Math 128a - Homework 9 - Due May 9

1) Let A be m-by-n, B be n-by-k and C be m-by-k, and x be k-by-1. Define matrix vector multiplication in the usual way: $y = B \cdot x$ is n-by-1 with $y_i = \sum_{j=1}^{k} B_{ij} \cdot x_j$. Now suppose that $A \cdot (B \cdot x) = C \cdot x$ for all k-by-1 vectors x. Show that C must be given by

$$C_{i,j} = \sum_{m=1}^{n} A_{i,m} \cdot B_{m,j}$$

This explains why matrix-matrix multiplication is defined the way it is.

2) Let $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ be m-by-n, where A_{ij} is m_i-by-n_j (we clearly assume that $m = m_1 + m_2$ and $n = n_1 + n_2$. A is sometimes called a “block matrix”. Similarly, let $B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$ be n-by-k, where B_{ij} is n_i-by-k_j (we clearly assume that $k = k_1 + k_2$). Prove the following “block matrix multiplication formula”

$$A \cdot B = \begin{bmatrix} A_{11} \cdot B_{11} + A_{12} \cdot B_{21} & A_{11} \cdot B_{12} + A_{12} \cdot B_{22} \\ A_{21} \cdot B_{11} + A_{22} \cdot B_{21} & A_{21} \cdot B_{12} + A_{22} \cdot B_{22} \end{bmatrix}$$

This basically says that if the entries of A and B are themselves matrices with appropriate dimensions, the usual matrix multiplication formula works by substituting the blocks into the formula.

3) Assuming that A is square and nonsingular, show that

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & 0 \\ CA^{-1} & I \end{bmatrix} \cdot \begin{bmatrix} A & B \\ 0 & D - CA^{-1}B \end{bmatrix}$$

where all the blocks have dimensions as in the last problem. $D - CA^{-1}B$ is called the Schur complement of A, and shows up as an intermediate result in Gaussian elimination. Hint: use the last result of the last question.

4) Prove the Sherman-Morrison formula: If A is nonsingular, u and v are column vectors such that $A + u \cdot v^T$ is nonsingular, then $(A + u \cdot v^T)^{-1} = A^{-1} - A^{-1} \cdot u \cdot v^T \cdot A^{-1}/(1 + v^T \cdot A^{-1} \cdot u)$ is an explicit expression for the inverse of $A + u \cdot v^T$. Hint: Multiply by $A + u \cdot v^T$ and simplify.

5) Suppose that we have done Gaussian elimination on A, so that solving $Ax = b$ for a new b costs just $O(n^2)$, since we can reuse A’s L and U factors. Show that the following algorithm solves $(A+u\cdot v^T)x = b$ in $O(n^2)$ time. This is much cheaper than doing Gaussian elimination on $A + u \cdot v^T$, which would cost $2/3n^3$. This is useful because it is common to have to solve several different systems of linear equations where the matrices differ just by adding $u \cdot v^T$ for some columns vectors u and v. Hint: Use the Sherman-Morrison formula.

1) Solve $Az = b$ for z
2) Solve $Ay = u$ for y
3) Compute $\alpha = v^T y$ (a dot product)
4) Compute $\beta = v^T z$ (a dot product)
5) Compute $x = z - \frac{\beta}{1 + \alpha} y$ (adding multiple of one vector to another)

1
6) Suppose that we need to solve $Ax_i = b_i$ for $i = 1, \ldots, m$, i.e. for m vectors b_i. There are two obvious algorithms for this:

Algorithm 1
Use Gaussian elimination to compute the L and U factors of A
For $i = 1$ to m
 Use the L and U factors to solve $Ax_i = b_i$
end

Algorithm 2
Use Gaussian elimination to compute the L and U factors of A
For $i = 1$ to n ... compute the inverse of A
 Use the L and U factors to solve $Ay_i = e_i$, where e_i is the i-th column of I
end
... Note that $A^{-1} = [y_1, y_2, \ldots, y_n]$
for $i = 1$ to m
 $x_i = A^{-1} \cdot b_i$... matrix-vector multiplication
end

Explain why the n-by-n matrix $[y_1, \ldots, y_n]$ gotten by putting the vectors y_i together in matrix is A^{-1}. Count the operations for each algorithm (your answers should look like $c_1n^3 + c_2mn^2 + O(n^2)$, where you need to figure out the constants c_1 and c_2). Count all operations (multiplication, addition, subtraction and division) equally. Conclude that Algorithm 1 is faster than Algorithm 2. This means that you should never compute an explicit inverse of A to solve linear systems of equations, no matter how many of them you have; instead you should always use A’s L and U factors.