Math 128a - Homework 5 - Due March 7

1) Complete the proof of the Weierstrass Approximation Theorem done in class, by proving the following two Lemmas:

1. Lemma 1: In class we showed that for any continuous function \(f(x) \) on \([0,1]\) with \(f(0) = f(1) = 0 \), and any \(\epsilon > 0 \) it is possible to find a polynomial \(p(x) \) such that \(|p(x) - f(x)| < \epsilon \) for all \(0 \leq x \leq 1 \). Use this to show that for any continuous function \(g(x) \) on any finite interval \([a, b]\), with any finite values of \(g(a) \) and \(g(b) \), and any \(\eta > 0 \), it is possible to find a polynomial \(q(x) \) such that \(|q(x) - g(x)| < \eta \) for all \(a \leq x \leq b \). Hint: consider \(f(x) = g(x \cdot (b-a)+a) - g(a) - x(g(b) - g(a)) \).

2. Lemma 2: Let \(c_n = \left[\int_{-1}^{1} (1-x^2)^n \, dx \right]^{-1} \). Show that \(c_n < \sqrt{n} \) when \(n \geq 1 \). Hint: Show that you can bound \(\int_{-1}^{1} (1-x^2)^n \, dx \) below by \(\int_{-1}^{1/\sqrt{n}} (1-x^2)^n \, dx \). Then show that you can bound the integrand below by \(1 - nx^2 \) on the interval of integration.

2) We will use the proof of the Weierstrass Approximation Theorem to show how to bound the degree of the polynomial needed to approximate \(f(x) = \sin(\pi x) \) on \([0,1]\) to within any \(\eta > 0 \). In other words, your answer will be a function \(g(\eta) \) (implemented as a program) with the following property: If \(n \geq g(\eta) \), then it is possible to find a polynomial \(p(x) \) of degree at most \(n \) such that \(|p(x) - \sin(\pi x)| \leq \eta \) for \(0 \leq x \leq 1 \). Are your computed values of \(n \) much larger than needed to find a polynomial of error \(\eta \), or about right? Is the polynomial constructed in the proof of the Weierstrass Approximation Theorem a good one to use in practice? Hint: First, find an explicit value for \(M \geq |\sin(\pi x)| \) in Lemma 3 in the proof of the Weierstrass Approximation Theorem in the class notes. Second, find an explicit value for \(\delta \) in Lemma 3, which will depend on \(\epsilon = \eta/2 \) and have the property that \(|x - y| < \delta \) implies \(|\sin(\pi x) - \sin(\pi y)| < \eta/2 \). How steep can \(\sin(\pi x) \) be? Finally, write a simple program that computes an \(n \) that guarantees that \((1-\delta)2M\sqrt{n}(1-\delta^2)^n < \eta/4 \). The output of your program is \(g(\eta) \). Tabulate \(g(\eta) \) for \(\eta = 10^k, k = -5, -10, -15, -20, -25 \). Your program should return as small a value of \(g(\eta) \) as you can guarantee is correct.

3) Problem 6.1.33

4) Problem 6.1.34.