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Abstract. Recently Clenshaw/Olver and Iri/Matsui pro

posed new floating point arithmetics which seek to elim
inate overflows and underflows from most computations. 
Their common approach is to redistribute the available 
numbers to spread out the largest and smallest numbers 
much more thinly than in standard floating point, thus 

achieving a larger range at the cost of lower precision at 
the ends of the range. The goal of these arithmetics is to 
eliminate much of the effort needed to write code which is 
reliable despite over/underflow. In this paper we argue 
that for many codes this eliminated effort will reappear in 
the error analyses needed to ascertain or guarantee the 
accuracy of the computed solution . Thus reliability with 
respect to over/underflow has been traded for reliability 
with respect to roundoff. We also propose a hardware 
flag, analogous to the "sticky flags" of the IEEE binary 
floating point standard, to do some of this extra error 
analysis automatically. 

1. Introduction 
Two arithmetics have been independently proposed by 

Clenshaw and Olver [1] and Iri and Matsui [7] whose com
mon goal is the elimination of overflow and underflow 
from numerical computation. More precisely , their goal is 
to eliminate much of the effort required to write software 
which will work reliably despite overflow and underflow. 
They both accomplish this by significantly extending the 
range of numbers that can be represented within a given 
wordsize. Since for a fixed wordsize only a fixed number 
of different numbers can be represented, they must neces
sarily spread their numbers much more thinly at the 
extremes of the range than in conventional floating point. 
Thus, as long as one computes with numbers of moderate 
size, one has approximately the same relative precision as 
conventional floating point (or perhaps somewhat more), 
in the sense that the results of each basic operation (+, -, 

x, I) are about as accurate as with conventional floating 
point. A s the numbers become very large (or very small), 
the relative precision of each operation gradually decreases 
until it reaches a lower bound that depends on the arith
metic. (We shall give numerical values for the ranges and 
accuracies below.) 

In this paper we argue that as a result of this 
decreased relative accuracy at the extremes of the range, 
either more care must be taken in doing the error analysis 
of many algorithms than is necessary in conventional float-

CH2419-0/87/0000/0148$01.00 © 1987 IEEE 
148 

mg point, or else the algorithms must scale or otherwise be 
modified to avoid inaccurate results. This should come as 
no surprise, since the sizes and accuracies of intermediate 
results (e.g. pivot growth factors) appear frequently in 
error analyses. As a result, the effort required to write 
reliable codes which are relatively impervious to overflow, 
underflow, and roundoff remains the same overa1J; the 
new arithmetics just shift that effort away from 
over/underflow towards roundoff. In brief, the new arith
metics are no shortcuts to writing reliable code. We will 
present a few examples of codes written using these new 
arithmetics, standard floating point, and IEEE standard 
binary floating point [6] in order to support our argument. 

Some of this extra effort in roundoff error analysis 
with the new arithmetics can be sidestepped, however, 
given the appropriate hardware support. In particular, we 
propose a status word maintained by the hardware and 
accessible to the user to keep track of the growth of inter
mediate results. It would approximately track the largest 
magnitude of any exponent encountered since last being 
reset by the user (its actual contents will be different for 
the Clenshaw/Olver and Iri/Matsui arithmetics). Thus, it 
acts very much like the "sticky flags " of the IEEE standard 
[6] which keep track of whether an exception has occurred 
since last being reset, only it contains a small integer 
rather than a single bit. We will show how this flag can be 
used to simplify the analyses in our examples . 

The rest of this paper is organized as follows. Section 
2 discusses the two new arithmetics in more detail. Section 
3 contains examples showing that the effort required to 
write reliable code is shifted around but conserved by the 
new arithmetics. Section 4 discusses the proposed status 
word and shows how it can make error analysis with the 
new arithmetics easier. Section 5 contains conclusions. 

2. Details of the New Arithmetics 
First we will discuss the Iri/Matsui arithmetic [7]. The 

"level 0" version of their arithmetic has three fields, the 
fraction 1 (including sign), exponent e and pointer p. The 
pointer p, which occupies a field with a fixed number of 
bits, is the number of bits which represent e, the remaining 
bits representing the fraction f. The value represented by 
these fields is 

x = 1'2' , 
where 1 has a leading hidden bit (in the one's position). 
Thus, for very large or very small numbers, p grows until 



enough exponent bits are allocated to represent the 
exponent e exactly, the remaining bits being used fo r the 
fraction. At least one bit (the sign bit) is reserved for I, so 
for the largest exponents f can only be ± 1. Thus the larg
est and smallest nonzero numbers in level 0 are all powers 
of 2. 

The "level 1" version of their arithmetic would be 
used for numbers too large or too small to represent using 
level O. In this case the exponent is itself represented as a 
level 0 number. This may be used recursively to define 
levels 2, 3 and so on. In their paper Iri and Matsui dealt 
mainly with level 0 and did not specify the exact format 
for higher levels, so in this paper we shall do the same. 
They proposed a 64-bit format with 6 bits allocated for p, 
which is sufficient to designate from 0 to 57 of the remain
ing 58 bits as exponent bits. Values of P from 58 to 63 are 
reserved for NAN s (not-a-number symbols), higher levels, 
and so on. This results in a range from approximately 
10-1016 to 101016. Note that the relative error at the 

extremes of the range, i.e. 

() Ix - nextafter(x) I 
erel x 1& Ix I 

where nextafter(x) is the nearest representable number 
exceeding x, is 1. This means that the relative error in the 
basic operations is 100% (when chopping) and 50% (when 
rounding). The relative error is at least as large for higher 

level representations. At the center of the ran,e, where 
the relative precision is largest, erel(l.) = 2-5. ere/ex) 
rises to 2-52" (IEEE double precision, see below) at 
x=215=32768, to 2-28 (about half the maximum preci
sion) at x= 2228-1 �7 .2'1080807123. and to 1 (no relative 

.. ) 22SL 1 � 101016 preciSlOn at x= - . 
Clenshaw and Olver [1] represent a number x as fol

lows: 

x = ±(exp(exp( ... (exp(f) ... »)±1 
where I is a fixed point fraction between 0 and 1. Also 
stored is the sign bit , a bit for the exponent e = ± 1 at the 
right above, and the number of "exp"s minus 1, an integer 
n. Numbers at least 1 in magnitude are represented by 
e = 1 and nonzero numbers at most 1 in magnitude are 
represented by e = -1. f and n occupy fixed fields in the 
word. As with the Iri/Matsui arithmetic, adjacent 
representable numbers get relatively farther and farther 
apart until, if n is large enough, adjacent numbers are so 
far apart that even their exponents (the i in scientific nota
tion j-lOi) differ by over 100%. In a 64-bit format the 
authors would allocate 3 bits to n, 1 to the sign, 1 to the 
exponent e, and the remaining 59 to f. This results in a 
range from at least 

101010 10-1010 to (1) 

which is almost inconceivably large. The representation 
error of such numbers is also enormous. best expressed 
recursively by saying that in scientific notation. the relati�e 
error in the exponent of the expo n e nt of the exponent ... is 

moderate. The relative error in the middle o� the ra��e 
where it is smallest is erel(1.) = 2 -59. erel(X) rlses to 2 2 
(IEEE double precision. see below) at x;:::: 1.73·1Q13, to 
T30 (about half the maximum precision) at 
x;::::4.9·lQS012916. and to 1 (no relative precision ) at 
x;:::: 101015 
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By way of contrast the range of the 64-bit double pre
cision IEEE binary format is about 2±1023 � 1Q±308 with 
an almost constant relative precision for normalized 
numbers of ere/ex) = 2-52. Thus both new arithmetics 
have greater relative precision than IEEE double precision 
at the center of their ranges and much less at the extremes. 

As for eliminating over/underflow in these two arith
metics, care must be taken in stating the assumptions: The 
Iri/Matsui arithmetic can clearly overflow or underflow but 
it is very unlikely. The Clenshaw/Olver arithmetic, on the 
other hand, is impervious to over/underflow by the basic 
operations +, -, x. and / [2l. although it can still over
flow by repeated exponentiation. This is because for the 
largest and smallest numbers x in the format (n =6 or 7, 
most numbers for n =5), the nearest representable number 
to 2*x or x2 is x. Of course, this means that 2*x -x and 
x21x differ greatly from x for very many different x in this 
arithmetic, which might make anyone wanting to write 
reliable code in this arithmetic dubious about applying 
even simple algebraic identities in attempting to prove any
thing. 

3. Examples of ·Conservation of Effort" 
In this section we present four examples to show how 

the effort required to write reliable code is shifted by these 
new arithmetics away from avoiding over/underflow to 
bounding or limiting the roundoff error. If this shifted 
effort is not undertaken, the resulting code will be unreli
able because of roundoff errors rather than 
over/und erflow as with conventional floating point. 

To prove my point it is not necessary that every code 
exhibit this shift of effort. merely that many common 
codes do. For even if certain problems turn out to be solv
able more easily using the new arithmetics, this must be 
weighed against the effort it takes to rewrite many old, 
reliable codes which stop working with the new arithmet
ics. 

The examples are extended products, rational function 
evaluation, computing binomial distributions, and Gaussian 
elimination. 

/I 
Consider the extended product p = n PI. We con

i=l 
sider computing it by the simplest possible program 

P := 1 
fori=ltondop :=P*Pi 

Consider first how this algorithm behaves in the new arith
metics. If an intermediate p is very large or very small, it 
will be computed to low relative accuracy: 
Ptrue=Pcompured(1 + e) where e is large. In Iri/Matsui's arith
metic e can be as large as .5 in rounded arithmetic, and in 
the Clenshaw/Olver arithmetic it can be as large as a tower 
of severall0's as in (1). Later Pcomputed inherit this relative 
error. Thus, the final P may be a reasonable looking but 
utterly wrong number without a warning having been 
given. ClenshawfOlver's arithmetic cannot possibly yield 
over/underflow, whereas Iri/Matsui's can, although it is 
much less likely than with conventional floating point. 

In conventional floating point, it is well known [9] 
that in the absence of over/underflow the final computed p 
can differ from the true product by a factor of 1 + €. where 



E is at most ab out n'macheps, where macheps is the 
machine precision and n is assumed to be not too large . If 
over/underflow occurs, the programmer will become 
aware of this typically by getting an overflow interrupt or 

else computing p =0 when no pj=O. In IEEE arithmetic, 
one might get an overflow or underflow interrupt, or ;r 
these are disabled, an underflow flag or a final result of 
±oo or NAN. In fact, when the underflow trap is disabled 
(the default case), the underflow flag will be turned on 
only if an intermediate P underflows inaccurately, i. e. is 
less than the underflow thresho ld (is denormalized) and 
differs from the true result by more than the usual .5 units 
in the last place . Thus the underflow flag will be on only if 
underflow could actually have made the final result inaccu
rate [4,6]. (The standard also permits raising the under
flow flag if the underflowed result is merely inexact; this 
raise;; the flag somewhat more often). In any event , it is 
easy to tell when the possibility of a large relative error in 
the final result exists. 

Therefore, the simple code above is unreliable 
because of roundoff with the Clenshaw/Olver arithmetic, 
over/underflow with conventional and IEEE floating point , 
and both roundoff and over/underflow with Iri/Matsui. In 
order to make it reliable , the following changes are neces
sary. By reliability, we mean prevention of any interrupts 
due to over/underflow, and either a reliable warning that 
the result is inaccurate or a guarantee of accuracy (assum
ing a reasonable bound on n). 

For Iri/Matsui and Clenshaw/Olver the final error will 
clearly be bounded by n times the error in computing the 
largest intermediate p. Thus, if a reliable final error bound 
is desired, an "if" statement must be inserted into the pro
gram loop to keep track of the largest intermediate P (an 
alternative to this is discussed in section 4 below) . 

To prevent over/underflow using either IriIMatsui or 

floating point, a similar "if" statement must be inserted to 
make sure the next product is neither too large nor too 
smalL To continue computing in such a case there are 

several possibilities: 

(1) scale p and retain the scale factor (this is used in com
puting determinants in [5]) 

(2) use a different format with a bigger exponent ( level 1 
for IrilMatsui) 
(3) sum the logarithms of the factors and exponentiate the 
sum if it is not too large or too small. 

To get an accurate answer with Clensha w/O lver arith
metic when intermediate results get too large or too small, 
the same techniques can be used. Thus we see that no 
effort has been saved in writing a reliable program to com
pute extended products. 

It is interesting to see that for Iri/Matsui and 
Clenshaw/Olver arithmetic the error analysis for produ cts 
is analogous to the error analysis of sums in conventional 
floating point. Products are computed most accurately 
when all factors are greater than 1 (or all less than 1). just 
as sums are accurate when all terms are positive (or all are 
negative). Inaccuracy may arise from cancellation. either 
from factors greater than 1 and less than 1, or positive and 
negative terms. This is because Iri/Matsui and 
Clenshaw/Olver are in some sense summing logarithms of 
the factors. some of which may be positive and others 
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negative. 

The second example is rational function evaluation. 
Let r (x) = P (x) / q (x) be a rational function, with 

n .  n .  
p(x)=2.: PIX' and q(x)=2.: qjX'. Let our algorithm for 

1=0 1=0 
evaluating r be simply 

compute p (x) by Horner ' s rule 
compute q (x) by Horner's rule 
compute the quotient of p and q 

In conventional floating point it is well known [9] that in 
the absence of over/underflow, this algorithm is backwards 
stable in the sense that it will compute r accurately for 

n 
slightly different P and q, i.e. p (x) = 2.: Pixi where 

i=O 
Pi=Pi(1+E/), IEils2n'macheps for moderate n. Analo
gous equations hold for q(x). The absolute error (again in 
the absence of over/underflow) in the computed p (x) is 

n . 
thus bounded by macheps'2n' :L, Ipix'i. If, for example, 

i=O 
x>O and p;>O, th is means p (x) will be computed with a 
relative error at most 2n-macheps. If qj>O as well, rex) 
will be computed with a relative error of at most 
(4n + l)macheps, again provided n is moderate and 
over/underflow does not occur. 

What must be done to make this code reliable in case 
over/underflow occurs? As in the last example , overflow 
will be indicated by an interrupt, an overflow flag, an 00 

symbol, or a NAN appear ing in the answer. If this occurs 
the intermediate value and remaining coefficients can be 
scaled down and the scale factor retained. Since the scale 
factor for p may well cancel with the s cale factor for q, the 
scale factors can be put back in at the end. Alternately , if 
x is very large, one could rewrite rex) as 

rex) 

n . 
2.:Pn-iZ' ;=0 

where Z =l/x. Underflow is harder to detect, since it usu
ally causes no problem and hence raises no flag. 
Nonetheless, if all the Pi and qi are near the underflow 
threshold, P (x) and q(x) may both be computed inaccu
rately, and their quotient r may be of moderate size and 
completely wrong. In [4] it is shown that it is sufficient to 
scale the coefficients to keep them a short distance above 
the underflow threshold in conventional arithmetic in order 
to reta in the res ults of the previous error analysis. In 
IEEE arithmetic, gradual underflow means that we need 
only keep the coefficients above the underflow threshold 
itself. 

To guard against absolutely all possibility of 
over/underflow using these schemes, however, is quite 
tedious and requires much care. The use of a wider con
ventional floating point format with m o re range and preci
sion makes problems more unlikely but does not eliminate 
them completely. A practical "reliable code" might well 
settle for eliminating most problems of over/underflow 
rather than all. 

Is it easier to write this program using Iri/Matsui or 
Clenshaw/Olver arithmetic? As with the example of 
extended products, relative precision will decay if the com-



puted values of p or q are very large or very small. If p 
and q are inaccurate but of comparable magnitudes, r = p / q 
may be inaccurate and of moderate size. Therefore one 
must track the growth of intermediate terms in p and q to 
be able to provide a guaranteed error bound on the output. 
Alternately, to guarantee high accuracy in the output, one 
must scale the intermediate results to keep them near the 
center of the range where relative accuracy is high. This is 
about as much programming effort as it would take to 
make the conventional floating poin t algorithm reliable. 
The IrilMatsui arithmetic must be guarded against 
over/underflow as well. 

. 

The next example is taken from [2]. The problem is to 
compute the probability d istribution function 

[(n,k,p) = j�O <j) pj(l-p)n-j 

with OSkSn and O<p<1. Since the function is a probabil
ity distribution, all the terms in the sum are nonnegative 
and have a sum bounded by 1. Therefore the major worry 
arises in computing the individual terms, which we call Yj 
as in [2]. 

The YjS are given recursively by 

_ p(n-j+l) . , Yo=(l-p)n Yj - (1-p)j Y;-l 
. k 

, l(n,k,p)= � Yj . j-=o 
If p is close to 1 and n is large , Yo w��l be very 

.
tiny, �nd 

the Yj will increase rapidly. In conventlOnal flo�tmg pomt, 
as long as Yo does not underflow, all later Yj WIll be com
puted with high relative accuracy. If Yo underflows to 
zero, the Yj must be computed another wa� . (As bef�re, 
the test (Yo .eq. 0) or an underflow flag m IEEE anth
metic will indicate whether underflow is a problem.) With 
the new arithmetics, if Yo is so tiny that it is inaccurate, 
this inaccuracy will be prop agated forward into the larger 
y' which dominate the sum just as in the first example 
a�ove. Therefore, the program Ip.ust check to make sure 
Yo is not so small as to contaminate the larger Y j, or else 

the program may compute moderate sized and incorrect 
[(n,k,p) without any warning. 

. 

So what should be done if YO is too.. small? If 

Yn=pn»yO and k is large one could compute the Yjsusing 
a recurrence fr o m the other end. Or one could scale so Yo 
lay in a moderate range. Or, in conventional floating 

point , one could compute log Yj recursively instead and 

exponentiate to get Yj. 

In any event , it seems that it takes about as mu�h 

work to write a reliable program to compute I (n,k,p) m 

the new arithmetics as in conventional floating point . 
The final examp le is Gaussian elimination with partial 

pivoting. The usual error analysis [9J shows that whe� try; 
ing to solve Ax =b one computes an approximate solutlOn x 

which satisfies (A+M)x=b+Sb, where IIMII / IIAII 
and II'iib II / II b II are small , on th: order ?f macheps 
times the cube of the dimension n 3 tunes a �lVot gro:vth 
factor g. g measures how much larger the lllterm�d�ate 
value s in the computation were than IIA II, the 0I1�l��1 

data. In conventional arithmetic, g can be as large at 2 , 
althou h it almost never attains this bound. These bound.s 

on II:AII / IIAII and IISbl1 / Ilbll are �rallY m:;tl� 
plied by the condition number IIA II·IIA I I to g 
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bound on the re lative error Ilx -x I I / Ilx II. 
What can go wrong with Gaussian elimination in con

ventional floating point? If an intermediate result over
flows, one gets either an interrupt or 00 symbols or NANs. 
An error analysis taking underflow into account is given in 
[3,4]. It is shown there that as long the initial data is large 
enough, underflow will not make the usual error bounds 
[9] significantly larger . In conventional floating point, 
IIA II, lib II and lib II IliA Ilcif x itself underflows) 
must exceed the underflow threshold divided by macheps, 
whereas with IEEE arithmetic and gradual underflow, 
they need only exceed the underflow threshold itself (be 
normalized). It is not hard to achieve these constrain ts by 
scaling . It may be necessary to rescale in the middle ofthe 
algorithm. 

In the new arithmetics the same problem as before 
arises, namely that if intermediate results are very large, 
their inherent large relative error can propagate to the .out
put. Preventing this requires monitoring element growth 
during the algorithm and scaling if necessary. This is as 
much work as with conventional floating point. 

4; Hardware Support for Error Analysis with the New 
Arithmetics 

. How likely are the problems discussed in the previous 
section to occur? For lack of broad experience with the 
new arithm�tics, one can only say that the problems with 
roundoff which were raised seem quite rare, since one still 
has half precision (28 to ·30 bits) out at 1O±80807123 for 
IrilMatsui and at 1O±5012916 for Clenshaw/O lver. Such gar
gantuan (or minuscule) numbers are unlikely to be input 
directly, but could result from some (probably erroneous) 
prior computation. Over/underflow in conventional arith
metic is also unlikely, although frequent enough for certain 
kinds of problem s when the range is only 1O±38 (as it is in 
many single precision formats including IEEE) for 
Clenshaw/Olver and IrilMatsui to have attempted to avoid 
it. It should be )11uch. rarer with a wider exponent range as 
in IEEE do

·
uble, although we know of no statistics to cor

roborate this. It is sufficiently rare that most codes will do 
no preventive tests or scaling, settling for an i nterrup t 
when it does occur. This is because for most codes the 
development and lifetime costS of linnecessary preventive 
tests and scaling far outweigh the costs of occasional·runs 
terminating unexpectedly. Therefore any precautions the 
arithmetic (or language or operating system) offer to 
p revent these rare problems should be very

. 
cheap , or th�y 

will be avoided by all but the most demandmg or paranold 
programmers. 

In this spirit we propose a status word S main�ained 

by the arithmetic unit which keeps track 
,�

f the
" 

hIghest 
"level" the arithmetic has so far reached . Level means 

the pointer p which measures the wi�th of the e�ponent 

field in Iri/Matsui arithmetic and the mdex n whlch says 
how high the tower of exponentials is in Clenshaw/Olver 

arithmetic. After each operation the hardware would 
rep lace S by the maximum of S and the level of the result 
of the current operation. The user would be abl� to read S 
and also reset it to 0 in or der to track the maXlmum level 
of any sequence of operations. Thus, S has semantics 
similar to the "sticky flags" in IEEE arithmetic which are 



set to 1 whenever an exception occurs and are only resett
able by the user (there are separate sticky flags for under
flow, overflow, division by zero, invalid operation , and 
inexact in IEEE arithmetic). 

S would provide a measure of the worst relative error 

in any operation since it was last reset. In lri/Matsui arith 

metic this worst relative error is given by 2$ -57, 
2S-"1' 1 2S-1 

corresponding to a result between 2 -
and 2 . In 

Clenshaw/Olver arithmetic it is given in the following table 

(for the 64-bit format described above) : 

minimum maximum 

S max( Ix I, [x-II) relative error relative error 

0 2.7 1.7'10-18 1.7'10-18 

1 15. 1.7' 10-18 4.7 ' 10- 18 

2 3.8'106 4.7,10-18 7.1'10-17 
3 2.3'101656520 7.1'10-17 2.7'10-10 
4 10101656520 2.7'10-10 101Q1� 

5-7 - 10101656520 -

Clearly, S is a much coarser measure of relative error for 
Clenshaw/Olver arithmetic than IrilMatsui arithmetic. Only 

if S:=3 is any relative precision guaranteed, but since this 

includes numbers as large as 2.3'101656520 (or as small as 

the reciprocal of this), larger values of S are very unlikely 

to arise . For S:=2, almost maximum precision is available, 

and this includes numbers up to 3.8'106 (and their recipro

cals). By choosing a base other than e for Clenshaw/Olver 

arithmetic, one might be able to extract more information 

from S, perhaps even eliminating some of the very large 

and apparently useless numbers at the top of their range. 
It is easy to see how S would be used in the examples 

above. For extended products in Clenshaw/Olver arith
metic, for example , one could write 

S:= 0 
p := 1 
for i = 1 to n do P := P*PI 
if (S S3) then 

I"" enough accuracy, continue computing ""I 
else 

/"" scaling needed, retry"'" 
end I! 

Since underflow can often be shown to be less harm
ful than overflow, one could have two status words SI and 
S2, Sl measuring the maximum level of numbers less than 
1 in magnitude and S2 measuring the maximum level of 
numbers greater than 1 in magnitude [8]. By only testing 
S2 one might avoid false alarms caused by harmless under
flows. 

5. Conclusions 
We have demonstrated that if one wants to write truly 

iron-clad code which delivers guaranteed high accuracy or 
even just guaranteed error bounds despite roundoff, over
flow and underflow, then for many codes its takes about as 
much work using the new arithmetics proposed by 
Iri/Matsui and Clenshaw/Olver as with conventional float
ing point. It is very difficult to give likelihoods to the dif
ferent problems that can arise (overflow. underflow, 
reduced relative precision due to extreme operands). other 
than to say that they arc sufficiently unlikely as to almost 
certainly be ignored by all but the most demanding Of 
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paranoid programmers. Some of the work of monitoring 
growth of operands in the new arithmetics can be done 
automatically by a hardware maintained status word whiCh 
keeps track of the largest (or smallest) result computed 
since last being reset. It plays a very similar role in the 
proposed new arithmetics as the sticky flags for exceptions 
do in IEEE arithmetic. 

If a wider conventional floating point format with 
more range were available (as in IEEE arithmetic), many 
of the problems with over/underflow in this paper could 
most easily be avoided by rerunning the program with all 
or some variables redeclared to be of the wider format. 
This cannot guarantee that over/underflow cann ot Occur 
and may be infeasible for storage reasons. In that cas� 
tedious programming with a profusion of scaling tests may 
be hard to avoid no matter which arithmetic is used. 
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