1) In class we saw an example showing that in decimal floating point arithmetic, the computed value of xmid=(xlower+xupper)/2 is not necessarily between xlower and xupper, which would be a problem for the logic in bisection (in 3 decimal digit arithmetic, try xlower = .997 and xupper = .999). We will show that this is impossible in IEEE arithmetic, which is binary. In other words, we will show that in IEEE arithmetic xmid = \(fl(fl(xlower + xupper)/2) \) is in the interval [xlower,xupper], assuming overflow does not occur when adding xlower and xupper. (Here \(fl(a \text{ op } b) \) means the floating point result of the operation \(a \text{ op } b \).)

Part 1. Using the fact that IEEE arithmetic is correctly rounded, show that it is monotonic, that is if \(a, b, c, d \) and \(x \) are IEEE floating point numbers then

\[
\begin{align*}
a &\leq b \text{ and } c \leq d \text{ implies } fl(a + c) \leq fl(b + d) \\
a &\leq b \text{ and } 0 < x \text{ implies } fl(a/x) \leq fl(b/x)
\end{align*}
\]

(Similar facts hold for subtraction and multiplication, but we will not need these here.)

Part 2. Show that \(fl(2 \times x) = 2 \times x \) exactly, assuming overflow does not occur.

Part 3. Show that \(2 \times xlower \leq fl(xlower + xupper) \leq 2 \times xupper \).

Part 4. Conclude that \(xlower \leq fl(fl(xlower + xupper)/2) \leq xupper \).

Part 5. Where does this argument fail for correctly rounded decimal arithmetic?

Part 6. What happens if xlower and xupper are adjacent IEEE floating point numbers?
2) Suppose \(x \) is the exact answer to a problem, and \(\hat{x} \) is our approximate answer. In class we defined the absolute error in \(\hat{x} \) as \(|x - \hat{x}| \) and the relative error in \(\hat{x} \) as \(|x - \hat{x}|/|x| \). In this problem we will explore some simple properties of these error measures.

Write the base \(\beta \) expansion of \(x > 0 \) as \(x = .x_1x_2 \cdots x_n \cdot \beta^{e_x} \), and the base \(\beta \) expansion of \(y > 0 \) as \(y = .y_1y_2 \cdots y_n \cdot \beta^{e_y} \). We will say that \(x \) and \(y \) agree to their leading \(d \) base \(\beta \) digits if
\[
|x - y| < \frac{1}{2} \beta^{\max(e_x, e_y) - d}.
\]
For example, .1230 and .1226 agree to 3 decimal digits, as do 1.00 and .996, or .1233 and .1237.

Part 1. Suppose you print out \(\hat{x} \) as a base \(\beta \) number. Show that if the relative error \(|x - \hat{x}|/|x| < 1 \), then the leading \(\lfloor \log_\beta |x| \rfloor - 1 \) nonzero base \(\beta \) digits of \(\hat{x} \) are correct, i.e. \(x \) and \(\hat{x} \) agree to that many digits. (\(\lfloor x \rfloor \) is the floor of \(x \), the largest integer less than or equal to \(x \).)

Part 2. Suppose you have solved your problem and gotten \(\hat{x} \), and also a bound \(e_{abs} \geq |x - \hat{x}| \) on the absolute error (perhaps using rounding error analysis as described in class). You would like a bound \(e_{rel} \geq |x - \hat{x}|/|x| \) on the relative error. One obvious candidate is \(e_{rel} = e_{abs}/|x| \), but of course you can’t compute this because you don’t know \(x \) (otherwise we wouldn’t need an error bound!). So instead you try \(e_{rel} = e_{abs}/|\hat{x}| \). Show that it is ok to use \(e_{abs}/|\hat{x}| \) instead of \(e_{abs}/|x| \) by showing that
\[
\frac{|x - \hat{x}|}{|x|} \leq \frac{|x - \hat{x}|}{|\hat{x}|} \leq \frac{|x - \hat{x}|}{|x|} \frac{1}{1 - \frac{|x - \hat{x}|}{|x|}}
\]
Conclude that if \(e_{rel} \leq .1 \), then the actual relative error satisfies \(.8e_{rel} \leq |x - \hat{x}|/|x| \leq 1.2e_{rel} \).
3) Let \(1 + r = \prod_{i=1}^{n}(1 + \delta_i)\), where \(|\delta_i| \leq \epsilon < 1\).

Part 1. Show that if \(n\epsilon < 1\), then \(|r| \leq n\epsilon/(1 - n\epsilon)\).

Part 2. Show that if \(n\epsilon \leq .1\), then \(r \leq 1.2n\epsilon\).

Part 3. In IEEE double precision, how big can \(n\) be and satisfy \(n\epsilon \leq .1\)?

Part 4. If you compute \(p = \prod_{i=1}^{n}x_i\) in floating point arithmetic, and no over/underflow occurs, and \(n\epsilon \leq .1\), about how many leading decimal digits of the computed value of \(p\) are correct when using IEEE double precision arithmetic with \(n = 10\)? \(n = 100\)? \(n = 1000\)? \(n = 10000\)?
4) Suppose \(x > 0 \). Here are two Matlab algorithms for computing \(e^{-x} \):

Algorithm 1: Compute \(e^{-x} \) using a Taylor expansion

\[
\begin{align*}
& s = 1; \quad t = 1; \quad i = 1; \\
& \text{while (abs(t) > eps*abs(s))} \\
& \quad \text{... stop iterating when adding t to s does not change s} \\
& \quad t = -t*x/i; \\
& \quad s = s + t; \\
& \quad i = i + 1; \\
& \text{end} \\
& \text{result1} = s;
\end{align*}
\]

Algorithm 2: Compute \(e^{-x} \) as \(1/e^x \), using a Taylor expansion for \(e^x \)

\[
\begin{align*}
& s = 1; \quad t = 1; \quad i = 1; \\
& \text{while (abs(t) > eps*abs(s))} \\
& \quad \text{... stop iterating when adding t to s does not change s} \\
& \quad t = t*x/i; \\
& \quad s = s + t; \\
& \quad i = i + 1; \\
& \text{end} \\
& \text{result2} = 1/s;
\end{align*}
\]

Part 1. Run these two algorithms for \(x = 1:20 \), tabulating the relative errors and number of iterations to converge for each.

Part 2. Prove that the relative error of result2 is, as you observe, bounded by \((3i - 2)\epsilon \), i.e. very accurate. You may assume the error from terminating the Taylor expansion is smaller than round off error, and you may ignore terms proportional to \(\epsilon^2 \). Confirm that \((3i - 2)\epsilon \) bounds the relative errors in your table above.

Part 3. Prove that the relative error of result1 is bounded by \(3(i - 1)\epsilon e^{2x} \), i.e. it grows quickly with \(x \), so that Algorithm 1 is much less accurate than Algorithm 2. You may make the same assumptions as before. Confirm that \(3(i - 1)\epsilon e^{2x} \) bounds the relative errors in your table above.

Part 4. The computer implementation for \(e^x \) takes the same time for large and small arguments; i.e. it does not use a simple Taylor expansion, which would require more terms for larger arguments. Sketch an algorithm for \(e^x \) that does not take longer for large \(x \). Use the fact that \(e^x = 2^y \) where \(y = x \cdot \log_2 e \), write \(y = y_{\text{int}} + y_{\text{frac}} \) as a sum of an integer and a fraction less than 1, and use the fact that \(2^y = 2^{y_{\text{int}}} \cdot 2^{y_{\text{frac}}} \) is to be rounded to a floating point number. How many term of a Taylor expansion of \(2^{y_{\text{frac}}} \) are needed so that the remaining terms contribute less than \(\epsilon \) to the relative error?