Math 128a - Program 3 - Due May 16, 11am, under door of 737 Soda Hall

In this programming assignment we will explore the accuracy with which three versions of Gaussian elimination can solve systems of linear equations:

1. Gaussian elimination with no pivoting (GENP),

2. Gaussian elimination with partial pivoting (GEPP) (the “standard” version, as used in Matlab)

3. Gaussian elimination with complete pivoting (GECP).

In fact there will be little or no programming. I will give you all the code, ask you to run it, and comment on the output. (You may find it useful to read the code and look at internal results it computes.)

As we saw in class, GENP can fail on simple matrices. GECP is more expensive than GEPP, and usually no more accurate (which is why GEPP is the “standard”), but as we will see there are some hard examples where GECP does much better than GEPP.

The test code is available in the usual place at www.cs.berkeley.edu/~demmel/ma128a_Spr02/Homework/homework.html. There are six routines there:

1. matgen.m - generates test matrices
2. genpsolve.m - solves A*x=b using GENP
3. geppsolve.m - solves A*x=b using GEPP
4. gecpsolve.m - solves A*x=b using GECP
5. gecp.m - solves A*x=b using GECP
6. tstGE.m - runs tests on GENP, GEPP and GECP, and prints results.

The test code tstGE.m works as follows.

1. It generates 25 test matrices A, 5 different kinds (from easy (to solve accurately) to hard), each of 5 dimensions (5, 10, 25, 50, and 100). It also generates a random x and computes b = A*x, so we know the solution of A*x=b.

2. It solves A*x=b using GENP, GEPP and GECP (you need to supply the code for GECP). The results are called x_NP, x_PP and x_CP, respectively.

3. For each algorithm, it computes the “pivot growth” (PG_NP, PG_PP and PG_CP), which we define as the largest entry in L times the largest entry in U divided by the largest entry in A. This measures whether after Gaussian elimination LU is close to A (where we mean A after the rows and columns of A are possibly permuted by any pivoting.)

4. It computes the error Err_NP = || x - x_NP || / ||x||, where ||·|| is the 2-norm. We expect Err_NP to be no smaller than about 10^{-16}, since that is machine epsilon, and all roundoff errors are this size. For very difficult matrices, Err_NP can be equal to 1 or larger, meaning that x_NP is completely inaccurate. Err_PP and Err_CP are defined analogously.
5. It computes an error bound \(E_{\text{bnd}} \). We will (hopefully) discuss the theory behind this error bound in class, but let’s just say here that it should bound the actual error \(E_{\text{err}} \) provided that Gaussian elimination does not experience “pivot growth”, i.e. \(PG \) is not \(\gg 1 \), which is what pivoting in GEPP and GECP attempts to avoid.

6. It computes an error ratio \(R_{\text{NP}} = E_{\text{err}} / E_{\text{bnd}} \); \(R_{\text{PP}} \) and \(R_{\text{CP}} \) are defined analogously. If \(E_{\text{bnd}} \) really is an error bound, then \(R_{\text{NP}} \) should be at most about 1 (it may be 10 times or so greater due to accidents of roundoff). When it is much larger than 1, this means that there has been pivot growth. We also hope that \(R_{\text{NP}} \) is not much smaller than 1, since otherwise the true error is much smaller than the error bound, and the error bound is too pessimistic, perhaps due to accidents of roundoff.

7. Finally, it computes \(R_{\text{PG,NP}} = E_{\text{err}} / E_{\text{bnd}} / PG_{\text{NP}} \); \(R_{\text{PG,PP}} \) and \(R_{\text{PG,CP}} \) are defined analogously. This error ratio takes pivot growth into account, and so should always be less one.

Here is your assignment in more detail. Run tstGE.m. Print out the results, and answer the following questions:

1. Which examples (numbered 1 through 25) had error bounds \(E_{\text{bnd}} \) bigger than .001, which means \(E_{\text{bnd}} \) predicts 3 or fewer correct digits of accuracy in the computed solutions? These matrices are called “ill-conditioned”, and it is inherently difficult to solve with them accurately.

2. Were there any examples where \(E_{\text{bnd}} \) was much smaller than \(E_{\text{err}} \), i.e. where GENP was much less accurate than predicted by \(E_{\text{bnd}} \)? Were any of these “easy” examples, in the sense that \(E_{\text{bnd}} \) was quite small, and either GEPP or GECP got them right? On which examples was there a lot of pivot growth for GENP? Is there a correspondence between these examples? How did \(E_{\text{err}} \) compare to \(E_{\text{bnd}} \cdot PG_{\text{NP}} \) on these examples? Is GENP a generally reliable algorithm? Is \(E_{\text{bnd}} \) a generally reliable error bound for GENP (i.e. never much smaller than the true error, and rarely much larger)? Is \(E_{\text{bnd}} \cdot PG_{\text{NP}} \) a generally reliable error bound, in the same sense?

3. Were there any examples where \(E_{\text{bnd}} \) was much smaller than \(E_{\text{err}} \), i.e. where GEPP was much less accurate than predicted by \(E_{\text{bnd}} \)? Were any of these “easy” examples, in the sense that \(E_{\text{bnd}} \) was quite small, and GECP got them right? On which examples was there a lot of pivot growth for GEPP? Is there a correspondence between these examples? How did \(E_{\text{err}} \) compare to \(E_{\text{bnd}} \cdot PG_{\text{PP}} \) on these examples? Is GEPP a generally reliable algorithm? (Note: case=4 is essentially the only known example where GEPP has large pivot growth). Is \(E_{\text{bnd}} \) a generally reliable error bound for GEPP (i.e. never much smaller than the true error, and rarely much larger)? Is \(E_{\text{bnd}} \cdot PG_{\text{NP}} \) a generally reliable error bound, in the same sense?

4. Were there any examples where \(E_{\text{bnd}} \) was much smaller than \(E_{\text{err}} \), i.e. where GECP was much less accurate than predicted by \(E_{\text{bnd}} \)? On which examples was there a lot of pivot growth for GECP? Is GECP a generally reliable algorithm? Is \(E_{\text{bnd}} \) a generally reliable error bound for GECP (i.e. never much smaller than the true error, and rarely much larger)? Is \(E_{\text{bnd}} \cdot PG_{\text{CP}} \) a generally reliable error bound, in the same sense?