Krylov Subspace Methods: GMRES and CG

Now we return to Chapter 6, on solving $A \times x = b$.
Given the orthogonal basis of the Krylov subspace $Q_k = [q_1, \ldots, q_k]$, our goal is to find the "best" approximate solution x_k in span(Q_k). To make progress, we need to define "best"; depending on what we choose, we end up with different algorithms:

1. Choose x_k to minimize $|| x_k - x ||_2$, where x is the true solution.
 Unfortunately, we don't have enough information in Q_k and $H_k = Q_k^T A Q^k$ (or T_k when A is symmetric) to compute this.

2. Choose x_k to minimize the norm $|| r_k ||_2$ of the residual $r_k = b - A \times x_k$.
 We can do this, and the algorithm is called MINRES (for "minimum residual") when A is symmetric, and GMRES (for "generalized minimum residual") when it is not.

3. Choose x_k so that r_k is perpendicular to $\{x \mid q \in Q_k\}$, i.e. $r_k^T * Q_k = 0$.
 This is called the orthogonal residual property, or a Galerkin condition, by analogy to finite elements. When A is symmetric, the algorithm is called SYMMLQ. When A is nonsymmetric, a variant of GMRES works.

4. When A is spd, it defines a norm $|| r ||_{A^{-1}} = (r^T * A^{-1} * r)^{(1/2)}$.
 We say the best solution minimizes $|| r_k ||_{A^{-1}}$. Note that

 $|| r_k ||_{A^{-1}}^2 = (r_k^T * A^{-1} * r_k)$
 $= (b - A \times x_k)^T * A^{-1} * (b - A \times x_k)$
 $= (A \times x_k)^T * A^{-1} * (A \times x_k)$
 $= (x - x_k)^T * A * (x - x_k)$
 $= || x - x_k ||_A^2$

 This algorithm is called the Conjugate Gradient Algorithm.

Thm: When A is spd, definitions (3) and (4) of "best" are equivalent, and using the Conjugate Gradient algorithm, it is possible to compute x_k from previous iterates for the cost of one multiplication by A, and a small number of dot products and saxpys ($y = \alpha \times x + y$), keeping only 3 vectors in memory.

More generally, the choice of algorithm depends on the properties of A:

- Decision Tree: Figure 6.8 (IterativeTreeAx=b.ps)
- See also pointer on class web page to the on-line book Templates for the Solution of Linear Systems for an expanded version of this tree, and pointers to software.
We now discuss GMRES, which uses the least structure of the matrix, and then CG, which uses the most.

In GMRES, at each step we choose x_k to minimize
$$|| r_k \||_2 = || b - A*x_k ||_2$$

where $x_k = Q_k*y_k$, i.e. x_k is in $\{script K\}_k(A,b)$.

Thus we choose y_k to minimize
$$|| r_k \||_2 = || b - A*Q_k*y_k ||_2$$
$$= || Q^T* (b - A*[Q_k, Q_u]*[y_k; 0]) ||_2$$
$$= || H_k \ H_u \ * [y_k; 0] ||_2$$
$$= || H_k \ H_u \ * [y_k; 0] ||_2$$

Since only the first row of $H_u k$ is nonzero, we just need to solve the $(k+1)$-by-k upper Hessenberg least squares problem

$$|| r_k \||_2 = || H_k T_{k\ k+1}^-1 * e_1 \ ||_2$$

which can be done inexpensively with k Givens rotations, exploiting the upper Hessenberg structure, costing just $O(k^2)$ or $O(k)$ instead of $O(k^3)$.

Now we return to CG, and begin by showing that when A is spd, it is "best" in two senses:

Lemma: When A is spd, (3) and (4) are equivalent:

(3) Choose x_k so that $r_k^T * Q_k = 0$.
(4) Choose x_k to minimize $|| r_k \||_A^{-1} = || x_k - x ||_A$ which are solved by

(*) $x_k = Q_k*T_k\k (-1)*Q_k*T_k\k (-1)*e_1* || b ||_2$,

where T_k is the tridiagonal matrix computed by Lanczos.

Also $r_k = +| | r_k ||_2 + q_{k+1}$.

Here is some intuition for (*):
Multiplying $Q_k^T * T_k \k(-1)$ projects b onto the Krylov subspace spanned by Q_k $T_k\k(-1)$ is the inverse of the projection of A onto the Krylov subspace
Multiplying by Q_k maps back from the Krylov subspace to R^n

Proof: Drop the subscript k for simpler notation, so $Q=Q_k, T=T_k, x = Q^-1*e_1* || b ||_2$, $r = b - A*x$ and $T = Q^T*A*Q$ is spd (and so nonsingular), since A is. Then we need to confirm that

$Q^T * r = Q^T * (b - A*x)$
$$= Q^T*b - Q^T*A*x$$
$$= e_1* || b ||_2 - Q^T*A*Q^T\k(-1)*e_1* || b ||_2$$
$$= e_1* || b ||_2 - T*T\k(-1)*e_1* || b ||_2$$
$$= 0 \ as\ desired$$
Now we need to show that this choice of \(x \) minimizes \(\| r \|_{A^{-1}}^2 \), so consider a different \(x' = x + Q*z \) and \(r' = b - A*x' = r - A*Q*z \)

\[
\| r' \|_{A^{-1}}^2 = r'^T * A^{(-1)} * r' \\
= (r - A*Q*z)^T * A^{(-1)} * (r - A*Q*z) \\
= r^T * A^{(-1)} * r - 2(A*Q*z)^T * A^{(-1)} * r + (A*Q*z)^T * A^{(-1)} * (A*Q*z) \\
= r^T * A^{(-1)} * r - 2z^T * Q^T * A^{(-1)} * r + (A*Q*z)^T * A^{(-1)} * (A*Q*z) \\
= r^T * A^{(-1)} * r + (A*Q*z)^T * A^{(-1)} * (A*Q*z) \\
\text{since } Q^T * r = 0 \\
= \| r \|_{A^{-1}}^2 + \| A*Q*z \|_{A^{-1}}^2
\]

and this is minimized by choosing \(z = 0 \), so \(x' = x \) as desired.

Finally note that \(r_k = b - A*x_k \) must be in \(\{q_1,...,q_{(k+1)}\} \), so that \(r_k \) is a linear combination of columns of \(Q_{(k+1)} = [q_1,...,q_{(k+1)}] \). But since \(r_k \) is perpendicular to the columns of \(Q_k = [q_1,...,q_k] \), \(r_k \) must be parallel to \(q_{(k+1)} \), so \(r_k = +/- |r_k|_2 * q_{(k+1)} \)

(We pause the recorded lecture here.)

There are several ways to derive CG. We will take the most "direct" way from the formula (*) above, deriving recurrences for 3 sets of vectors, of which we only need to keep the most recent ones: \(x_k, r_k, \) and so-called conjugate gradient vectors \(p_k \).

1. The \(p_k \)'s are called gradients because each step of CG can be thought of as moving \(x_{(k-1)} \) along the gradient direction \(p_k \) (i.e. \(x_k = x_{(k-1)} + \nu * p_k \)) until it minimizes \(\| r_k \|_{A^{-1}} \) over all choices of the scalar \(\nu \).

2. The \(p_k \)'s are called conjugate, or more precisely A-conjugate, because they are orthogonal in the A inner product: \(p_k^T*A*p_j = 0 \) if \(j \neq k \).

CG is sometimes derived by figuring out recurrences for \(x_k, r_k, \) and \(p_k \) that satisfy properties (1) and (2), and then showing they satisfy the optimality properties in the Lemma. A nice presentation is found in Shewchuk's writeup on the class web page. Instead, we will start with the formula for \(x_k = Q_k*T_k^{(-1)}*e_1*||b||_2 \), from the lemma, and derive the recurrences from there.

Since \(T_k = Q_k*T*A*Q_k \) is spd, we can do Cholesky to get \(T_k = L'_k*L'_k^T \) where \(L'_k \) is lower bidiagonal, and \(L'_k*L'_k^T = L_k*D_k*L_k^T \) where \(L_k \) has unit diagonal and \(D_k \) is diagonal, with \(D_k(i,i) = L'_k(i,i)^2 \). Then from the Lemma

\[
x_k = Q_k*T_k^{(-1)}*e_1*||b||_2 \\
= Q_k*(L_k*D_k*L_k^T)^{(-1)}*e_1*||b||_2 \\
= Q_k*L_k^{(-T)} * (D_k^{(-1)}*L_k^{(-1)}*e_1*||b||_2)
\]
where we write $P'_k = [p'_1, ..., p'_k]$. The eventual conjugate gradients p_k will turn out to be scalar multiples of the p'_k. So we know enough to prove property (2) above:

Lemma: The p'_k's are A-conjugate, i.e. $P'_k^T A * P'_k$ is diagonal.
Proof: $P'_k^T A * P'_k = (Q_k * L_k^(-T))^T * A * (Q_k * L_k^(-T))$
$= L_k^(-1) * Q_k^T * A^T * L_k^(-T)$
$= L_k^(-1) * (L_k * D_k * L_k^T) * L_k^(-T)$
$= D_k$

Now we derive simple recurrences for the column p'_k of P'_k, and the components of y_k, which in turn give us a recurrence for x_k.

We will show that $P'_{(k-1)}$ is identical to the leading $k-1$ columns of P'_k:
$P'_{(k-1)} = [P'_{(k-1)}, p'_k]$ and similarly for $y_{(k-1)} = [s_1; ... ; s_{(k-1)}]$ and $y_k = [s_1; ... ; s_{(k-1)}; s_k]$.

Assuming these are true for a moment, they will give us the recurrence for x_k:
(Rx) $x_k = P'_k * y_k = [P'_{(k-1)}, p'_k] * [s_1; ... ; s_k]
= P'_{(k-1)} * [s_1; ... ; s_{(k-1)}] + p'_k * s_k$
$= x_{(k-1)} + p'_k * s_k$
assuming we can also get recurrences for p'_k and s_k.

Since Lanczos constructs T_k row by row so $T_{(k-1)}$ is the leading $k-1$ by $k-1$ submatrix of T_k, and Cholesky also computes row by row, we get that $L_{(k-1)}$ and $D_{(k-1)}$
are the leading $k-1$ by $k-1$ submatrices of L_k and D_k, resp:
$T_k = L_k * D_k * L_k^T$
$= [L_{(k-1)} 0] * [D_{(k-1)} 0] * [L_{(k-1)} 0]^T$
$= [L_{(k-1)}^(-1) 1] [0 d_k] [0 ... 0 l_{(k-1)} 1]$
so $L_k^(-1) = [L_{(k-1)}^(-1)]$
$[stuff 1]$
and $y_k = D_k^(-1) * L_k^(-1) * e_1 * ||b||_2$
$= [D_{(k-1)}^(-1) 0] * [L_{(k-1)}^(-1) 0] * e_1 * ||b||_2$
$[0 d_k^(-1)] [stuff 1]$
$= [D_{(k-1)}^(-1) * L_{(k-1)}^(-1) * e_1 * ||b||_2]$
$[s_k]$
$[s_k]$
as the desired recurrence for y_k. Similarly
$P'_{(k)} = Q_k * L_k^(-T)$
$= [Q_{(k-1)} , q_k] * [L_{(k-1)}^(-T) stuff]$
$[0 1]$
$= [Q_{(k-1)} * L_{(k-1)}^(-T) , p'_k]$
so to get a formula for \(p'_k \), write

\[
Q_k = P'_k \cdot L_k^T,
\]

and equating the last columns we get

\[
q_k = p'_k + p'_{(k-1)} \cdot L_k(k,k-1)
\]
or

\[
(p') \quad p'_k = q_k - l_{(k-1)} \cdot p'_{(k-1)}
\]
as the desired recurrence for \(p'_k \).

Finally we need a recurrence for \(r_k \) from (Rx):

\[
(r_k) \quad r_k = b - A \cdot x_k
\]

\[
= b - A \cdot (x_{(k-1)} + p'_k \cdot s_k)
\]

\[
= r_{(k-1)} - A \cdot p'_k \cdot s_k
\]

Putting these vector recurrences together we get

\[
(r_k) \quad r_k = r_{(k-1)} - A \cdot p'_k \cdot s_k
\]

\[
(x_k) \quad x_k = x_{(k-1)} + p'_k \cdot s_k
\]

\[
(p'_k) \quad p'_k = q_k - l_{(k-1)} \cdot p'_{(k-1)}
\]

To get closer to the final recurrences, substitute

\[
q_k = r_{(k-1)} / ||r_{(k-1)}||_2 \quad \text{and} \quad p_k = ||r_{(k-1)}||_2 \cdot p'_k \]
to get

\[
(r'_k) \quad r_k = r_{(k-1)} - A \cdot p_k \cdot (s_k / ||r_{(k-1)}||_2)
\]

\[
= r_{(k-1)} - A \cdot p_k \cdot (\nu_k)
\]

\[
(x'_k) \quad x_k = x_{(k-1)} + p_k \cdot \nu_k
\]

\[
(p'_k) \quad p_k = r_{(k-1)} - (||r_{(k-1)}||_2 \cdot l_{(k-1)} / ||r_{(k-2)}||_2) \cdot p_{(k-1)}
\]

\[
= r_{(k-1)} + \mu_k \cdot p_{(k-1)}
\]

We still need formulas for the scalars \(\mu_k \) and \(\nu_k \). There are several choices, some more numerically stable than others.

See the text for the algebra, we just write here

\[
\nu_k = r_{(k-1)}^T \cdot r_{(k-1)} / p_k^T \cdot A \cdot p_k
\]

\[
\mu_k = r_{(k-1)}^T \cdot r_{(k-1)} / r_{(k-2)}^T \cdot r_{(k-2)}
\]

Putting it all together, we get

Conjugate Gradient Method for solving \(Ax=b \):

\[
k = 0, \quad x_0 = 0, \quad r_0 = b, \quad p_1 = b
\]

repeat

\[
k = k+1
\]

\[
z = A \cdot p_k
\]

\[
\nu_k = r_{(k-1)}^T \cdot r_{(k-1)} / p_k^T \cdot z
\]

\[
x_k = x_{(k-1)} + \nu_k \cdot p_k
\]
\[r_k = r_{(k-1)} - \nu_k z \]
\[\mu_{(k+1)} = \frac{r_k^T r_k}{r_{(k-1)}^T r_{(k-1)}} \]
\[p_{(k+1)} = r_k + \mu_{(k+1)} * p_k \]

until \(|| r_k ||_2 \) small enough

Note that minimization property (1) above follows from the fact that since \(x_k \) minimizes \(|| r_k ||_{A^{-1}} \) over all possible \(x_k \) in \(Q_k \), it must certainly also satisfy the lower dimensional minimization property (1).

As with most other iterative methods (besides multigrid), the convergence rate of CG depends on the condition number \(\text{cond}(A) \):

Thm: \(|| r_k ||_{\text{inv}(A)} / || r_0 ||_{\text{inv}(A)} \leq \frac{2}{1 + 2k/(\sqrt{\text{cond}(A) - 1})} \)

So when \(\text{cond}(A) \) is large, one needs to take \(O(\sqrt{\text{cond}(A)}) \) steps to converge. For \(d \)-dimensional Poisson's equation on a grid with \(n \) mesh points on a side, \(\text{cond}(A) \) is about \(n^2 \), so CG take \(O(n) \) steps to converge, for any dimension \(d \).