
On Error Analysis in Arithmetic with Varying Relative Precision

James W. Demmel

Courant Institute
251 Mercer Str.

New York, NY 10012

Abstract. Recently Clenshaw/Olver and Iri/Matsui pro

posed new floating point arithmetics which seek to elim
inate overflows and underflows from most computations.
Their common approach is to redistribute the available
numbers to spread out the largest and smallest numbers
much more thinly than in standard floating point, thus

achieving a larger range at the cost of lower precision at
the ends of the range. The goal of these arithmetics is to
eliminate much of the effort needed to write code which is
reliable despite over/underflow. In this paper we argue
that for many codes this eliminated effort will reappear in
the error analyses needed to ascertain or guarantee the
accuracy of the computed solution . Thus reliability with
respect to over/underflow has been traded for reliability
with respect to roundoff. We also propose a hardware
flag, analogous to the "sticky flags" of the IEEE binary
floating point standard, to do some of this extra error
analysis automatically.

1. Introduction
Two arithmetics have been independently proposed by

Clenshaw and Olver [1] and Iri and Matsui [7] whose com
mon goal is the elimination of overflow and underflow
from numerical computation. More precisely , their goal is
to eliminate much of the effort required to write software
which will work reliably despite overflow and underflow.
They both accomplish this by significantly extending the
range of numbers that can be represented within a given
wordsize. Since for a fixed wordsize only a fixed number
of different numbers can be represented, they must neces
sarily spread their numbers much more thinly at the
extremes of the range than in conventional floating point.
Thus, as long as one computes with numbers of moderate
size, one has approximately the same relative precision as
conventional floating point (or perhaps somewhat more),
in the sense that the results of each basic operation (+, -,

x, I) are about as accurate as with conventional floating
point. A s the numbers become very large (or very small),
the relative precision of each operation gradually decreases
until it reaches a lower bound that depends on the arith
metic. (We shall give numerical values for the ranges and
accuracies below.)

In this paper we argue that as a result of this
decreased relative accuracy at the extremes of the range,
either more care must be taken in doing the error analysis
of many algorithms than is necessary in conventional float-

CH2419-0/87/0000/0148$01.00 © 1987 IEEE
148

mg point, or else the algorithms must scale or otherwise be
modified to avoid inaccurate results. This should come as
no surprise, since the sizes and accuracies of intermediate
results (e.g. pivot growth factors) appear frequently in
error analyses. As a result, the effort required to write
reliable codes which are relatively impervious to overflow,
underflow, and roundoff remains the same overa1J; the
new arithmetics just shift that effort away from
over/underflow towards roundoff. In brief, the new arith
metics are no shortcuts to writing reliable code. We will
present a few examples of codes written using these new
arithmetics, standard floating point, and IEEE standard
binary floating point [6] in order to support our argument.

Some of this extra effort in roundoff error analysis
with the new arithmetics can be sidestepped, however,
given the appropriate hardware support. In particular, we
propose a status word maintained by the hardware and
accessible to the user to keep track of the growth of inter
mediate results. It would approximately track the largest
magnitude of any exponent encountered since last being
reset by the user (its actual contents will be different for
the Clenshaw/Olver and Iri/Matsui arithmetics). Thus, it
acts very much like the "sticky flags " of the IEEE standard
[6] which keep track of whether an exception has occurred
since last being reset, only it contains a small integer
rather than a single bit. We will show how this flag can be
used to simplify the analyses in our examples .

The rest of this paper is organized as follows. Section
2 discusses the two new arithmetics in more detail. Section
3 contains examples showing that the effort required to
write reliable code is shifted around but conserved by the
new arithmetics. Section 4 discusses the proposed status
word and shows how it can make error analysis with the
new arithmetics easier. Section 5 contains conclusions.

2. Details of the New Arithmetics
First we will discuss the Iri/Matsui arithmetic [7]. The

"level 0" version of their arithmetic has three fields, the
fraction 1 (including sign), exponent e and pointer p. The
pointer p, which occupies a field with a fixed number of
bits, is the number of bits which represent e, the remaining
bits representing the fraction f. The value represented by
these fields is

x = 1'2' ,
where 1 has a leading hidden bit (in the one's position).
Thus, for very large or very small numbers, p grows until

enough exponent bits are allocated to represent the
exponent e exactly, the remaining bits being used fo r the
fraction. At least one bit (the sign bit) is reserved for I, so
for the largest exponents f can only be ± 1. Thus the larg
est and smallest nonzero numbers in level 0 are all powers
of 2.

The "level 1" version of their arithmetic would be
used for numbers too large or too small to represent using
level O. In this case the exponent is itself represented as a
level 0 number. This may be used recursively to define
levels 2, 3 and so on. In their paper Iri and Matsui dealt
mainly with level 0 and did not specify the exact format
for higher levels, so in this paper we shall do the same.
They proposed a 64-bit format with 6 bits allocated for p,
which is sufficient to designate from 0 to 57 of the remain
ing 58 bits as exponent bits. Values of P from 58 to 63 are
reserved for NAN s (not-a-number symbols), higher levels,
and so on. This results in a range from approximately
10-1016 to 101016. Note that the relative error at the

extremes of the range, i.e.

() Ix - nextafter(x) I
erel x 1& Ix I

where nextafter(x) is the nearest representable number
exceeding x, is 1. This means that the relative error in the
basic operations is 100% (when chopping) and 50% (when
rounding). The relative error is at least as large for higher

level representations. At the center of the ran,e, where
the relative precision is largest, erel(l.) = 2-5. ere/ex)
rises to 2-52" (IEEE double precision, see below) at
x=215=32768, to 2-28 (about half the maximum preci
sion) at x= 2228-1 �7 .2'1080807123. and to 1 (no relative

..) 22SL 1 � 101016 preciSlOn at x= - .
Clenshaw and Olver [1] represent a number x as fol

lows:

x = ±(exp(exp(... (exp(f) ... »)±1
where I is a fixed point fraction between 0 and 1. Also
stored is the sign bit , a bit for the exponent e = ± 1 at the
right above, and the number of "exp"s minus 1, an integer
n. Numbers at least 1 in magnitude are represented by
e = 1 and nonzero numbers at most 1 in magnitude are
represented by e = -1. f and n occupy fixed fields in the
word. As with the Iri/Matsui arithmetic, adjacent
representable numbers get relatively farther and farther
apart until, if n is large enough, adjacent numbers are so
far apart that even their exponents (the i in scientific nota
tion j-lOi) differ by over 100%. In a 64-bit format the
authors would allocate 3 bits to n, 1 to the sign, 1 to the
exponent e, and the remaining 59 to f. This results in a
range from at least

101010 10-1010 to (1)

which is almost inconceivably large. The representation
error of such numbers is also enormous. best expressed
recursively by saying that in scientific notation. the relati�e
error in the exponent of the expo n e nt of the exponent ... is

moderate. The relative error in the middle o� the ra��e
where it is smallest is erel(1.) = 2 -59. erel(X) rlses to 2 2
(IEEE double precision. see below) at x;:::: 1.73·1Q13, to
T30 (about half the maximum precision) at
x;::::4.9·lQS012916. and to 1 (no relative precision) at
x;:::: 101015

149

By way of contrast the range of the 64-bit double pre
cision IEEE binary format is about 2±1023 � 1Q±308 with
an almost constant relative precision for normalized
numbers of ere/ex) = 2-52. Thus both new arithmetics
have greater relative precision than IEEE double precision
at the center of their ranges and much less at the extremes.

As for eliminating over/underflow in these two arith
metics, care must be taken in stating the assumptions: The
Iri/Matsui arithmetic can clearly overflow or underflow but
it is very unlikely. The Clenshaw/Olver arithmetic, on the
other hand, is impervious to over/underflow by the basic
operations +, -, x. and / [2l. although it can still over
flow by repeated exponentiation. This is because for the
largest and smallest numbers x in the format (n =6 or 7,
most numbers for n =5), the nearest representable number
to 2*x or x2 is x. Of course, this means that 2*x -x and
x21x differ greatly from x for very many different x in this
arithmetic, which might make anyone wanting to write
reliable code in this arithmetic dubious about applying
even simple algebraic identities in attempting to prove any
thing.

3. Examples of ·Conservation of Effort"
In this section we present four examples to show how

the effort required to write reliable code is shifted by these
new arithmetics away from avoiding over/underflow to
bounding or limiting the roundoff error. If this shifted
effort is not undertaken, the resulting code will be unreli
able because of roundoff errors rather than
over/und erflow as with conventional floating point.

To prove my point it is not necessary that every code
exhibit this shift of effort. merely that many common
codes do. For even if certain problems turn out to be solv
able more easily using the new arithmetics, this must be
weighed against the effort it takes to rewrite many old,
reliable codes which stop working with the new arithmet
ics.

The examples are extended products, rational function
evaluation, computing binomial distributions, and Gaussian
elimination.

/I
Consider the extended product p = n PI. We con

i=l
sider computing it by the simplest possible program

P := 1
fori=ltondop :=P*Pi

Consider first how this algorithm behaves in the new arith
metics. If an intermediate p is very large or very small, it
will be computed to low relative accuracy:
Ptrue=Pcompured(1 + e) where e is large. In Iri/Matsui's arith
metic e can be as large as .5 in rounded arithmetic, and in
the Clenshaw/Olver arithmetic it can be as large as a tower
of severall0's as in (1). Later Pcomputed inherit this relative
error. Thus, the final P may be a reasonable looking but
utterly wrong number without a warning having been
given. ClenshawfOlver's arithmetic cannot possibly yield
over/underflow, whereas Iri/Matsui's can, although it is
much less likely than with conventional floating point.

In conventional floating point, it is well known [9]
that in the absence of over/underflow the final computed p
can differ from the true product by a factor of 1 + €. where

E is at most ab out n'macheps, where macheps is the
machine precision and n is assumed to be not too large . If
over/underflow occurs, the programmer will become
aware of this typically by getting an overflow interrupt or

else computing p =0 when no pj=O. In IEEE arithmetic,
one might get an overflow or underflow interrupt, or ;r
these are disabled, an underflow flag or a final result of
±oo or NAN. In fact, when the underflow trap is disabled
(the default case), the underflow flag will be turned on
only if an intermediate P underflows inaccurately, i. e. is
less than the underflow thresho ld (is denormalized) and
differs from the true result by more than the usual .5 units
in the last place . Thus the underflow flag will be on only if
underflow could actually have made the final result inaccu
rate [4,6]. (The standard also permits raising the under
flow flag if the underflowed result is merely inexact; this
raise;; the flag somewhat more often). In any event , it is
easy to tell when the possibility of a large relative error in
the final result exists.

Therefore, the simple code above is unreliable
because of roundoff with the Clenshaw/Olver arithmetic,
over/underflow with conventional and IEEE floating point ,
and both roundoff and over/underflow with Iri/Matsui. In
order to make it reliable , the following changes are neces
sary. By reliability, we mean prevention of any interrupts
due to over/underflow, and either a reliable warning that
the result is inaccurate or a guarantee of accuracy (assum
ing a reasonable bound on n).

For Iri/Matsui and Clenshaw/Olver the final error will
clearly be bounded by n times the error in computing the
largest intermediate p. Thus, if a reliable final error bound
is desired, an "if" statement must be inserted into the pro
gram loop to keep track of the largest intermediate P (an
alternative to this is discussed in section 4 below) .

To prevent over/underflow using either IriIMatsui or

floating point, a similar "if" statement must be inserted to
make sure the next product is neither too large nor too
smalL To continue computing in such a case there are

several possibilities:

(1) scale p and retain the scale factor (this is used in com
puting determinants in [5])

(2) use a different format with a bigger exponent (level 1
for IrilMatsui)
(3) sum the logarithms of the factors and exponentiate the
sum if it is not too large or too small.

To get an accurate answer with Clensha w/O lver arith
metic when intermediate results get too large or too small,
the same techniques can be used. Thus we see that no
effort has been saved in writing a reliable program to com
pute extended products.

It is interesting to see that for Iri/Matsui and
Clenshaw/Olver arithmetic the error analysis for produ cts
is analogous to the error analysis of sums in conventional
floating point. Products are computed most accurately
when all factors are greater than 1 (or all less than 1). just
as sums are accurate when all terms are positive (or all are
negative). Inaccuracy may arise from cancellation. either
from factors greater than 1 and less than 1, or positive and
negative terms. This is because Iri/Matsui and
Clenshaw/Olver are in some sense summing logarithms of
the factors. some of which may be positive and others

150

negative.

The second example is rational function evaluation.
Let r (x) = P (x) / q (x) be a rational function, with

n . n .
p(x)=2.: PIX' and q(x)=2.: qjX'. Let our algorithm for

1=0 1=0
evaluating r be simply

compute p (x) by Horner ' s rule
compute q (x) by Horner's rule
compute the quotient of p and q

In conventional floating point it is well known [9] that in
the absence of over/underflow, this algorithm is backwards
stable in the sense that it will compute r accurately for

n
slightly different P and q, i.e. p (x) = 2.: Pixi where

i=O
Pi=Pi(1+E/), IEils2n'macheps for moderate n. Analo
gous equations hold for q(x). The absolute error (again in
the absence of over/underflow) in the computed p (x) is

n .
thus bounded by macheps'2n' :L, Ipix'i. If, for example,

i=O
x>O and p;>O, th is means p (x) will be computed with a
relative error at most 2n-macheps. If qj>O as well, rex)
will be computed with a relative error of at most
(4n + l)macheps, again provided n is moderate and
over/underflow does not occur.

What must be done to make this code reliable in case
over/underflow occurs? As in the last example , overflow
will be indicated by an interrupt, an overflow flag, an 00

symbol, or a NAN appear ing in the answer. If this occurs
the intermediate value and remaining coefficients can be
scaled down and the scale factor retained. Since the scale
factor for p may well cancel with the s cale factor for q, the
scale factors can be put back in at the end. Alternately , if
x is very large, one could rewrite rex) as

rex)

n .
2.:Pn-iZ' ;=0

where Z =l/x. Underflow is harder to detect, since it usu
ally causes no problem and hence raises no flag.
Nonetheless, if all the Pi and qi are near the underflow
threshold, P (x) and q(x) may both be computed inaccu
rately, and their quotient r may be of moderate size and
completely wrong. In [4] it is shown that it is sufficient to
scale the coefficients to keep them a short distance above
the underflow threshold in conventional arithmetic in order
to reta in the res ults of the previous error analysis. In
IEEE arithmetic, gradual underflow means that we need
only keep the coefficients above the underflow threshold
itself.

To guard against absolutely all possibility of
over/underflow using these schemes, however, is quite
tedious and requires much care. The use of a wider con
ventional floating point format with m o re range and preci
sion makes problems more unlikely but does not eliminate
them completely. A practical "reliable code" might well
settle for eliminating most problems of over/underflow
rather than all.

Is it easier to write this program using Iri/Matsui or
Clenshaw/Olver arithmetic? As with the example of
extended products, relative precision will decay if the com-

puted values of p or q are very large or very small. If p
and q are inaccurate but of comparable magnitudes, r = p / q
may be inaccurate and of moderate size. Therefore one
must track the growth of intermediate terms in p and q to
be able to provide a guaranteed error bound on the output.
Alternately, to guarantee high accuracy in the output, one
must scale the intermediate results to keep them near the
center of the range where relative accuracy is high. This is
about as much programming effort as it would take to
make the conventional floating poin t algorithm reliable.
The IrilMatsui arithmetic must be guarded against
over/underflow as well.

.

The next example is taken from [2]. The problem is to
compute the probability d istribution function

[(n,k,p) = j�O <j) pj(l-p)n-j

with OSkSn and O<p<1. Since the function is a probabil
ity distribution, all the terms in the sum are nonnegative
and have a sum bounded by 1. Therefore the major worry
arises in computing the individual terms, which we call Yj
as in [2].

The YjS are given recursively by

_ p(n-j+l) . , Yo=(l-p)n Yj - (1-p)j Y;-l
. k

, l(n,k,p)= � Yj . j-=o
If p is close to 1 and n is large , Yo w��l be very

.
tiny, �nd

the Yj will increase rapidly. In conventlOnal flo�tmg pomt,
as long as Yo does not underflow, all later Yj WIll be com
puted with high relative accuracy. If Yo underflows to
zero, the Yj must be computed another wa� . (As bef�re,
the test (Yo .eq. 0) or an underflow flag m IEEE anth
metic will indicate whether underflow is a problem.) With
the new arithmetics, if Yo is so tiny that it is inaccurate,
this inaccuracy will be prop agated forward into the larger
y' which dominate the sum just as in the first example
a�ove. Therefore, the program Ip.ust check to make sure
Yo is not so small as to contaminate the larger Y j, or else

the program may compute moderate sized and incorrect
[(n,k,p) without any warning.

.

So what should be done if YO is too.. small? If

Yn=pn»yO and k is large one could compute the Yjsusing
a recurrence fr o m the other end. Or one could scale so Yo
lay in a moderate range. Or, in conventional floating

point , one could compute log Yj recursively instead and

exponentiate to get Yj.

In any event , it seems that it takes about as mu�h

work to write a reliable program to compute I (n,k,p) m

the new arithmetics as in conventional floating point .
The final examp le is Gaussian elimination with partial

pivoting. The usual error analysis [9J shows that whe� try;
ing to solve Ax =b one computes an approximate solutlOn x

which satisfies (A+M)x=b+Sb, where IIMII / IIAII
and II'iib II / II b II are small , on th: order ?f macheps
times the cube of the dimension n 3 tunes a �lVot gro:vth
factor g. g measures how much larger the lllterm�d�ate
value s in the computation were than IIA II, the 0I1�l��1

data. In conventional arithmetic, g can be as large at 2 ,
althou h it almost never attains this bound. These bound.s

on II:AII / IIAII and IISbl1 / Ilbll are �rallY m:;tl�
plied by the condition number IIA II·IIA I I to g

151

bound on the re lative error Ilx -x I I / Ilx II.
What can go wrong with Gaussian elimination in con

ventional floating point? If an intermediate result over
flows, one gets either an interrupt or 00 symbols or NANs.
An error analysis taking underflow into account is given in
[3,4]. It is shown there that as long the initial data is large
enough, underflow will not make the usual error bounds
[9] significantly larger . In conventional floating point,
IIA II, lib II and lib II IliA Ilcif x itself underflows)
must exceed the underflow threshold divided by macheps,
whereas with IEEE arithmetic and gradual underflow,
they need only exceed the underflow threshold itself (be
normalized). It is not hard to achieve these constrain ts by
scaling . It may be necessary to rescale in the middle ofthe
algorithm.

In the new arithmetics the same problem as before
arises, namely that if intermediate results are very large,
their inherent large relative error can propagate to the .out
put. Preventing this requires monitoring element growth
during the algorithm and scaling if necessary. This is as
much work as with conventional floating point.

4; Hardware Support for Error Analysis with the New
Arithmetics

. How likely are the problems discussed in the previous
section to occur? For lack of broad experience with the
new arithm�tics, one can only say that the problems with
roundoff which were raised seem quite rare, since one still
has half precision (28 to ·30 bits) out at 1O±80807123 for
IrilMatsui and at 1O±5012916 for Clenshaw/O lver. Such gar
gantuan (or minuscule) numbers are unlikely to be input
directly, but could result from some (probably erroneous)
prior computation. Over/underflow in conventional arith
metic is also unlikely, although frequent enough for certain
kinds of problem s when the range is only 1O±38 (as it is in
many single precision formats including IEEE) for
Clenshaw/Olver and IrilMatsui to have attempted to avoid
it. It should be)11uch. rarer with a wider exponent range as
in IEEE do

·
uble, although we know of no statistics to cor

roborate this. It is sufficiently rare that most codes will do
no preventive tests or scaling, settling for an i nterrup t
when it does occur. This is because for most codes the
development and lifetime costS of linnecessary preventive
tests and scaling far outweigh the costs of occasional·runs
terminating unexpectedly. Therefore any precautions the
arithmetic (or language or operating system) offer to
p revent these rare problems should be very

.
cheap , or th�y

will be avoided by all but the most demandmg or paranold
programmers.

In this spirit we propose a status word S main�ained

by the arithmetic unit which keeps track
,�

f the
"

hIghest
"level" the arithmetic has so far reached . Level means

the pointer p which measures the wi�th of the e�ponent

field in Iri/Matsui arithmetic and the mdex n whlch says
how high the tower of exponentials is in Clenshaw/Olver

arithmetic. After each operation the hardware would
rep lace S by the maximum of S and the level of the result
of the current operation. The user would be abl� to read S
and also reset it to 0 in or der to track the maXlmum level
of any sequence of operations. Thus, S has semantics
similar to the "sticky flags" in IEEE arithmetic which are

set to 1 whenever an exception occurs and are only resett
able by the user (there are separate sticky flags for under
flow, overflow, division by zero, invalid operation , and
inexact in IEEE arithmetic).

S would provide a measure of the worst relative error

in any operation since it was last reset. In lri/Matsui arith

metic this worst relative error is given by 2$ -57,
2S-"1' 1 2S-1

corresponding to a result between 2 -
and 2 . In

Clenshaw/Olver arithmetic it is given in the following table

(for the 64-bit format described above) :

minimum maximum

S max(Ix I, [x-II) relative error relative error

0 2.7 1.7'10-18 1.7'10-18

1 15. 1.7' 10-18 4.7 ' 10- 18

2 3.8'106 4.7,10-18 7.1'10-17
3 2.3'101656520 7.1'10-17 2.7'10-10
4 10101656520 2.7'10-10 101Q1�

5-7 - 10101656520 -

Clearly, S is a much coarser measure of relative error for
Clenshaw/Olver arithmetic than IrilMatsui arithmetic. Only

if S:=3 is any relative precision guaranteed, but since this

includes numbers as large as 2.3'101656520 (or as small as

the reciprocal of this), larger values of S are very unlikely

to arise . For S:=2, almost maximum precision is available,

and this includes numbers up to 3.8'106 (and their recipro

cals). By choosing a base other than e for Clenshaw/Olver

arithmetic, one might be able to extract more information

from S, perhaps even eliminating some of the very large

and apparently useless numbers at the top of their range.
It is easy to see how S would be used in the examples

above. For extended products in Clenshaw/Olver arith
metic, for example , one could write

S:= 0
p := 1
for i = 1 to n do P := P*PI
if (S S3) then

I"" enough accuracy, continue computing ""I
else

/"" scaling needed, retry"'"
end I!

Since underflow can often be shown to be less harm
ful than overflow, one could have two status words SI and
S2, Sl measuring the maximum level of numbers less than
1 in magnitude and S2 measuring the maximum level of
numbers greater than 1 in magnitude [8]. By only testing
S2 one might avoid false alarms caused by harmless under
flows.

5. Conclusions
We have demonstrated that if one wants to write truly

iron-clad code which delivers guaranteed high accuracy or
even just guaranteed error bounds despite roundoff, over
flow and underflow, then for many codes its takes about as
much work using the new arithmetics proposed by
Iri/Matsui and Clenshaw/Olver as with conventional float
ing point. It is very difficult to give likelihoods to the dif
ferent problems that can arise (overflow. underflow,
reduced relative precision due to extreme operands). other
than to say that they arc sufficiently unlikely as to almost
certainly be ignored by all but the most demanding Of

152

paranoid programmers. Some of the work of monitoring
growth of operands in the new arithmetics can be done
automatically by a hardware maintained status word whiCh
keeps track of the largest (or smallest) result computed
since last being reset. It plays a very similar role in the
proposed new arithmetics as the sticky flags for exceptions
do in IEEE arithmetic.

If a wider conventional floating point format with
more range were available (as in IEEE arithmetic), many
of the problems with over/underflow in this paper could
most easily be avoided by rerunning the program with all
or some variables redeclared to be of the wider format.
This cannot guarantee that over/underflow cann ot Occur
and may be infeasible for storage reasons. In that cas�
tedious programming with a profusion of scaling tests may
be hard to avoid no matter which arithmetic is used.

6. References
[1) C. W. Clenshaw and F. W. 1. Olver, Beyond Floating
Point, JACM, 31 (1984) pp. 319-328

[2] C. W. Clenshaw and F. W. J. Olver, A Closed Com
puter Arithmetic, these proceedings

[3) J. Demmei, Effects of Underflow on Solving Linear Sys
tems, Fifth Symposium on Computer Arithmetic, Ann
Arbor, MI, May 18-19,1981

{4) J. Demmel, Underflow and the Reliability of Numerical
Software, Siam J. Sci. Stat . Comp., Vol. 5, No. 4, Dec
1984

[5] J. Dongarra et aI., LlNPACK Users' Guide, SIAM, Phi
ladelphia, 1979

[6] IEEE Standard for Binary Floating Point Arithmetic,
ANSIIIEEE Std 754-1985, The Institute of Electrical and
Electronic Engineers, New York, 1985
[7] M. Iri and S. Matsui, An OverflowlUnderflow-Free
Floating Point Representation of Numbers, J. of Information
Processing, Vol. 4, No.3, pp. 123-133, Nov. 1981

[8) W. Kahan, private communication, 1986

(9) J. H. Wilkinson, Rounding Errors in Algebraic
Processes. Prentice-Hall, Englewood Cliffs N.J., 1963

