + R±∞ (x −∑I+k−1
i=0 d (x , j),aI+k + 1) =

Yk P + d (x , I + k). Since d (x , I + k) ∈ 2aI+k+1Z and |d (x , I + k) | ≤ 2bI+k = 2aI+k+W < 2aI+k+p−2 by

Equation (3.6) and Theorem 3.4, line 20 setsq = d (x , I + k) exactly. Note that r = x −∑I+k−1
i=0 d (x , j)

before executing line 22. Sinced (x , I + k) = R±∞ (x −∑I+k−1
i=0 d (x , j),aI+k + 1), Equation (2.2) gives

us that |x −∑I+k
i=0 d (x , j) | ≤ |x −∑I+k−1

i=0 d (x , j) | and d (x , I + k) ∈ ulp(x −∑I+k−1
i=0 d (x , j))Z. Thus,

r = x −∑I+k
i=0 d (x , j) exactly in line 22.

Thus, we have shown the claim for all k , 0 ≤ k < K . Since the line 25 is the same as line 19 and
the same assumptions are satisfied, the proof is complete. �

5.4 Renormalize

When depositing values into a K-fold binned number Y of index I , Algorithm 5.4 assumes Equa-
tion (5.1) throughout the routine. To enforce this condition, the binned number must be renormal-

ized to recenterYk P within a smaller range by shifting value fromYk P toYk C . The renormalization
procedure is shown in Algorithm 5.5.

ALGORITHM 5.5. Renormalize a K-fold binned number Y . Y may be modified by this function.

Require: If Y0P is finite and nonzero,

Yk P ∈
⎧⎪⎨⎪⎩

[1.25ϵ−12aI+k , 2ϵ−12aI+k) if I + k > 0

[1.25 · 2emax , 2 · 2emax) if I + k = 0
(5.2)

for all k such that 0 ≤ k < K .
1: function Renormalize(Y)
2: if Y0P is finite and Y0P � 0 then

3: for k = 0 to K − 1 do

4: if Yk P < 1.5 � ufp(Yk P) then

5: Yk P = Yk P (⊕0.25 � ufp(Yk P))
6: Yk C = Yk C � 1
7: end if

8: if Yk P ≥ 1.75 � ufp(Yk P) then

9: Yk P = Yk P (�0.25 � ufp(Yk P))
10: Yk C = Yk C ⊕ 1
11: end if

12: end for

13: end if

14: end function

Ensure: If Y0P was finite and nonzero, the values Yk are unchanged and

Yk P ∈
⎧⎪⎨⎪⎩

[1.5ϵ−12aI+k , 1.75ϵ−12aI+k) if I + k > 0

[1.5 · 2emax , 1.75 · 2emax) if I + k = 0
(5.3)

for all k such that 0 ≤ k < K . Otherwise, Y0P is unchanged.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:23

The renormalization operation is described in the “Carry-bit Propagation” section (lines 21 to 32)
of Algorithm 6 in Reference [15], although it has been slightly modified not to include an extra-
neous case that covered an unused range of Yk P (lines 25 to 27). Algorithm 5.5 must check for
exceptional values, because lines 3 to 12 could change +Inf or -Inf to NaN depending on how
ufp() behaves when given exceptional values. In total, Algorithm 5.5 uses 7K + 1 = 22 FLOPs and
2K + 1 = 7 conditional branches.

To show the reasoning behind the assumptions in Algorithm 5.5, we state Theorem 5.3.

Theorem 5.3. Assume x0,x1, . . . xn−1 ∈ F are successively deposited (using Algorithm 5.4) in a

K-fold binned number Y of index I where max |x j | < 2bI and Y0P is finite and nonzero. If Y initially
satisfies Equation (5.3) and

n ≤ 2p−W −2,

then after all of the deposits, Y satisfies Equation (5.2).
Note that by Equation (3.6), 2p−W −2 > 1.

Proof. As the proof when I + k = 0 is almost identical to the case when I + k > 0, we consider
here only the case when I + k > 0. First, note that |d (x j , I + k) | ≤ 2bI+k by Theorem 3.4, where
d (x j , I + k) is the amount added to Yk P on iteration k .

By Theorem 5.2, Deposit (Algorithm 5.4) extracts and adds the slices of x j exactly (assuming
Yk P ,Yk P + d (x j , I + k) ∈ (ϵ−12aI+k , 2ϵ−12aI+k) at each step, which can be shown by applying this
proof inductively to each j). By Theorem 3.4,�������

n−1∑
j=0

d (x j , I + k)

������� ≤ n2bI+k = n2W 2aI+k .

If n ≤ 2p−W −2, then after the nth deposit

Yk P ∈
[
(1.5ϵ−1 − n2W)2aI+k , (1.75ϵ−1 + n2W)2aI+k

)
∈ [1.25ϵ−12aI+k , 2ϵ−12aI+k). �

The Update operation (Algorithm 5.3) initializes collectors with Y0P such that Y satisfies Equa-
tion (5.3). If a binned number Y initially satisfies Equation (5.3) and we deposit at most 2p−W −2

floating point numbers into it, then Theorem 5.3 shows that after all of the deposits, Y satisfies
Equation (5.2). Therefore, after another renormalization, Y satisfies Equation (5.3).

Note that the possible maximum number of summands, Equation (4.5) is slightly bigger than that
of Reference [15]. Reference [15] proved the maximum number of summands using the renormal-
ization function. Since Reference [15] used an unnecessary renormalization case on lines 25 to 27
of Algorithm 6 that incremented the carry field by 2, the bound was not as tight as it could be.

5.5 Add a Floating Point Number to a Binned Sum

Algorithm 5.6 allows the user to add a single floating point number to a binned sum. By running
this algorithm iteratively on each element of a vector, the user can make a naive local sum. How-
ever, a more efficient summation algorithm is presented in Section 5.6, making Algorithm 5.6 more
useful for small sums or sums where the summands are not gathered into a vector.

ALGORITHM 5.6. Add xn ∈ F to the K-fold binned sum Y of x0, . . . ,xn−1 ∈ F . (If n = 0, this
implies that Y0P is 0 and Y will be initialized in line 2.) Y may be modified by this function.

1: function AddFloatingPointToBinnedSum(xn , Y)
2: Update(xn , Y)
3: Deposit(xn , Y)

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:24 P. Ahrens et al.

4: Renormalize(Y)
5: end function

Ensure: Y is the K-fold binned sum of x0, . . . ,xn .

As stated in the introduction under Goal 3, in contrast to Algorithm 6 of Reference [15], Algo-
rithm 5.6 handles exceptions, very large summands, and very large intermediate results properly.

The following theorem proves the “Ensure” claim at the end of Algorithm 5.6.

Theorem 5.4. If the requirements of Algorithm 5.6 are satisfied, then after running the algorithm
the “Ensure” claim holds.

Proof. As Y is the binned sum of x0, . . . ,xn−1, the requirements of Update (Algorithm 5.3)
are satisfied. The “Ensure” claim of Update satisfies the requirements of Deposit (Algorithm 5.4).
Theorem 5.3 and the “Ensure” claim of Deposit satisfy the requirements of Renormalize (Algo-
rithm 5.5). If any of the x j were exceptional, it is trivial to verify that Y is now the binned sum of
x0, . . . ,xn . We focus on the case when all x j are finite.

After Update, we have that I is the greatest integer such that max(|x j |) < 2bI and I ≤ imax − K +
1. Note that the index of Y is unchanged throughout the rest of the algorithm. After Deposit, we
have that Yk =

∑n−1
j=0 d (x j , I + k) and this is explicitly unchanged by Renormalize. After Renor-

malize, we have Equation (5.3), completing the requirements described in Equation (4.6) for Y to
be the binned sum of x0, . . . ,xn . �

5.6 Sum Floating Point Numbers with a Binned Sum

Algorithm 5.7 is a binned summation algorithm that allows the user to efficiently add a vector of
floating point numbers xm , . . . ,xm+n−1 ∈ F to the binned sum Y of some x0, . . . ,xm−1 ∈ F .

As mentioned in Section 5.4, it is not necessary to perform a renormalization for every deposit,
as would be done if Algorithm 5.6 were applied iteratively on each element of xm , . . . ,xm+n−1. At
most 2p−W −2 values can be deposited in the binned number before having to perform the renor-
malization. Therefore, we have created Algorithm 5.7, a more efficient version of Algorithm 5.6
for when we need to reproducibly sum a local vector of floating point numbers. As Algorithm 5.7
computes a binned sum, it can be performed on the xm , . . . ,xm+n−1 in any order. However, for the
simplicity of presenting the algorithm, it is depicted as running linearly fromm tom + n − 1. Algo-
rithm 5.7 uses only one binned number to hold the intermediate result of the recursive summation,
and the vast majority of required instructions in the algorithm are due to Deposit (Algorithm 5.4).
An operation count is considered at the end of the section.

ALGORITHM 5.7. Add xm , . . . ,xm+n−1 ∈ F to the the K-fold binned sum Y of x0, . . . ,xm−1 ∈ F .
(If m = 0, this implies that Y0P is 0 and Y will be initialized in line 5.) Y may be modified by this
function.

1: function SumFloatingPointWithBinnedSum([xm , . . . ,xm+n−1], Y)
2: j = 0
3: while j < n do

4: nb = min(n, j + 2p−W −2)
5: Update(max(|xm+j |, . . . , |xm+nb−1 |), Y)
6: while j < nb do

7: Deposit(xm+j , Y)
8: j = j + 1
9: end while

10: Renormalize(Y)
11: end while

12: return Y

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:25

13: end function

Ensure: Y is the K-fold binned sum of x0, . . . ,xm+n−1.

Algorithm 5.7 is similar to Algorithm 6 in Reference [15], but requires no restrictions on the size
or type (exceptional or finite) of inputs x0, . . . ,xm+n−1, since the methods it calls are implemented
differently.

Theorem 5.5. If the requirements of Algorithm 5.7 are satisfied, then after running the algorithm
the “Ensure” claim holds.

Proof. We show inductively that after each execution of line 10, Y is the binned sum of
x0, . . . ,xm+j−1. Throughout the proof, assume that the value of all variables is specific to the given
stage of execution.

In the case when at least one of x0, . . . ,xm+j−1 is exceptional, it is trivial to verify that the
constituent functions behave correctly even if the max on line 5 does not propagate exceptions.
We therefore focus on finite x0, . . . ,xm+j−1.

As a base case, on the first iteration of the loop on line 3, j is 0 and Y is given to be the binned
sum of x0, . . . ,xm−1.

In subsequent iterations of the loop, we assume that at line 5, Y is the binned sum of
x0, . . . ,xm+j−1.

In this case, the proof of Theorem 5.4 applies to lines 5 to 10 (keeping in mind that at most 2p−W −2

deposits are performed and by the “Ensure” claim of Algorithm 5.3, each finite xm+j deposited

satisfies |xm+j | < 2bI). Therefore, after line 10, Y is the binned sum of x0, . . . ,xm+j−1. �

Note that the constant 2p−W −2 in line 4 is at its maximum value, and smaller values may be used
to fit data into a cache.

As the binned sum is unique and independent of the ordering of its summands (Theorem 4.3),
Algorithm 5.7 is reproducible for any permutation of its inputs.

At this point, an operation count should be considered. Since Algorithm 5.7 only performs
the Update and Renormalize operations once for every 2p−W −2 times the Deposit opera-
tion is performed (that is, 253−40−2 = 211 times for double precision and 224−13−2 = 29 times for
single precision in our recommended parameter settings), the cost of Algorithm 5.7 is mostly
due to the Deposit operation and the absolute value and maximum instructions. Thus, our rec-
ommended parameter settings (discussed in Section 6.2) represent a tradeoff between accuracy
and how often our numbers need renormalization. Algorithm 5.7 uses n(2W −p+2 (7K + 2) + 3K +
3) ≈ 12.011n floating point operations, n(2W −p+2 (K + 19) + K + 9) ≈ 12.011n integer operations,
n(2W −p+2 (2K + 3) + 2K + 3) ≈ 9.004n potential register changes, and 2n(2W −p+2 (K + 2) + 1) ≈
2.005n branches. In the absence of exceptional and very large summands, the algorithm needs just
n(2W −p+2 (7K + 2) + 3K) ≈ 9.011n floating point operations, n(2W −p+2 (K + 19) + K) ≈ 3.011n in-
teger operations, 2n(2W −p+1 (2K + 3) + K) ≈ 6.004n potential register changes, and 2W −p+3n(K +
2) ≈ 0.005n branches. A full count of operations is given in Appendix A.7. Note that the very sim-
ilar Algorithms 5 and 6 of Reference [15] have been shown experimentally to run within a factor
of 1.2 to 1.6 of the runtime of conventional summation (see Figures 4 and 5 in Reference [15]).

5.7 Add a Binned Sum to a Binned Sum

An operation to produce the sum of two binned numbers is necessary to perform a reduction. For
completeness, we include the algorithm here, although apart from the simplified renormalization
algorithm, it is equivalent to Algorithm 7 in Reference [15].

ALGORITHM 5.8. Add the K-fold binned sum Z of xn , . . . ,xn+m−1 ∈ F to the K-fold binned sum
Y of x0, . . . ,xn−1 ∈ F . Y may be modified by this function.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:26 P. Ahrens et al.

1: function AddBinnedSumToBinnedSum(Y , Z)
2: if Y0P = 0 then

3: Y = Z
4: return

5: end if

6: if Z0P = 0 then

7: return

8: end if

9: I = BinnedNumberIndex(Y)
10: J = BinnedNumberIndex(Z)
11: if J < I then

12: R = Z
13: AddBinnedSumToBinnedSum(R, Y)
14: Y = R
15: return

16: end if

17: for k = J − I to K − 1 do

18: if k = J = 0 then

19: Y0P = Y0P ⊕ (Z0P � 1.5 · 2emax)
20: else

21: Yk P = Yk P ⊕ (Zk+I−J P � 1.5ϵ−12aI+k)
22: end if

23: Yk C = Yk C ⊕ Zk+I−J C

24: end for

25: Renormalize(Y)
26: end function

Ensure: Y is the K-fold binned sum of x0, . . . ,xn+m−1.

Algorithm 5.8 is identical (although simplified) to lines 1 to 18 of Algorithm 7 in Reference [15],
but the Renormalize at the end is different (as we have a new renormalize operation). The defi-
nition of the binned number allows this same algorithm to work with exceptional values without
modification.

This algorithm allows the user to perform reductions of arbitrary shapes. The user can use
Algorithm 5.7 to sum locally, since it is faster, and use Algorithm 5.8 to merge the results of the local
summations in an arbitrary reduction tree. Because the binned sum is well-defined, all reduction
trees will produce the same binned sum.

Theorem 5.6. If the requirements of Algorithm 5.8 are satisfied, then after running the algorithm
the “Ensure” claim holds.

Proof. If Y0P or Z0P are 0, then the algorithm correctly sets Y to the value of Z or Y (respec-
tively).

If both Y0P and Z0P are exceptional, then BinnedNumberIndex (Algorithm 5.1) will return I =
J = 0. The first iteration of the loop of line 17 will then set Y0P to Y0P ⊕ Z0P � 1.5 · 2emax , which
(since 1.5 · 2emax is finite) is equal to Y0P + Z0P , as desired.

If only one of Y0P or Z0P is exceptional, then BinnedNumberIndex will return I = 0 or J = 0
(respectively). The first iteration of the loop of line 17 will setY0P to the sum of the exceptionalY0P

or Z0P (respectively) and some finite values. This sum is equal to the exceptional value. Therefore,
if only one of Y0P or Z0P is exceptional, Y0P is set to Y0P or Z0P (respectively), as desired.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:27

We now focus on the case when both Y0P and Z0P are finite.
We must first prove that the addition in line 21 is exact. As it is almost identical, we leave

out the case when I + k = 0 and focus on the case when I + k > 0. Since J is the index of Z ,
the index of Zk+I−J P is J + (k + I − J) = I + k . It means that Zk+I−J P ∈ [1.5ϵ−12aI+k , 1.75ϵ−12aI+k)
and Zk+I−J P ∈ 2aI+k Z. Therefore, Zk+I−J P − 1.5ϵ−12aI+k ∈ 2aI+k Z and Zk+I−J P − 1.5ϵ−12aI+k ∈
[0, 0.25ϵ−12aI+k). This means Zk+I−J P − 1.5ϵ−12aI+k is representable and is exactly com-

puted. Moreover, we have Yk P ∈ 2aI+k Z and Yk P ∈ [1.5ϵ−12aI+k , 1.75ϵ−12aI+k). Therefore Yk P +

(Zk+I−J P − 1.5ϵ−12aI+k) ∈ 2aI+k Z, and Yk P + (Zk+I−J P − 1.5ϵ−12aI+k) ∈ [1.5ϵ−12aI+k , 2ϵ−12aI+k).
This means Yk P + (Zk+I−J P − 1.5ϵ−12aI+k) is representable and is exactly computed, and that the
requirements of Renormalize (Algorithm 5.5) apply. Thus, after line 25, we have Equation (5.3).

We assume that n +m ≤ 22p−W −2 (4.5) and, therefore, Yk C + Zk+I−J C is exactly computed. We

then have that Yk =
∑m+n−1

j=0 d (x j , I + k).

It is given that I is the greatest integer such that |x j | < 2bI for all j, 0 ≤ j ≤ n − 1 and that J is

the greatest integer such that |x j | < 2b J for all j,n ≤ j ≤ n +m − 1 where both I and J are at most

imax − K + 1. Since I < J , I is the greatest integer such that |x j | < 2bI for all j, 0 ≤ j ≤ n +m − 1
and I ≤ imax − K + 1.

This completes the requirements described in Equation (4.6) for Y to be the binned sum of
x0, . . . ,xn+m−1. �

5.8 Convert a Binned Sum to a Floating Point Number

Converting a binned sum to a floating point number amounts to carefully evaluating Equation (4.4),
which is just a sum of scaled and offset fields of the binned number. Since Theorem 4.3 guarantees
that all fields in the binned sum are reproducible, any deterministic method to evaluate Equa-
tion (4.4) will also be reproducible.

For now, let Y be the binned sum of finite x0, . . . ,xn−1 ∈ F .
Reference [15] offered no method to convert from a binned number to a floating point result,

so we compare our method to the naive evaluation of Equation (4.4) by straightforward recursive
summation. The following algorithms in this section are original.

If we recursively sum the terms in Equation (4.4) in an arbitrary deterministic order and use
the standard recursive summation error bound [18, (2.6)], we can only apply the error bound (6.2)
in Section 6.1. In contrast, if we sum the terms in the following summation order motivated by
Reference [13, Theorem 1]

(((...(︸︷︷︸
2K

Y0C) ⊕ Y1C) ⊕ Y0P) ⊕ Y2C) ⊕ Y1P) ⊕ ...

... ⊕ Yk C) ⊕ Yk−1P) ⊕ Yk+1C) ⊕ Yk P) ⊕ ...

... ⊕ YK−2C) ⊕ YK−3P) ⊕ YK−1C) ⊕ YK−2P) ⊕ YK−1P), (5.4)

then we compute the sum (4.4) with a relative error of at most about 7ϵ (modulo over/underflow)
and we can apply the error bound (6.1) in Section 6.1. As discussed in more detail in Section 6.1,
when there is a lot of cancellation (when

∑ |x j | � n ·max(|x j |)) the error bound (6.1) can be as
much as 229 times smaller than the error bound (6.2) (assuming double precision and our standard
choices ofW = 40 and K = 3 explained in Section 6.2).

Unfortunately, simply evaluating Equation (4.4) in the order specified by Equation (5.4) does not
guard against unnecessary overflows. An unnecessary overflow is an overflow in an algorithm
when there would be no overflow in the final result if intermediate calculations were performed
with a large enough exponent range. In this section, we present two versions of our conversion
algorithm. Algorithm 5.9 uses a floating point format with an expanded exponent range to

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:28 P. Ahrens et al.

guarantee that no unnecessary overflow occurs, and Algorithm 5.10 uses the same floating point
format as in the rest of the algorithm, along with scaling, to avoid unnecessary overflow.

We will refer to the floating point type that we use to hold the sum during computation as the in-

termediate floating point type. Let the precision of the intermediate floating point type be pinterm.
Let the exponent range of the intermediate floating point type be [einterm,min, einterm,max]. Let the
machine epsilon of the intermediate type be ϵinterm = 2−pinterm . The intermediate type must satisfy
pinterm ≥ p, einterm,min ≤ emin, and einterm,max ≥ emax. Additionally, if einterm,max is large enough the
intermediate type can contain the intermediate sum without special scaling to avoid unnecessary
overflow.

Theorem 5.7. Let Y be a binned sum. Then, we have

max |Yk P | ≤ 2aI+k+p−1, (5.5)

max |Yk C | ≤ 2aI+k+2p−2, (5.6)

and

max |Y | ≤ 2emax−W +2p , (5.7)

where Yk P , Yk C , and Y are given by Equations (4.1), (4.2), and (4.4).

Proof. By Equation (4.2), we have

Yk C = (0.25ϵ−12aI+k)Yk C .

Therefore,

max |Yk C | ≤ 2aI+k+2p−2

By Equation (4.1), we have

Yk P = Yk P − 1.5ϵ−12aI+k .

We also fix the exponent of Yk P as in Equation (4.6), which yields

Yk P ∈ (ϵ−12aI+k , 2ϵ−12aI+k).

Therefore,

max |Yk P | < 2aI+k+p−1.

By Equations (3.2) and (4.4), we then have

|Y | ≤
K−1∑
k=0

max |Yk C | +
K−1∑
k=0

max |Yk P |

<

imax∑
k=0

2ak+2p−2 +

imax∑
k=0

2ak+p−1

=

imax∑
k=0

2emax−(k+1)W +1+2p−2 +

imax∑
k=0

2emax−(k+1)W +1+p−1

≤ 2emax−W +2p−1

1 − 2−W
+

2emax−W +p

1 − 2−W

≤ 2emax−W +2p ,

where in the last two steps, we used Equations (3.8) and (3.7). �

If the maximum exponent of the intermediate floating point type satisfies einterm,max ≥ emax −
W + 2p, then Equation (5.7) implies that no special cases to guard against overflow are needed.
Theorem 6.1 in Section 6.1.1 implies that the computed sum is accurate to within a factor of 1 + 7ϵ

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:29

of the exact sum; therefore, the exponent of the computed sum will stay less than or equal to
emax −W + 2p and will not overflow. Note that emax −W + 2p > emax.

Algorithm 5.9 represents a conversion routine in such a case.

ALGORITHM 5.9. Convert K-fold binned sum Y to x ∈ F . x may be modified by this function.

Require: The variable z is stored using an intermediate floating point type satisfying pinterm ≥ p,
einterm,min ≤ emin, and einterm,max ≥ emax −W + 2p.
Operations are performed in some “to-nearest” rounding mode (no specific tie-breaking behavior
is required).

1: function ConvertBinnedSumToFloatingPoint(x , Y)
2: if Y0P is exceptional or Y0P = 0 then

3: x = Y0P

4: return

5: end if

6: z = Y0C

7: for k = 1 to K − 1 do

8: z = z ⊕ Yk C

9: z = z ⊕ Yk−1P

10: end for

11: z = z ⊕ YK−1P

12: x = z
13: end function

Ensure: IfY0P is 0 or exceptional, then x = Y0P . Otherwise, x is equal to the value (cast to the original
floating point format, overflowing if necessary) that results from evaluating Equation (5.4) using
an intermediate floating point format with enough exponent range to avoid intermediate overflow.

As explained in Section 4, a value of 0 in the primary field of the first bin means that no numbers
have been added to Y . In addition, as explained in Section 5.3, exceptional values (+Inf, -Inf, and
NaN) are added directly to the primary field of the first bin Y0P . Therefore, exceptional values are
reproducibly propagated through Y0P , which will be returned as the computed result after the
final conversion. More precisely, a result of NaN means that there is at least one NaN in the input
or there are both +Inf and -Inf in the input. A result of +Inf or -Inf means that there is one or
more values of +Inf or -Inf of the same sign in the input, and the rest are of finite value.

Note that an overflow situation in Algorithm 5.9 is reproducible as the fields in Y are repro-
ducible. z is deterministically computed from the fields of Y , and the condition that z overflows
when being converted back to the original floating point type in line 12 is reproducible.

If an intermediate floating point type with an exponent range containing [emin, emax −W + 2p]
is not available and the lowest bin has index 0, a rare case, the fields of Y must be scaled down by
some factor during addition and the sum scaled back up when subsequent additions can no longer
affect an overflow situation.

If the scaled sum is to overflow, then its unscaled absolute value will be greater than or equal to
2 · 2emax and it will overflow regardless of the values of anyYk P orYk C with |Yk P | < 0.5ϵinterm2emax

or |Yk C | < 0.5ϵinterm2emax . If the floating point sum has exponent greater than or equal to emax,
then these numbers are not large enough to have any effect when added to the sum. If the sum has
exponent less than emax, then additions of these numbers cannot cause the exponent of the sum to
exceed emax for similar reasons.

As the maximum exponent of the exact sum is at most 2emax−W +2p , a sufficient scaling factor is
22p−W , meaning that the maximum exponent of the exact scaled sum is at most emax. Again using

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:30 P. Ahrens et al.

a forward reference of Theorem 6.1 in Section 6.1.1, the computed scaled sum will stay close to the
exact sum and will not overflow.

When max |Yk P | < 0.5ϵinterm2emax and max |Yk C | < 0.5ϵinterm2emax , the sum may be scaled back
up and the remaining numbers added without scaling. Notice that no overflow can occur during
addition in this algorithm. If an overflow is to occur, it will happen only when scaling back up. As
the fields in the binned number are reproducible, such an overflow condition is reproducible.

If the sum is not going to overflow, then the smaller values must be added as unscaled numbers
to avoid underflow.

The inequalities (5.5) and (5.6) from Theorem 5.7 give us a good way to check when we can
scale up the terms in the sum, as they are strictly decreasing (among primary and carry values).
As W and p are known, the branch conditions in Algorithm 5.10 can be greatly simplified. The
conditions are left as is to make it more clear what is being compared.

Algorithm 5.10 represents a conversion routine in the case when a floating point type with an
expanded exponent range is not available.

ALGORITHM 5.10. Convert K-fold binned sum Y to x ∈ F . x may be modified by this function.

Require: The variable z is stored using an intermediate floating point type satisfying pinterm ≥ p,
einterm,min ≤ emin, and einterm,max ≥ emax.
Operations are performed in some “to-nearest” rounding mode (no specific tie-breaking behavior
is required).

1: function ConvertBinnedSumToFloatingPointWithScaling(x , Y)
2: if Y0P is exceptional or Y0P = 0 then

3: x = Y0P

4: return

5: end if

6: I = BinnedNumberIndex(Y)
7: k = 1
8: if aI + 2p − 2 > emax − pinterm − 1 then

9: z = (Y0C � 2W −2p)
10: while k ≤ K − 1 and (aI+k + 2p − 2 ≥ emax − pinterm − 1 or aI+k−1 + p − 1 ≥ emax −

pinterm − 1) do

11: z = z ⊕ Yk C � 2W −2p

12: z = z ⊕ Yk−1P � 2W −2p

13: k = k + 1
14: end while

15: if aI+K−1 + p − 1 ≥ emax − pinterm − 1 then

16: z = z ⊕ YK−1P � 2W −2p

17: x = z � 22p−W

18: return

19: end if

20: z = z � 22p−W

21: else

22: z = Y0C

23: end if

24: while k ≤ K − 1 do

25: z = z ⊕ Yk C

26: z = z ⊕ Yk−1P

27: k = k + 1

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:31

28: end while

29: z = z ⊕ YK−1P

30: x = z
31: end function

Ensure: IfY0P is 0 or exceptional, then x = Y0P . Otherwise, x is equal to the value (cast to the original
floating point format, overflowing if necessary) that results from evaluating Equation (5.4) using
an intermediate floating point format with enough exponent range to avoid intermediate overflow.

If a binned number is composed of single, then double provides sufficient precision and expo-
nent range to use as an intermediate type and Algorithm 5.9 may be used to convert to a floating
point number. However, if a binned number is composed of double, many machines may not have
any higher precision available. We therefore perform the sum using double as an intermediate
type. As this does not extend the exponent range, we must use Algorithm 5.10 for the conversion.

6 ANALYSIS

Here, we formally analyze the error in our reproducible summation algorithm and summarize the
usage of a binned number. Section 6.1 presents an original theorem regarding the error in a sum of
a decreasing sequence of floating point numbers and utilizes this theorem to obtain error bounds
for our algorithms. Section 6.2 explains limits on the usage of binned numbers in terms of user
parameters and recommends some default parameters.

6.1 Error Bounds

Here, we derive an error bound on the final floating point answer obtained through binned sum-
mation as presented in this work. We compare this to the error bound on binned summation when
a naive conversion routine is used. By naive conversion, we refer to a conversion routine that
sums the contributions from each field of the binned number (as in Equation (4.4)) in some fixed,
arbitrary order instead of the order specified by Equation (5.4). We also compare to the standard
error bound on recursive summation. We present our error bounds in Section 6.1.1 and their proofs
in Section 6.1.2.

6.1.1 Statement of Error Bounds.

Theorem 6.1 (Error in floating point result of binned summation). Consider the K-fold
binned sum Y of finite floating point numbers x0, . . . ,xn−1 ∈ F . We denote the exact sum

∑n−1
j=0 x j

by T , the value of the binned sum as obtained by evaluating Equation (4.4) exactly by Y , and the
floating point approximation of Y obtained using an appropriate algorithm from Section 5.8 (Algo-

rithm 5.9 or 5.10) by Y . Assuming the final answer does not overflow,

���T − Y ��� <
(
1 +

7ϵ

1 − 6
√
ϵ

) (
n ·max

(
2W (1−K) max |x j |, 2emin−2

))
+

7ϵ

1 − 6
√
ϵ
|T |

≈ n2W (1−K) max |x j | + 7ϵ |T |. (6.1)

Note that Equation (6.1) requires K ≥ 2 to get a useful error bound. We can compare Equa-
tion (6.1) to the error bound obtained if Algorithms 5.9 and 5.10 evaluated Equation (4.4) in some
order other than Equation (5.4). In this case, the conversion step from binned sum to floating point
number is less accurate.

Lemma 6.2 (Error in floating point result of binned summation with naive conver-

sion). If in Theorem 6.1 we replaceY with the floating point approximation ofY obtained by recur-
sive summation (in some fixed, arbitrary order) of the contributions of each field of the binned number

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:32 P. Ahrens et al.

(4.4), then assuming the final answer does not overflow,���T − Y ��� < n ·max
(
2W (1−K) max |x j |, 2emin−2

)

+

(
(2K − 1)ϵ

1 − (2K − 1)ϵ

) ��
K−1∑
k=0

|Yk P | +
K−1∑
k=0

|Yk C |	�
≈ n ·max |x j |

(
2W (1−K) + (2K − 1)ϵ

)
. (6.2)

Equation (6.2) is not as tight as Equation (6.1) and grows linearly, instead of shrinking, as the
user increases K in an attempt to increase accuracy. We can also compare Equation (6.1) to the
error bound of recursive summation.

Lemma 6.3 (Error in floating point result of recursive summation). Consider the recursive

sumY of finite floating point numbers x0, . . . ,xn−1 ∈ F in some arbitrary order. We denote the exact
sum

∑n−1
j=0 x j by T . Assuming there is no overflow or underflow,

���T − Y ��� < nϵ
n−1∑
j=0

|x j | ≤ n2ϵ max |x j |. [18, (2.6)]

We now compare the error bounds for the user who uses the values W = 40, K = 3 that we
recommend for double (p = 53) in Section 6.2. Note that the term 7ϵ |∑n−1

j=0 x j | is only seven times

larger than the smallest possible error bound on rounding the exact sum of the x j to the nearest
floating point value. To compare the other terms, bound (6.1) grows like 2−80n ·max |x j |, whereas
bound (6.2) grows like 5ϵn ·max |x j | = 5 · 2−53n ·max |x j |, which is over 229 times larger when the

exact sum is tiny (|T | < 2−32n ·max |x j |). To compare with Reference [18, (2.6)], we bound
∑n−1

j=0 |x j |
by n ·max |x j |, which corresponds to the case when the input data are almost equal in magnitude.
In such a regime, the error bound of the standard recursive summation [18, (2.6)] grows like n2

instead of n, which becomes arbitrarily worse than both bounds (6.1) and (6.2) as the number of
input values n grows. In the case when

∑n−1
j=0 |x j | ≈ max |x j |, for example when there are just a few

large values and the others are small, then bounds [18, (2.6)] and (6.2) are almost of the same order
of magnitude, which is still worse than Equation (6.1) by a factor of about 226 when the exact sum
is tiny (when |T | < 2−30n ·max |x j |). Figure 2 compares the error bounds visually.

6.1.2 Proofs of Error Bounds. There are two sources of error in the final floating point sum
produced through binned summation. The first is from the creation of a binned sum. The second
is from the conversion from binned sum to a floating point number.

Lemma 6.4 analyzes the error from the creation of the binned sum.

Lemma 6.4. Consider the K-fold binned sum Y of finite floating point numbers x0, . . . ,xn−1 ∈ F .
We denote the exact sum

∑n−1
j=0 x j by T and the value of the binned sum as obtained by evaluating

Equation (4.4) exactly by Y . Then, we have:

|T − Y| ≤ n ·max
(
2W (1−K) max |x j |, 2emin−2

)
. (6.3)

Proof. The case of all zero input data is trivial, therefore, we assume that max |x j | is nonzero.
Let I be the index of Y . Let L be I + K − 1, the index of the least bin in Y . By Lemma 3.1 for all i < I
the slice of any x j in bin i is d (x j , i) = 0. Thus, Theorem 3.3 yields,������x j −

L∑
i=I

d (x j , i)
������ =

������x j −
L∑

i=0

d (x j , i)
������

≤ 2aL .

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:33

Fig. 2. Relative error bounds. Relative error bounds (absolute error bound
|∑n−1

j=0 x j |
) in calculating

∑n−1
j=0 x j for different

condition numbers (which we define as
n ·max |x j |
|∑n−1

j=0 x j |
). The condition number is a measure of how much can-

cellation occurs in the sum. “Binned Sum (Careful)” corresponds to Equation (6.1) divided by the exact sum.
“Binned Sum (Naive)” corresponds to Equation (6.2) divided by the exact sum. “Recursive Sum” corresponds
to Reference [18, (2.6)] divided by the exact sum and due to a dependence on n multiple error bounds are
shown. The maximum relative error shown is 1, since a relative error of 1 gives no guarantee of accuracy. It
is assumed that we sum using double (p = 53), K = 3, andW = 40.

Either 2aL ≤ 2W (1−K) max |x j | or 2aL > 2W (1−K) max |x j |.
Consider the latter. Assume for contradiction that L < imax. Then, we have that max |x j | <

2aL+W (K−1) = 2aL−K+1 = 2aI = 2bI+1 . By Equation (4.6), I is the greatest integer such that max |x j | <
2bI and I ≤ imax − K + 1, a contradiction, since I + 1 also satisfies these conditions. Thus, L must
be imax, implying that

2aL = 2aimax ≤ 2emin−2,

where Equation (3.11) was used in the last inequality.
Therefore,

2aL ≤ max(2W (1−K) max |x j |, 2emin−2).

Since the summation in each bin Yi is exact, we have

|T − Y| =
�������
n−1∑
j=0

x j −
L∑

i=I

n−1∑
j=0

d (x j , i)

������� =
�������
n−1∑
j=0

��x j −
L∑

i=I

d (x j , i)	�
�������

≤ n2aL

≤ n ·max(2W (1−K) max |x j |, 2emin−2). �

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:34 P. Ahrens et al.

Now that we have shown a bound on the difference between the exact sum and the binned sum,
we must show a bound on the difference between the binned sum and the final result returned by
Algorithms 5.9 and 5.10. These conversion algorithms convert a binned number to a floating point
number by carefully evaluating Equation (4.4) in the order specified by Equation (5.4). To show the
accuracy of Algorithms 5.9 and 5.10, we first establish Lemma 6.5, an error bound on the sum of
floating point numbers in order of strictly decreasing exponent, and then show that the ordering
in Equation (5.4) satisfies the conditions of this bound.

It should be noted that Lemma 6.5 is similar to Reference [13, Theorem 1], but requires less in-
termediate precision by exploiting additional structure of the input data. It is possible that future
implementers may make modifications to the binned number (adding multiple carry fields, chang-
ing the binning scheme, etc.) such that the summation of its fields cannot be reordered to satisfy
the assumptions of Lemma 6.5. In such an event, Reference [13, Theorem 1] provides more general
ways to sum the fields while still maintaining accuracy.

Intuition is shared between Reference [13, Theorem 1] and Lemma 6.5. Both rely on the ob-
servation that during the recursive sum of floating point numbers in decreasing order of their
exponents, the value of the partial sum when the first error is encountered is very close to the
true value of the sum, and subsequent additions will be increasingly inconsequential, since the
exponents are decreasing. When an error occurs during rounding, the partial sum must have had
a magnitude large enough that the last bits needed to be truncated. This means that the exponent
of the partial sum must be greater than the exponent of whatever summand induced the error,
and since the exponents are decreasing, greater than the exponents of all subsequent summands
after the first error. Since our summands are decreasing in magnitude very quickly, we can geo-
metrically bound the error of the remaining additions. In fact, we show that within just four more
additions after the first error, the remaining summands will not change the value of the partial
sum. We need to use assumptions (3.6) and (3.7) to show how the exponents of the summands will
decrease as quickly as is required. In the proof, we specify that the input floating point numbers
may be unnormalized, as we only need to use the upper bound on the magnitude of the exponents
and the lower bound on the units in the last place. The real inputs may be normalized as long as
an unnormalized representation exists.

Lemma 6.5. We are givenn finite floating point numbers f0, . . . , fn−1 for which there exist (possibly
unnormalized) finite floating point numbers f ′0 , . . . , f

′
n−1 of the same precision such that

(1) fj = f ′j for all j ∈ {0, . . . ,n − 1},
(2) getexp(f ′0) > · · · > getexp(f ′n−1),

(3) getexp(f ′j) ≥ getexp(f ′j+2) + p+1
2 � for all j ∈ {0, . . . ,n − 3}.

Let S0 = S0 = f0, S j = S j−1 + fj , and S j = S j−1 ⊕ fj (assuming rounding “to-nearest,” breaking ties

arbitrarily) so Sn−1 =
∑n−1

j=0 fj . Then, in the absence of overflow and underflow, we have

���Sn−1 − Sn−1
��� < 7ϵ

1 − 6
√
ϵ
|Sn−1 | ≈ 7ϵ |Sn−1 |.

Proof. Throughout the proof, let fj = 0 if j > n − 1 so S∞ = Sn−1 and S∞ = Sn−1.

Letm be the location of the first error such that Sm−1 = Sm−1 and Sm � Sm .
If no suchm exists, then the computed sum is exact (Sn−1 = Sn−1) and we are done.
If such an m exists, then because getexp(f ′0) > · · · > getexp(f ′m), f0, . . . , fm ∈ ulp(f ′m)Z. Thus,

Sm ∈ ulp(f ′m)Z.

We now show |Sm | > 2 · 2getexp(f ′m) . Assume for contradiction that |Sm | ≤ 2 · 2getexp(f ′m) . Be-
cause Sm ∈ ulp(f ′m)Z, this would imply that Sm is representable as a floating point number, a

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:35

contradiction as Sm � Sm . Therefore, we have

|Sm | > 2 · 2getexp(f ′m) . (6.4)

Because getexp(f ′m) > getexp(f ′m+1),

| fm+1 | < 2 · 2getexp(f ′m)−1 = 2getexp(f ′m) . (6.5)

Because getexp(f ′m) ≥ getexp(f ′m+2) + p+1
2 � and getexp(f ′0) > · · · > getexp(f ′n−1),

�������
n−1∑

j=m+2

fj

������� ≤
n−1∑

j=m+2

| fj | <
n−1∑

j=m+2

2 · 2getexp(f ′j) ≤
n−1∑

j=m+2

2 · 2getexp(f ′m)− p+1
2 �−(m+2−j)

<

∞∑
j=0

(
2
√
ϵ
)

2getexp(f ′m)−j =
(
4
√
ϵ
)

2getexp(f ′m) . (6.6)

We can combine Equations (6.5) and (6.6) to obtain

�������
n−1∑

j=m+1

fj

������� ≤
n−1∑

j=m+1

| fj | < 2getexpf ′m +
(
4
√
ϵ
)

2getexp(f ′m) =
(
1 + 4

√
ϵ
)

2getexp(f ′m) . (6.7)

By Equations (6.4) and (6.7),

|Sn−1 | =
�������
n−1∑
j=0

fj

������� ≥
�������

m∑
j=0

fj

������� −
�������

n−1∑
j=m+1

fj

������� = |Sm | −
�������

n−1∑
j=m+1

fj

�������
≥ 2 · 2getexp(f ′m) −

(
1 + 4

√
ϵ
)

2getexp(f ′m) =
(
1 − 4

√
ϵ
)

2getexp(f ′m) . (6.8)

By Equations (6.8) and (6.6),

�������
n−1∑

j=m+2

fj

������� <
(
4
√
ϵ
)

2getexp(f ′m) ≤ 4
√
ϵ

1 − 4
√
ϵ

�������
n−1∑
j=0

fj

������� . (6.9)

By Equations (6.8) and (6.7),

�������
n−1∑

j=m+1

fj

������� ≤
n−1∑

j=m+1

| fj | ≤
(
1 + 4

√
ϵ
)

2getexp(f ′m) ≤ 1 + 4
√
ϵ

1 − 4
√
ϵ

�������
n−1∑
j=0

fj

������� . (6.10)

And by Equations (6.8) and (6.10),

|Sm | ≤
�������
n−1∑
j=0

fj

������� +
�������

n−1∑
j=m+1

fj

������� ≤
(
1 +

1 + 4
√
ϵ

1 − 4
√
ϵ

) �������
n−1∑
j=0

fj

������� =
2

1 − 4
√
ϵ

�������
n−1∑
j=0

fj

������� . (6.11)

By definition, Sm+4 is the computed sum of Sm , fm+1, . . . , fm+4 using the standard recursive
summation technique. The quantity θn is defined in Reference [18] such that |θn | ≤ nϵ/(1 − nϵ).

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:36 P. Ahrens et al.

Using Reference [18, (2.4)],�������Sm +

m+4∑
j=m+1

fj − Sm+4

������� ≤
�������(Sm + fm+1)θ4 +

m+4∑
j=m+2

fjθm+5−j

�������
≤ |θ4 | ���Sm + fm+1

��� +
m+4∑

j=m+2

|θm+5−j | | fj |

≤ 4ϵ

1 − 4ϵ
���Sm + fm+1

��� + 3ϵ

1 − 3ϵ

m+4∑
j=m+2

| fj |

≤ 4ϵ

1 − 4ϵ

(���Sm − Sm
��� + |Sm + fm+1 |

)
+

3ϵ

1 − 3ϵ

n−1∑
j=m+2

| fj |.

Since Sn−1 = Sm + fm+1 +
∑n−1

j=m+2 fj , we have

|Sm + fm+1 | =
�������Sn−1 −

n−1∑
j=m+2

fj

������� ≤ |Sn−1 | +
n−1∑

j=m+2

| fj |.

Therefore, �������Sm +

m+4∑
j=m+1

fj − Sm+4

������� ≤
4ϵ

1 − 4ϵ
���Sm − Sm

��� + 4ϵ

1 − 4ϵ
|Sn−1 | +

7ϵ

1 − 4ϵ

n−1∑
j=m+2

| fj |.

Using the triangle inequality, we have

���Sm+4 − Sm+4
��� =

�������Sm +

m+4∑
j=m+1

fj − Sm+4

������� ≤
���Sm − Sm

��� +
�������Sm +

m+4∑
j=m+1

fj − Sm+4

�������
≤

(
1 +

4ϵ

1 − 4ϵ

) ���Sm − Sm
��� + 4ϵ

1 − 4ϵ
|Sn−1 | +

7ϵ

1 − 4ϵ

n−1∑
j=m+2

| fj |.

Since Sm−1 = Sm−1, we have that |Sm − Sm | = |(Sm−1 + fm) − Sm | ≤ ϵ |Sm | and therefore

���Sm+4 − Sm+4
��� ≤ 1

1 − 4ϵ
ϵ |Sm | +

4ϵ

1 − 4ϵ
|Sn−1 | +

7ϵ

1 − 4ϵ

n−1∑
j=m+2

| fj |

≤ ϵ

1 − 4ϵ
���|Sm | + 4|Sn−1 | + 7

n−1∑
j=m+2

| fj |	
� .
And by Equations (6.11) and (6.9),

���Sm+4 − Sm+4
��� ≤ ϵ

1 − 4ϵ

(
2

1 − 4
√
ϵ
|Sn−1 | + 4|Sn−1 | + 7

4
√
ϵ

1 − 4
√
ϵ
|Sn−1 |

)

=
ϵ

1 − 4ϵ

(
6 + 12

√
ϵ

1 − 4
√
ϵ
|Sn−1 |

)
=

6ϵ

(1 − 2
√
ϵ) (1 − 4

√
ϵ)
|Sn−1 |

<
6ϵ

1 − 6
√
ϵ
|Sn−1 |. (6.12)

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:37

Notice that

getexp(f ′m) ≥ getexp(f ′m+2) +
⌈p + 1

2

⌉
≥ getexp(f ′m+4) + 2

⌈p + 1

2

⌉
> getexp(f ′m+5) + 2

⌈p + 1

2

⌉
.

Therefore,

getexp(f ′m) ≥ getexp(f ′m+5) + p + 2. (6.13)

Because getexp(f ′0) > · · · > getexp(f ′n−1), Equation (6.13) yields�������
n−1∑

j=m+5

fj

������� ≤
n−1∑

j=m+5

| fj | <
n−1∑

j=m+5

2 · 2getexp(f ′m)−p−2−(j−(m+5)) <

∞∑
j=0

2getexp(f ′m)−p−1−j = ϵ2getexp(f ′m) .

(6.14)
Using Equations (6.14) and (6.8),�������

n−1∑
j=m+5

fj

������� < ϵ2getexp(f ′m) ≤ ϵ

1 − 4
√
ϵ
|Sn−1 |. (6.15)

By Equations (6.12) and (6.15)���Sn−1 − Sm+4
��� ≤ |Sn−1 − Sm+4 | + ���Sm+4 − Sm+4

���
≤
�������

n−1∑
j=m+5

fj

������� +
6ϵ

1 − 6
√
ϵ
|Sn−1 |

≤ ϵ

1 − 4
√
ϵ
|Sn−1 | +

6ϵ

1 − 6
√
ϵ
|Sn−1 |

<
7ϵ

1 − 6
√
ϵ
|Sn−1 |. (6.16)

When combined with Equation (6.8), this gives

���Sm+4
��� >

(
1 − 7ϵ

1 − 6
√
ϵ

)
|Sn−1 |

≥
(
1 − 7ϵ

1 − 6
√
ϵ

) (
1 − 4

√
ϵ
)

2getexp(f ′m)

=
���1 − 4

√
ϵ −

7ϵ
(
1 − 4

√
ϵ
)

1 − 6
√
ϵ

	
� 2getexp(f ′m),

which can be simplified to ���Sm+4
��� > 2getexp(f ′m)−1 (6.17)

because ϵ ≤ 2−7, which is satisfied because of assumption (3.8).
Using Equation (6.13), for all j ≥ m + 5, we have

| fj | < 2 · 2getexp(f ′j) ≤ 2 · 2getexp(f ′m)−p−2 = ϵ · 2getexp(f ′m)−1. (6.18)

And by Equations (6.18) and (6.17), all additions after fm+4 have no effect (since we are rounding

to-nearest) and we have Sn−1 = Sm+4. This, together with Equation (6.16), implies���Sn−1 − Sn−1
��� < 7ϵ

1 − 6
√
ϵ
|Sn−1 |.

The proof is complete. �

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:38 P. Ahrens et al.

Now that we have Lemma 6.5, all that remains is to show that it applies to Algo-
rithms 5.9 and 5.10. Since both algorithms add the numbers according to Equation (5.4), we must
show that this ordering satisfies the assumptions of Lemma 6.5.

Lemma 6.6. Consider the K-fold binned sum Y of index I of finite floating point numbers
x0, . . . ,xn−1 ∈ F . We denote the value of the binned sum as obtained by evaluating Equation (4.4)
exactly by Y , and the floating point approximation of Y obtained using an appropriate algorithm

from Section 5.8 (Algorithm 5.9 or 5.10) by Y . Assuming the final answer does not overflow,

���Y −Y ��� < 7ϵ

1 − 6
√
ϵ
|Y |.

Proof. We first show how to interpret the Yk P and Yk C as unnormalized floating point num-
bers and sort their exponents independently of the actual values of the fields. Note that this in-
terpretation is to support reasoning about Equation (5.4) and does not affect the representation
format of the data itself, since IEEE floating point formats do not permit unnormalized numbers
beside exceptional values and denormalized numbers. Consider a K-fold binned number Y of in-
dex I . Since each value Yk P in a primary field Yk P is represented by an offset from 1.5ϵ−12aI+k

and Yk P ∈ (ϵ−12aI+k , 2ϵ−12aI+k), with perhaps some scaling applied in the event that I = 0, Yk P

can be expressed exactly using an unnormalized floating point number Y′P k
with an exponent

of aI+k + p − 1. As each carry field Yk C is a count of renormalization adjustments later scaled by
0.25ϵ−12aI+k ,Yk C can be expressed exactly using an unnormalized floating point numberY′

k C
with

an exponent of aI+k + 2p − 3.
First, we have getexp(Y′

k P
) > getexp(Y′

k+1P
) and getexp(Y′

k C
) > getexp(Y′

k+1C
) becauseaI+k >

aI+k+1.
Next, note that

getexp(Y′k C
) = aI+k + 2p − 3

and

getexp(Y′k−1P
) = aI+k−1 + p − 1 = aI+k +W + p − 1.

Therefore, getexp(Y′
k C

) > getexp(Y′
k−1P

) by Equation (3.6).

Finally, note that

getexp(Y′k−2P
) = aI+k−2 + p − 1 = aI+k + 2W + p − 1.

Therefore, getexp(Y′
k C

) < getexp(Y′
k−2P

) by Equation (3.7).

Combining the above inequalities, we see that the exponents of all theY′
k P

andY′
k C

are distinct

and can be sorted as follows:

getexp(Y′0 C) > getexp(Y′1 C) > getexp(Y′0 P) > getexp(Y′2 C) > getexp(Y′1 P) > ...

... > getexp(Y′k C
) > getexp(Y′k−1P

) > getexp(Y′k+1C
) > getexp(Y′k P

) > ...

... > getexp(Y′K−2C) > getexp(Y′K−3P) > getexp(Y′K−1C) > getexp(Y′K−2P) > getexp(Y′K−1P)

Note that the above ordering is the same as that in Equation (5.4).
These unnormalized floating point numbers may, for convenience of notation, be referred to in

decreasing order of unnormalized exponent as γ ′0, . . . ,γ
′
2K−1.

We have just shown that

getexp(γ ′0) > · · · > getexp(γ ′2K−1), (6.19)

where γj denotes the normalized representation of the γ ′j . Note that γj = γ
′
j as real numbers and

that getexp(γj) ≤ getexp(γ ′j).

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:39

If γj is a primary field, then either γj+1 or γj+2 is a primary field (with the exception of γ2K−1).
If γj is a carry field, then either γj+1 or γj+2 is a carry field (with the exception of γ2K−3, but if we

use the fact that p ≥ 8 (3.8), we have getexp(γ ′2K−3) = aI+K−1 + 2p − 3 ≥ aI+K−1 + p + p+1
2 � − 1 =

getexp(γ ′2K−1) + p+1
2 �). Therefore, as 2W > p + 1 andW < p − 2, for all j ∈ {0, . . . , 2K − 3}

getexp(γ ′j) ≥ getexp(γ ′j+2) +W ≥ getexp(γ ′j+2) +
⌈p + 1

2

⌉
. (6.20)

Y′
k P

andY′
k C

can be expressed exactly using floating point numbers of the same precision asYk P

andYk C (except in the case of overflow, in which a scaled version may be obtained), and such exact
floating point representations can be obtained using Equations (4.1) and (4.2). By Equations (6.19)
and (6.20), Lemma 6.5 applies to Equation (5.4) to yield���Y −Y ��� < 7ϵ

1 − 6
√
ϵ
|Y |. �

With Lemmas 6.4 and 6.6, we have all the necessary ingredients to give the final error bounds.
Reference [15] discusses the absolute error between the binned sum and the exact sum (addressed
here by Lemma 6.4), but does not give a method to compute a floating point approximation of the
binned sum. No error bound on the final floating point answer was given. Theorem 6.1 extends
the error bound of Reference [15] all the way to the final return value of the algorithm, combining
the results of Lemmas 6.4 and 6.6.

Proof of Theorem 6.1. Lemma 6.4 gives us

|T − Y| ≤ n ·max
(
2W (1−K) max |x j |, 2emin−2

)
.

Lemma 6.6 gives us ���Y −Y ��� < 7ϵ

1 − 6
√
ϵ
|Y |.

By the triangle inequality,

|Y | ≤ |T | + |T − Y| < n ·max
(
2W (1−K) max |x j |, 2emin−2

)
+ |T |.

The above results can be used to obtain Equation (6.1), the absolute error of the floating point

approximation of a binned sum |T − Y|:���T − Y ��� ≤ |T − Y| + ���Y −Y ���
< n ·max

(
2W (1−K) max |x j |, 2emin−2

)
+

7ϵ

1 − 6
√
ϵ
|Y |

< n ·max
(
2W (1−K) max |x j |, 2emin−2

)
+

7ϵ

1 − 6
√
ϵ

(
n ·max

(
2W (1−K) max |x j |, 2emin−2

)
+ |T |

)

<

(
1 +

7ϵ

1 − 6
√
ϵ

) (
n ·max

(
2W (1−K) max |x j |, 2emin−2

))
+

7ϵ

1 − 6
√
ϵ
|T |. �

Proof of Lemma 6.2. Lemma 6.4 gives us

|T − Y| ≤ n ·max
(
2W (1−K) max |x j |, 2emin−2

)
.

The standard error bound on recursive floating point summation [18, (2.6)] gives us

���Y −Y ��� <
(

(2K − 1)ϵ

1 − (2K − 1)ϵ

) ��
K−1∑
k=0

|Yk P | +
K−1∑
k=0

|Yk C |	�.
ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:40 P. Ahrens et al.

Combining with the triangle inequality, we obtain���T − Y ��� < n ·max
(
2W (1−K) max |x j |, 2emin−2

)

+

(
(2K − 1)ϵ

1 − (2K − 1)ϵ

) ��
K−1∑
k=0

|Yk P | +
K−1∑
k=0

|Yk C |	�
≈ n ·max |x j |

(
2W (1−K) + (2K − 1)ϵ

)
. �

A user of binned summation may wish to have an expression for the error bound relative to

the resultY , and not the exact sumT (sinceT is probably not available in practice). We show this
error bound with Lemma 6.7:

Lemma 6.7 (Error in floating point result of binned summation (relative to re-
sult)). Consider the K-fold binned sum Y of finite floating point numbers x0, . . . ,xn−1 ∈ F . We de-
note the exact sum

∑n−1
j=0 x j byT , the value of the binned sum as obtained by evaluating Equation (4.4)

exactly by Y , and the floating point approximation of Y obtained using an appropriate algorithm

from Section 5.8 (Algorithm 5.9 or 5.10) by Y . Assuming the final answer does not overflow,���T − Y ��� < n ·max
(
2W (1−K) max |x j |, 2emin−2

)
+

7ϵ

1 − 6
√
ϵ − 7ϵ

���Y ���
≈ n2W (1−K) max |x j | + 7ϵ ���Y ��� . (6.21)

Proof. By the triangle inequality,

|Y | ≤ ���Y ��� + ���Y −Y ��� .
Applying Lemma 6.6 yields

|Y | < ���Y ��� + 7ϵ

1 − 6
√
ϵ
|Y |.

After simplification,

|Y | < ���
1

1 − 7ϵ
1−6
√

ϵ

	
�
���Y ��� = 1 − 6

√
ϵ

1 − 6
√
ϵ − 7ϵ

���Y ��� .
The above results can be used to obtain Equation (6.21), the absolute error of the floating point

approximation of a binned sum |T − Y|:���T − Y ��� ≤ |T − Y| + ���Y −Y ���
< n ·max

(
2W (1−K) max |x j |, 2emin−2

)
+

7ϵ

1 − 6
√
ϵ
|Y |

< n ·max
(
2W (1−K) max |x j |, 2emin−2

)
+

7ϵ

1 − 6
√
ϵ

(
1 − 6

√
ϵ

1 − 6
√
ϵ − 7ϵ

���Y ���
)

= n ·max
(
2W (1−K) max |x j |, 2emin−2

)
+

7ϵ

1 − 6
√
ϵ − 7ϵ

���Y ��� . �

6.2 Suggested Parameters and Algorithmic Limits

Here, we clarify the limits of binned summation with respect to the parameters we have given.
Certain key quantities are summarized in Table 2. As we will see, there are tradeoffs among accu-
racy, performance, memory, and the maximum number of summands as we varyW and K , so we
explain these tradeoffs and how we made our final recommendations forW and K in Table 2.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:41

Table 2. Suggested Parameter Settings

Data Type single double quad

Default K 3 3 3

Kmin 2 2 2

Kmax 21 52 328

Default W 13 40 100

Wmin 13 28 58

Wmax 21 50 110

Endurance 29 211 211

Capacity 233 264 2124

Error in computing T =
∑n−1

j=0 x j where T = n ·max |x j | 2−26T + 2−21 |T | 2−80T + 2−50 |T | 2−220T + 2−110 |T |

As analyzed in Theorem 6.1, the maximum error in a K-fold binned number withW -bit bins is
2W (1−K) , so the minimum K with useful accuracy is 2. The error decreases as W and K increase.
The maximum useful and allowed K is imax + 1, as this covers all of the bins and computes the
exact sum (to within a relative error of 7ϵ , subject to overflow and underflow, as discussed in
Section 6.1). We want to chooseW and K so the error is at least as good as recursive summation
using the underlying floating point format, implyingW (K − 1) should be at leastp = 24 in single,
p = 53 in double, and p = 113 in quad.

By Equation (3.6),W < p − 2. By Equation (3.7), 2W > p + 1. The combination of these two im-
plies p ≥ 8 (3.8). They also imply (p + 1)/2 <W < p − 2, or 13 ≤W ≤ 21 in single, 28 ≤W ≤ 50
in double, and 58 ≤W ≤ 110 in quad.

Since W < p, and we require W (K − 1) ≥ p, we recommend K = 3 to minimize memory and
operation counts.

By Theorem 5.3, a maximum of 2p−W −2 elements may be deposited into Yk P between renor-
malizations. This number is referred to as the endurance of a binned number. The larger the
endurance, the closer the operation count of Algorithm 5.7 gets to the lower bound given by the
cost of the Deposit operation. This motivates choosingW to be less than its upper bound of p − 3.

By Equation (4.5), a binned number is capable of representing the sum of at least 22p−W −2 floating
point numbers. This number is referred to as the capacity of the binned number. In principle, one
could chooseW so the capacity just exceeded the number of summands in a particular application,
but in practice one might not know the number of summands ahead of time, so reproducibility is
better guaranteed by choosing W small enough so the capacity is at least the largest number of
expected summands, which we choose to be 232 in single (so 2 · 24 −W − 2 ≥ 32, or W ≤ 14)
and 264 in double (so 2 · 53 −W − 2 ≥ 64, orW ≤ 40). These capacities are chosen to exceed the
largest unsigned integer that can be represented in the same-sized integer format, so choosingW
any smaller is unlikely to be useful. In quad, such a number would be impractically large (most
systems use 64-bit pointers), so we will not constrain our choice by the corresponding inequality
2 · 113 −W − 2 ≥ 128, orW ≤ 96.

The binned number will, when used correctly, avoid intermediate overflow assuming the limits
in the previous paragraphs are honored.

As discussed in Section 4.1.2, we assume gradual underflow and guarantee that our algorithms
will round underflows to at least the nearest 2emin−1.

Now, we consider choosing W and K in the case of single. Our constraints above leave two
choices:W = 13 orW = 14. We chooseW = 13 to maximize endurance, which is 29, and so mini-
mize cost. This also yields a capacity of 233.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:42 P. Ahrens et al.

In the case of double, our constraints limit W to the range 28 ≤W ≤ 40. When W = 40, the
endurance is already quite large, 211, so increasing the endurance further (i.e., decreasing W) is
unlikely to improve performance. The capacity is 264, which is as large as necessary. So, we choose
W = 40 to maximize accuracy.

In the case of quad, we considerW greater than 96, so in the range 96 ≤W ≤ 110, since a capac-
ity of 2128 is much larger than necessary. IncreasingW reduces both the capacity and endurance,
and also increases accuracy, so a reasonable tradeoff seems to beW = 100, which reduces the en-
durance to 211, the same as for double, leaving a capacity of (a still very large) 2124.

In Reference [15], similar algorithms (Algorithms 5 and 6) were implemented with K = 3,W =
40 and performed renormalization once every 2,048 summands, running within 1.2 to 1.6 times the
runtime of conventional recursive summation. We therefore assume that amortization over 2,048
summands is sufficient, but of course the precise selection of parameters should be specific to the
application and based on experimentation, which is out of the scope of this article.

As mentioned in Section 3.1, the exponent range is so small in half that fixed-point arithmetic
is likely a more efficient reproducible summation scheme for this format. Thus, we do not discuss
parameters for half.

Although we have restricted our attention to cases where the fields of the binned number are
of the same type as the numbers it is summing, our analysis does not preclude widening the sum-
mands to a larger floating point format before reproducible summation. If our summands are
bfloat16 (a recently proposed floating point format with the same exponent range as single,
but with reduced precision p = 8 to save space and increase efficiency [4]), then building a binned
number out of bfloat16 would prove difficult, since we would be restricted to W = 5 and the
capacity would therefore be limited to 29 = 512. Instead, we could sum using a single precision
binned number. If our summands are single, we could sum using a double precision binned
number with K = 2, which could be faster, because it requires fewer instructions (although these
instructions involve the more expensive double precision numbers). Since these tradeoffs depend
heavily on architectural effects, we leave an exploration of these possibilities to future work.

7 CONCLUSIONS AND FUTURE WORK

The algorithms we have presented have been shown to sum binary IEEE 754-2008 floating point
numbers accurately and reproducibly and require only a subset of the IEEE Floating Point Standard
754-2008 [1] and bitwise operations on the standard representations in memory, satisfying Goal 1.
Our algorithms are more accurate than recursive summation, and by varying K the user can tune
the accuracy (Goal 2). The algorithms avoid intermediate overflow and work on exceptional cases
such as +Inf, -Inf, and NaN (Goal 3). Our algorithms require only one pass over the data, and only
one parallel reduction is required (Goals 4 and 5). Our reproducible accumulator requires only
six floating point words (Goal 6) and has been designed to work in existing software patterns for
summation (Goal 7). We believe our approach is the first to satisfy all of our design goals.

We have specified all of the necessary steps to carry out reproducible summation in practice,
including initialization of the accumulator, addition of floating point numbers to an accumulator,
addition of an accumulator to an accumulator, and conversion from the intermediate binned num-
ber to a floating point result. It should be possible to use the algorithms presented here to create a
user-friendly interface to a reproducible accumulator that could hide almost all of the complexity
of reproducible summation while maintaining the flexibility of conventional summation.

In the future, we will show how our methods have been used to create reproducible absolute
sums, dot products, norms, matrix-vector products, matrix-matrix products, and so on, in an opti-
mized library called ReproBLAS.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:43

APPENDIX

A ALTERNATE IMPLEMENTATIONS AND INSTRUCTION COUNTS

We made several design choices when formalizing our reproducible summation scheme. Here, we
explore a design space of alternative implementations that could have performance advantages, de-
pending on the architecture, and how exceptions may be handled. We describe variations on the
algorithm described so far, which use different tie-breaking rounding modes (A.1), use the aug-
mented addition operation in the new IEEE-754-2019 standard (A.2), handle exceptions differently
but still reproducibly (A.3), deal with the entire range of denormalized numbers (A.4), deal with
abrupt underflow (A.5), and how to get arbitrarily high precision while still doing only 9n +O (K)
FLOPs (A.6). We also include a detailed accounting of instructions used by our algorithms (A.7).

A.1 Rounding Modes

In Algorithm 5.4, we must use a “to-nearest” rounding mode to exactly represent the error in
our addition in lines 8 and 20. Although we require a to-nearest rounding mode, we explicitly
do not require any specific tie-breaking behavior, because we were able to set the last bit of r
in lines 7, 19, and 25. However, we could avoid setting the last bit of r if we had a tie-breaking
behavior that did not depend on the significand of Yk P , so the slices would be well-defined and the
algorithm would be reproducible. (If the tie-breaking behavior depends on the significand of Yk P

and we do not break ties by setting the last bit of r , then the order in which numbers are added to
Yk P could change the amount that is added.)

With alternate tie-breaking behaviors, slices would be defined as

d (x , i) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if |x | < 2ai

R (x ,ai + 1) if 2ai ≤ |x | < 2bi

R
(
x −

i−1∑
j=0

d (x , j),ai + 1
)

if 2bi ≤ |x |,
(A.1)

where R is a rounding function that rounds to-nearest with tie-breaking dependent on the round-
ing mode used. Table A.1 contains the various tie-breaking behaviors of R for different rounding
modes. Except for the first line in the table (which is the subject of this article), the tie-breaking of
R can be derived from the tie-breaking in floating point using the facts that Yk P and Yk P ⊕ r are
always both strictly positive.

By using a different to-nearest rounding mode, we would accumulate different slices, but because
our rounding mode is to-nearest, the theorems and lemmas in Sections 3 and 4 would still hold,
albeit with a new definition of slices. These sections contain the basic results to prove the rest of the

Table A.1. Slice Definitions for Various Tie-breaking Behaviors

Tie-breaking of Floating Point Lines 7, 19, and 25 of Algorithm 5.4 Tie-breaking of R
Any S = Yk P ⊕ (r |1) Away From 0
To sr S = Yk P ⊕ r Away From 0
To sr · sYk P

S = Yk P ⊕ r Away From 0
To −sr S = Yk P ⊕ r Towards 0
To −sr · sYk P

S = Yk P ⊕ r Towards 0
Away From 0 S = Yk P ⊕ r Towards∞
Towards∞ S = Yk P ⊕ r Towards∞
Towards 0 S = Yk P ⊕ r Towards −∞
Towards −∞ S = Yk P ⊕ r Towards −∞

Note that sYk P
is the sign of Yk P and sr is the sign of r .

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:44 P. Ahrens et al.

article, so we can say that any of the above rounding modes and implementations of Algorithm 5.4
would lead to a reproducible summation scheme. However, tie-breaking rules produce different
slices; they might not produce the same reproducible sums.

A.2 Augmented Operations

If we use a rounding mode where lines 7, 19, and 25 of Algorithm 5.4 can be S = Yk P ⊕ r (see Table 3
for options), then we can use an operation for augmented addition in the new IEEE Floating Point
Standard 754-2019 [5] to speed up Algorithm 5.4. Such an operation f (Yk P , r) would return (S, z)
such that S = Yk P ⊕ r and z = Yk P + r − (Yk P ⊕ r) where ⊕ uses some “to-nearest” rounding mode
(ties are broken toward 0 in Reference [5]). Thus, lines 19 to 22 could be replaced by

(Yk P , r) = f (Yk P , r)

and line 25 could also be replaced by the same. Since the error in the addition is computed exactly
by f , we would no longer need special scaling to avoid overflow and lines 6 to 12 could be replaced
by

r = x � 2W −p−1,

(Y0P , r) = f (Y0P , r),

r = r � 2p−W +1.

Thus, if augmented addition is implemented as a single floating point instruction, it reduces the
cost of the algorithm toK = 3 FLOPs (without any (r |1) operations) when I � 0. If it is implemented
as two floating point instructions (one for the sum and one for the error), it reduces the cost of the
algorithm to 2K − 1 = 5 FLOPs (without any (r |1) operations) when I � 0 (notice that we do not
need the error in the last sum). If I = 0, we would need to use two extra scaling operations.

A.3 Simple +Inf, -Inf, and NaN Handling

Although we require strict handling of +Inf, -Inf, and NaN, we observe that this can also be
handled lazily. If Y0P is exceptional, then Algorithm 5.3 leaves it unchanged. We can remove the
check on line 2 of Algorithm 5.4 and we will execute lines 6 to 12 or lines 19 to 22. Lines 7 or 19
will set the last bit of a summand +Inf or -Inf so it is NaN. Thus, at the end of our summation
algorithm, we will get a result of NaN if and only if any of our summands were exceptional (which
is a reproducible behavior). Note that in this implementation, we will only get a result of +Inf or
-Inf if the sum was too large to represent. If we wish, we can go back whenever we see a result
of NaN and determine the true exceptional result.

If we are using a rounding mode where lines 7, 19, and 25 of Algorithm 5.4 can be S = Yk P + r ,
then we do not need the check on line 2, because r is added directly to Y0P as desired.

Even if we must explicitly check for exceptional input, we can move the check from inside
Algorithm 5.4 to Algorithm 5.7, since this algorithm already passes over the data to determine the
maximum absolute value of the input on line 5. If we see that our input is exceptional, we can
compute our result directly with few conditional branches.

A.4 Adding Denormalized Floating Point Numbers

Algorithm 5.4 in Section 5.3 relies on setting the last bit of intermediate results to fix the direction of
the rounding mode. However, if r is the quantity to be added toYk P , ulp(r) must be less than round-
ing error inYk P when added toYk P . Mathematically, we require ulp(r) < 0.5ulp(Yk P) to prove The-
orem 5.2 about the correctness of Algorithm 5.4. This is why we must enforce aimax ≥ emin − p + 2
so the least significant bit of the least bin is larger than twice the smallest denormalized number.

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:45

If we use a rounding mode that does not require setting the last bit of r in lines 7, 19, and 25
as discussed above in Section A.1, we no longer need ulp(r) < 0.5ulp(Yk P). Therefore, we can add
one or two more bins so we can accumulate slices in the bin (3.10).

If we cannot use a different rounding mode, we could also accumulate input in the least bins
by scaling them up, analogously to how we handled summands close to 2 · 2emax . We would scale
r up before adding it to the least bins in Algorithm 5.4. A disadvantage to this approach is the
additional branching cost incurred due to the conditional scaling of what might be multiple bins.

Another approach, if the rounding mode cannot be changed, is to add a special bin to accumulate
the input ignored by the other bins. Its associated collector would have a primary field that has
exponent emin and would not be stored with any bias. In line 25 of Algorithm 5.4, we must check
to see if we are adding to this least bin and if we are, simply execute the statement Yk P = Yk P ⊕
r instead. The finite inputs r ∈ F to this bin would satisfy |r | ≤ 2aimax = emin − p + 2 +

(
(emax −

emin + p − 1) mod W
)
≤ emin − p +W + 1. Since for all r ∈ F we have that r ∈ 2emin−p+1Z, this bin

would be able record at least 2p−W −2 additions exactly, after which point it could be renormalized
similarly to the other bins.

Note that the assumptions in Section 6.1 do not necessarily hold when another bin is added, so
the conversion routine may have to be modified.

A.5 Abrupt Underflow

If underflow is abrupt (meaning that results that would normally round to a number with magni-
tude less than 2emin are instead rounded to zero), several approaches may be taken to modify the
given algorithms to ensure reproducibility. Abrupt underflow is defined as an alternate exception
handling mode in Section 8.2 of the IEEE 754 standard [1, 5]. Since “denormals are zero” (treating
input denormal numbers as zero) mode is not defined in the standard, we do not consider it.

Again, the most straightforward approach would be to extract input in the denormalized range
by scaling the smaller inputs up. This has the added advantage of increasing the accuracy of the
algorithm to sum the entire denormal range.

A more efficient way to solve the problem would be to set the least bin to have aimax = emin. This
means that all the values smaller than 2emin will not be extracted. This could be accomplished either
by keeping the current binning scheme and having the least bin be of a width not necessarily equal
toW , or by shifting all other bins to be greater. The disadvantage of shifting the other bins is that
it may cause multiple greatest bins to overflow, adding multiple scaling cases. Setting such a least
bin would enforce the condition that no underflow occurs, since all intermediate sums are either
0 or greater than the underflow threshold. The denormal range would be discarded.

Setting the least bin is similar to zeroing out the significand bits of each summand that corre-

spond to values 2(emin−1) or smaller. However, performing such a bitwise manipulation would likely
be more computationally intensive and would not map as intuitively to our binning process.

In the case that reproducibility is desired on heterogeneous machines, where some processors
may handle underflow gradually and others abruptly, the approach of setting a least bin is rec-
ommended. The binned sum using this scheme does not depend on whether or not underflow is
handled gradually or abruptly, so the results will be the same regardless of where they are com-
puted.

Again, remember that adding another bin may break assumptions in Section 6.1.

A.6 High Accuracy

Allowing the user to adjust accuracy yields an interesting tradeoff between performance and ac-
curacy. Using only the existing interface, a basic superaccumulator [26] can be built by setting K

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:46 P. Ahrens et al.

to its maximum value so almost the entire floating point range is summed. A careful examination
of the error bound (6.1) shows that this would give almost exact results regardless of the dynamic
range of the sum.

The Deposit operation (Algorithm 5.4) calculates K slices of each summand. This is an efficient
approach whenK is small. However, if we use a very large value ofK , this is inefficient, since many
of these slices will be zero. Lemma A.1 shows that each floating point number corresponds to at
most three consecutive bins that may have nonzero slices. Therefore, we can optimize Deposit for
a high-accuracy use case by only calculating these slices.

Lemma A.1. Let x ∈ F be finite and let J be the largest integer such that |x | < 2b J . If J ≤ imax − 2,
then only the 3 slices d (x , J),d (x , J + 1),d (x , J + 2) may be nonzero.

Proof. If J > 0, |x | < 2a J−1 and by Lemma 3.1, d (x , i) = 0 for all 0 ≤ i < J .
Since J is maximal, |x | ≥ 2a J . Then, we have that ulp(x) ≥ ϵ |x | ≥ 2a J −p . Therefore,

ulp(x) ≥ 2a J+2+2W −p > 2a J+2+1 by Equation (3.7). Since x ∈ ulp(x)Z and d (x , j) ∈ 2aj+1Z, x −∑J+2−1
j=0 d (x , j) ∈ min(2a J+1+1, ulp(x))Z. Therefore, d (x , J + 2) = R±∞ (x −∑J+2−1

j=0 d (x , j),a J+2 +

1) = x −∑J+2−1
j=0 d (x , j). Thus, d (x , i) = 0 for all J + 2 < i ≤ imax. �

We may now consider an optimized version of the Deposit operation (Algorithm 5.4) for a
high-accuracy use case. We would first use FloatingPointIndex (Algorithm 5.2) to calculate J in
Lemma A.1. Since the slices in bins J , J + 1, and J + 2 are the only slices that may be nonzero, we
only need to run Algorithm 5.4 on the collectors corresponding to those bins. Although there is a
branching cost to finding these collectors, running Algorithm 5.4 on three consecutive collectors
takes only 7 FLOPs. Thus, if we assume both the number of summandsn and the endurance 2p−W −2

are much larger than K ≤ imax + 1, Sum (Algorithm 5.7) would still only require approximately 9n
FLOPs in addition to the cost of running FloatingPointIndex on each input.

A.7 Instruction Counts

For completeness, Table A.2 displays the number of required instructions for the operations listed
in the text. Note that some architectures use the same registers for integer and floating point
quantities, and so perform no register changes. We do not include the cost of table lookups of
known quantities or data structure field access in, e.g., the Update operation. We assume that it
takes 1 FLOP to convert each field in Y to a field of Y using Equations (4.1) and (4.2), as primary
fields need an offset and carry fields need a scale. We also do not count the cost of reading the
input summands in the SumFloatingPointWithBinnedSum operation.

The BinnedNumberIndex and FloatingPointIndex operations each include an integer divi-
sion. These are the only operations to include such an instruction. Integer division is much more
expensive than other integer operations on many architectures, leading to the development of al-
gorithms for division using “reciprocal multiplication” in situations where the divisor is constant
[6, 16]. However, not only do our divisions involve a constant divisor, W , but the dividends are
bounded and nonnegative. This allows us to further simplify such techniques and replace each
division with an integer multiply and shift by precomputed constants. Assume that the dividend
is some integer e . We know that in each division, 0 < e ≤ E = emax − emin + p −W + 2. Let 2α be
the smallest power of two, which is at least E ·W . Then let β = 2α /W �. We claim that

(e · β) >> α =
e/W � . (A.2)

For a short proof, notice that

(e · β) >> α =
e · 2α /W �/2α � ≥
e/W �

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

Algorithms for Efficient Reproducible Floating Point Summation 22:47

Table A.2. Instruction Counts

Operation
Floating Point

Operations Integer Operations
Potential Register

Changes Branches

ufp 1 2

getexp 3 1

is exceptional? 2 1

BinnedNumberIndex 1 6 1 1

FloatingPointIndex 8 1

Update 1 16 2 3

Deposit 3K + 1 = 10 K + 9 = 12 2K + 3 = 9 2

Deposit (x and Y finite) 3K + 1 = 10 K + 4 = 7 2K + 1 = 7 1

Deposit (x and Y finite,
I nonzero)

3K − 2 = 7 K = 3 2K = 6

Renormalize 7K + 1 = 22 K + 3 = 6 2K + 1 = 7 2K + 1 = 7

AddFloatingPointTo
BinnedSum

10K + 3 = 33 2K + 28 = 34 4K + 6 = 18 2K + 6 = 12

SumFloatingPointWith
BinnedSum

n (2W −p+2 (7K +
2) + 3K + 3) ≈
12.011n

n (2W −p+2 (K +
19) + K + 9) ≈
12.011n

n (2W −p+2 (2K +
3) + 2K + 3) ≈
9.004n

2n (2W −p+2 (K +
2) + 1) ≈ 2.005n

SumFloatingPointWith
BinnedSum (x and Y finite)

n (2W −p+2 (7K +
2) + 3K + 3) ≈
12.011n

n (2W −p+2 (K +
19) + K + 4) ≈
7.011n

n (2W −p+2 (2K +
3) + 2K + 1) ≈
7.004n

n (2W −p+3 (K + 2) +
1) ≈ 1.005n

SumFloatingPointWith
BinnedSum (x and Y finite,
I nonzero)

n (2W −p+2 (7K +
2) + 3K) ≈ 9.011n

n (2W −p+2 (K +
19) + K) ≈ 3.011n

2n (2W −p+1 (2K +
3) + K) ≈ 6.004n

2W −p+3n (K + 2) ≈
0.005n

AddBinnedSumTo BinnedSum 10K + 9 = 39 3K + 29 = 38 2K + 5 = 11 3K + 11 = 20

ConvertBinnedSumTo
FloatingPoint

4K = 12 3 1 1

ConvertBinnedSumTo
FloatingPointWithScaling

5K + 1 = 16 K + 11 = 14 2 K + 4 = 7

Our default settings are K = 3, W = 40, p = 53, and are treated as constant. Operations involving only constant numbers

are not counted. “Potential register changes” counts the reinterpretations of integers as floats and vice versa according

to the standard binary interchange format. We count comparisons and max and min as operations on the types being

compared, and logical operations as integer operations. Branches are counted separately from the computation of the

conditions in the branch. When different branch paths have different operation counts, we pick the larger count. We do

not count the cost of loop control flow, because most loops can be unrolled, so the amortized loop control cost is negligible.

Accesses to arrays, indexing calculations, lookup tables of known values, and field accesses into data structures are not

counted. Three versions of SumFloatingPointWithBinnedSum and Depositare listed, corresponding to the cases when

x and y are known to be finite and the case when I is not initially 0 and x is known to be small enough not to trigger the

I = 0 branch. The cost of SumFloatingPointWithBinnedSum reflects the amortized cost over each summand (constant

overhead is not counted).

and

e · 2α /W �/2α < e · (2α /W + 1)/2α ≤ (e + 1)/W .

SinceW is a positive integer and e is a nonnegative integer, there are no integers between e/W
and (e + 1)/W , so our proof is complete.

Notice that for this trick to work, all intermediate quantities must be representable in the un-
derlying integer format. Using Tables 1 and 2 and taking a maximum over all possible values of
W , we see that the maximum value of e · β is 134,656, 8,470,528, and 2,150,629,376 for single,
double, and quad, respectively. Since the maximum representable unsigned 32-bit integer value
is 4,294,967,295, this trick can be performed with either 32- or 64-bit integers. Thus, we count our

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

22:48 P. Ahrens et al.

Table A.3. Magic Numbers Used in (A.2) Corresponding
to Default Values ofW

single double quad
Wdefault 13 40 100
E 266 2,060 32,780
α 12 17 22
β 316 3,277 41,944
E ∗ β 84,056 6,750,620 1,374,924,320
max

W
E ∗ β 134,656 8,470,528 2,150,629,376

The last row shows the largest value that needs to be repre-

sentable for the algorithm to work for all W .

two integer divisions as two simple integer operations each. Table A.3 shows some of the relevant
values in our division algorithm for the default values ofW .

REFERENCES

[1] IEEE. 2008. IEEE standard for floating-point arithmetic. IEEE Std 754-2008 (Aug. 2008), 1–70. DOI:https://doi.org/10.

1109/IEEESTD.2008.4610935

[2] Intel. 2018. Developer Reference for Intel® Math Kernel Library 2018 - C | Intel® Software. Retrieved from https:

//software.intel.com/en-us/download/developer-reference-for-intel-math-kernel-library-2018-c.

[3] NVIDIA. 2018. NVIDIA® cuBLAS. Retrieved from http://docs.nvidia.com/cuda/cublas/index.html.

[4] Intel. 2019. bfloat16 - HardwareNumerics Definition. Retrieved from https://software.intel.com/sites/default/files/

managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf.

[5] IEEE. 2019. IEEE standard for floating-point arithmetic. IEEE Std 754-2019 (July 2019), 1–84. DOI:https://doi.org/10.

1109/IEEESTD.2019.8766229

[6] R. Alverson. 1991. Integer division using reciprocals. In Proceedings of the Symposium on Computer Arithmetic

(ARITH’91). 186–190. DOI:https://doi.org/10.1109/ARITH.1991.145558

[7] A. Arteaga, O. Fuhrer, and T. Hoefler. 2014. Designing bit-reproducible portable high-performance applications. In

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’14). 1235–1244. DOI:https://doi.

org/10.1109/IPDPS.2014.127

[8] C. Chohra, P. Langlois, and D. Parello. 2015. Efficiency of reproducible level 1 BLAS. In Proceedings of the Confer-

ence on Scientific Computing, Computer Arithmetic, and Validated Numerics (SCAN’15). Springer, Cham, 99–108. DOI:
https://doi.org/10.1007/978-3-319-31769-4_8

[9] C. Chohra, P. Langlois, and D. Parello. 2016. Reproducible, accurately rounded and efficient BLAS. In Proceedings of the

Euro-Par Parallel Processing Workshops. Springer, Cham, 609–620. DOI:https://doi.org/10.1007/978-3-319-58943-5_49

[10] S. Collange, D. Defour, S. Graillat, and R. Iakymchuk. 2015. Numerical reproducibility for the parallel reduction on

multi- and many-core architectures. Parallel Comput. 49 (Nov. 2015), 83–97. DOI:https://doi.org/10.1016/j.parco.2015.

09.001

[11] T. J. Dekker. 1971. A floating-point technique for extending the available precision. Numer. Math. 18, 3 (June 1971),

224–242. DOI:https://doi.org/10.1007/BF01397083

[12] J. Demmel, G. Gopalakrishnan, M. Heroux, W. Keyrouz, and K. Sato. 2015. Reproducibility of high performance codes

and simulations: Tools, techniques, debugging. In Proceedings of the SC 2015 Birds of a Feather Sessions. Retrieved from

https://gcl.cis.udel.edu/sc15bof.php.

[13] J. Demmel and Y. Hida. 2004. Accurate and efficient floating point summation. SIAM J. Sci. Comput. 25, 4 (Jan. 2004),

1214–1248. DOI:https://doi.org/10.1137/S1064827502407627

[14] J. Demmel and H. D. Nguyen. 2013. Fast reproducible floating-point summation. In Proceedings of the Symposium on

Computer Arithmetic (ARITH’13). 163–172. DOI:https://doi.org/10.1109/ARITH.2013.9

[15] J. Demmel and H. D. Nguyen. 2015. Parallel reproducible summation. IEEE Trans. Comput. 64, 7 (July 2015), 2060–2070.

DOI:https://doi.org/10.1109/TC.2014.2345391

[16] T. Granlund and P. L. Montgomery. 1994. Division by invariant integers using multiplication. In Proceedings of the Con-

ference on Programming Language Design and Implementation (PLDI’94). 61–72. DOI:https://doi.org/10.1145/178243.

178249

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

https://doi.org/10.1109/IEEESTD.2008.4610935
https://doi.org/10.1109/IEEESTD.2008.4610935
https://software.intel.com/en-us/download/developer-reference-for-intel-math-kernel-library-2018-c
https://software.intel.com/en-us/download/developer-reference-for-intel-math-kernel-library-2018-c
http://docs.nvidia.com/cuda/cublas/index.html
https://software.intel.com/sites/default/files/managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf
https://software.intel.com/sites/default/files/managed/40/8b/bf16-hardware-numerics-definition-white-paper.pdf
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/ARITH.1991.145558
https://doi.org/10.1109/IPDPS.2014.127
https://doi.org/10.1109/IPDPS.2014.127
https://doi.org/10.1007/978-3-319-31769-4_8
https://doi.org/10.1007/978-3-319-58943-5_49
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1016/j.parco.2015.09.001
https://doi.org/10.1007/BF01397083
https://gcl.cis.udel.edu/sc15bof.php
https://doi.org/10.1137/S1064827502407627
https://doi.org/10.1109/ARITH.2013.9
https://doi.org/10.1109/TC.2014.2345391
https://doi.org/10.1145/178243.178249
https://doi.org/10.1145/178243.178249

Algorithms for Efficient Reproducible Floating Point Summation 22:49

[17] Y. Hida, X. S. Li, and D. H. Bailey. 2001. Algorithms for quad-double precision floating point arithmetic. In Proceedings

of the Symposium on Computer Arithmetic (ARITH’01). 155–162. DOI:https://doi.org/10.1109/ARITH.2001.930115

[18] N. Higham. 1993. The accuracy of floating point summation. SIAM J. Sci. Comput. 14, 4 (July 1993), 783–799. DOI:
https://doi.org/10.1137/0914050

[19] N. Higham. 2002. Accuracy and Stability of Numerical Algorithms (2nd ed.). Society for Industrial and Applied Math-

ematics. DOI:https://doi.org/10.1137/1.9780898718027

[20] D. G. Hough. 2019. The IEEE standard 754: One for the history books. Computer 52, 12 (Dec. 2019), 109–112. DOI:
https://doi.org/10.1109/MC.2019.2926614

[21] R. Iakymchuk, S. Collange, D. Defour, and S. Graillat. 2015. ExBLAS: Reproducible and accurate BLAS library. In Pro-

ceedings of the SC 2015 Numerical Reproducibility at Exascale Workshops (NRE’15). Retrieved from https://hal.archives-

ouvertes.fr/hal-01202396.

[22] R. Iakymchuk, D. Defour, S. Collange, and S. Graillat. 2015. Reproducible and accurate matrix multiplication. In Pro-

ceedings of the Conference on Scientific Computing, Computer Arithmetic, and Validated Numerics (SCAN’15). Springer,

Cham, 126–137. DOI:https://doi.org/10.1007/978-3-319-31769-4_11

[23] R. Iakymchuk, D. Defour, S. Collange, and S. Graillat. 2015. Reproducible triangular solvers for high-performance

computing. In Proceedings of the International Conference on Information Technology - New Generations (ITNG’15).

353–358. DOI:https://doi.org/10.1109/ITNG.2015.63

[24] W. Kahan. 1965. Pracniques: Further remarks on reducing truncation errors. Commun. ACM 8, 1 (Jan. 1965). DOI:
https://doi.org/10.1145/363707.363723

[25] D. E. Knuth. 1969. The Art of Computer Programming 2: Seminumerical Algorithms. Addison-Wesley, Reading, MA.

[26] U. Kulisch. 2012. Computer Arithmetic and Validity: Theory, Implementation, and Applications (2nd ed.). Walter de

Gruyter.

[27] D. R. Lutz and C. N. Hinds. 2017. High-precision anchored accumulators for reproducible floating-point summation.

In Proceedings of the Symposium on Computer Arithmetic (ARITH’17). 98–105. DOI:https://doi.org/10.1109/ARITH.

2017.20

[28] J.-M. Muller, N. Brunie, F. Dinechin, C.-P. Jeannerod, M. Joldes, V. Lefèvre, G. Melquiond, N. Revol, and S. Torres.

2018. Handbook of Floating-Point Arithmetic (2nd ed.). Birkhäuser Basel. Retrieved from http://www.springer.com/us/

book/9783319765259.

[29] J. Riedy and J. Demmel. 2018. Augmented arithmetic operations proposed for IEEE-754 2018. In Proceedings of the

Symposium on Computer Arithmetic (ARITH’18). 45–52. DOI:https://doi.org/10.1109/ARITH.2018.8464813

[30] S. M. Rump. 2009. Ultimately fast accurate summation. SIAM J. Sci. Comput. 31, 5 (Jan. 2009), 3466–3502. DOI:
https://doi.org/10.1137/080738490

[31] S. M. Rump, T. Ogita, and S. Oishi. 2010. Fast high precision summation. Nonlin. Theor. Applic. IEICE 1 (2010), 2–24.

DOI:https://doi.org/10.1587/nolta.1.2

Received June 2016; revised February 2020; accepted March 2020

ACM Transactions on Mathematical Software, Vol. 46, No. 3, Article 22. Publication date: July 2020.

https://doi.org/10.1109/ARITH.2001.930115
https://doi.org/10.1137/0914050
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1109/MC.2019.2926614
https://hal.archives-ouvertes.fr/hal-01202396
https://hal.archives-ouvertes.fr/hal-01202396
https://doi.org/10.1007/978-3-319-31769-4_11
https://doi.org/10.1109/ITNG.2015.63
https://doi.org/10.1145/363707.363723
https://doi.org/10.1109/ARITH.2017.20
https://doi.org/10.1109/ARITH.2017.20
http://www.springer.com/us/book/9783319765259
http://www.springer.com/us/book/9783319765259
https://doi.org/10.1109/ARITH.2018.8464813
https://doi.org/10.1137/080738490
https://doi.org/10.1587/nolta.1.2

