Problem (1). Use induction on the dimension n of A to prove that $\det(A - xI)$ is a polynomial in x of degree n, with highest degree term $(-1)^n x^n$.

We want to use induction applied to the determinant expansion of $A - xI$ along its first row. But we have to choose the induction hypothesis carefully, because dropping the first row and column j of $A - xI$ to get $(A - xI)_{1j}$ does not yield a matrix with $-x$s subtracted from its diagonal. Instead, the induction hypothesis is that if each entry of an n by n matrix $B + xC$ is a polynomial in x of degree 0 or 1, then the determinant of $B + xC$ is a polynomial in x of degree at most n.

If $n = 1$, then $\det(B - xC) = B_{11} - xC_{11}$, which is indeed a polynomial in x of degree 0 (if $C_{11} = 0$) or 1 (otherwise). Assuming that the statement holds for n, we’ll prove it for $n + 1$. We compute $\det(B - xC)$ by expanding along the first row:

$$\det(B - xC) = \sum_{j=1}^{n+1} (-1)^{1+j} (B_{1j} - xC_{1j}) \det((B - xC)_{1j}) = \sum_{j=1}^{n+1} (-1)^{1+j} (B_{1j} - xC_{1j}) \det(\tilde{B}_{1j} - x\tilde{C}_{1j})$$

By induction the degree of each $\det(\tilde{B}_{1j} - x\tilde{C}_{1j})$ is at most n, so the degree of $(B_{1j} - xC_{1j})\det(\tilde{B}_{1j} - x\tilde{C}_{1j})$ is at most $n + 1$, so the degree of $\det(B - xC)$ is at most $n + 1$, as desired.

To see that the highest order term in x is $(-1)^n x$, we again use induction, but applied to $B - xC = A - xI$:

$$\det(A - xI) = \sum_{j=1}^{n+1} (-1)^{1+j} (A_{1j} - xI_{1j}) \det(\tilde{A}_{1j} - x\tilde{I}_{1j})$$

$$= (A_{11} - x) \det(\tilde{A}_{11} - x\tilde{I}_{11}) + \sum_{j=2}^{n+1} (-1)^{1+j} A_{1j} \det(\tilde{B}_{1j} - x\tilde{C}_{1j})$$

The sum from $j = 2$ to $n + 1$ has degree at most n by the previous result. By induction $\det(\tilde{A}_{11} - x\tilde{I}_{11}) = (-1)^n x^n +$ lower order terms, so

$$(A_{11} - x)\det(\tilde{A}_{11} - x\tilde{I}_{11}) = (A_{11} - x)((-1)^n x^n +$ lower order terms) $= (-1^{n+1} x^{n+1} +$ lower order terms

as desired.

§5.1: Eigenvalues and Eigenvectors

Problem 1.

(a) False. For instance, the only eigenvalue of I_n is 1.

(b) True. Any scalar multiple of an eigenvector is also an eigenvector.

(c) True. Let $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in \mathbb{M}_{2\times2}(\mathbb{R})$. Then $\det(A - tI) = t^2 + 1$, which has no roots over the real numbers. So A has no eigenvalues, and hence no eigenvectors.
(d) False. Zero is an eigenvalue of A whenever $\det(A) = 0$, by Theorem 5.2.
(e) False. See part (b) above.
(f) False. In Example 4 on p. 248, 3 and -1 are eigenvalues, but 2 is not.
(g) False. The identity linear operator always has 1 as an eigenvalue.
(h) True. This follows from Theorem 5.1.
(i) True. Suppose that $A = Q^{-1}BQ$ are square matrices and $Av = \lambda v$ for some scalar λ and vector v. Then $B(Qv) = QAv = \lambda(Qv)$. So if λ is an eigenvalue of A, then it’s an eigenvalue of B.
(j) False. For instance, let A be as in Example 6 on p. 250, and let $B = Q^{-1}AQ$, with Q as on p. 251. Then $(1, 2)$ is an eigenvector of A, as computed in the example. But, $(1, 2)$ is not an eigenvector of B, since the only eigenvalues of B are 3 and -1, and neither is an eigenvalue corresponding to $(1, 2)$.
(k) False. In Example 6 on p. 250, $(1, 2)$ and $(1, -2)$ are eigenvectors, but $(1, 2) + (1, -2) = (2, 0)$ is not.

Problem 3(b). We have $\det(A - tI) = -t^3 + 6t^2 - 11t + 6$. We notice that this polynomial is zero when $t = 1$, so, using polynomial division, we conclude that $\det(A - tI) = (t - 1)(-t^2 + 5t - 6) = -(t - 1)(t - 2)(t - 3)$. Hence, the eigenvalues are 1, 2, and 3. Let $t = 1$, then $A - 1I = \begin{pmatrix} -1 & -2 & -3 \\ -1 & 0 & -1 \\ 2 & 2 & 4 \end{pmatrix}$. Now $\begin{pmatrix} -1 & -2 & -3 \\ -1 & 0 & -1 \\ 2 & 2 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$ leads to a system of three equations in three unknowns. We obtain $\{a \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} : a \in \mathbb{R}\}$ as the set of solutions to this system, which is the set of eigenvectors corresponding to the eigenvalue 1. Performing similar computations for $t = 2$ and $t = 3$, we conclude that the corresponding sets of eigenvectors are $\{a \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} : a \in \mathbb{R}\}$ and $\{a \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} : a \in \mathbb{R}\}$, respectively. The set $\{\begin{pmatrix} -1 \\ 1 \\ 0 \\ \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}\}$ is clearly linearly independent, and hence it is a basis for \mathbb{R}^3. Setting $Q = \begin{pmatrix} -1 & 1 & 1 \\ -1 & -1 & 0 \\ 1 & 0 & -1 \end{pmatrix}$ and $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}$, we have $Q^{-1}AQ = D$.

Problem 14. First, note that $(A - tI_n)^t = A^t - (tI_n)^t = A^t - tI_n$, by Exercise 1.3.3. Hence, $\det(A^t - tI_n) = \det((A - tI_n)^t) = \det(A - tI_n)$, by Theorem 4.8. So A and A^t have the same characteristic polynomial, by the definition of characteristic polynomial.

Problem 15.

(a) We proceed by induction on m. Since $Tx = \lambda x$, the statement is true for $m = 1$. In general, $T^{m}x = T(T^{m-1}x) = T(\lambda^{m-1}x) = \lambda^{m-1}T:x = \lambda^{m-1}\lambda x = \lambda^m x$.

(b) Exactly the same calculation as above, with a matrix A in place of T, gives the desired result.

Problem 17.
(a) Suppose that λ is an eigenvalue of T. Then $T(A) = \lambda A$ for some nonzero matrix A. Hence, $A^t = \lambda A$, that is $A_{ij} = \lambda A_{ji}$ for all i, j with $1 \leq i, j \leq n$. Since A is nonzero, there are i and j such that $A_{ij} \neq 0$. Then $A_{ij} = \lambda A_{ji} = \lambda(\lambda A_{ij}) = \lambda^2 A_{ij}$, and hence, $\lambda = \pm 1$.

(b) The eigenvectors corresponding to $\lambda = 1$ are the symmetric matrices, while the eigenvectors corresponding to $\lambda = -1$ are the skew-symmetric matrices (i.e., matrices satisfying $A^t = -A$).

(c) By Theorem 5.1 and (b), we just need to find a basis β consisting of symmetric and antisymmetric matrices. Here is one possibility:

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$

(d) Using the same idea as in (c), we can take β to be the basis consisting of the n matrices E_{ii}, the $(n^2 - n)/2$ matrices $E_{ij} + E_{ji}$ ($1 \leq i < j \leq n$), and the $(n^2 - n)/2$ matrices $E_{ij} - E_{ji}$ ($1 \leq i < j \leq n$).

Problem 18.

(a) Over the field \mathbb{C}, every nonconstant polynomial has a root. In particular, $\det(AB^{-1} - tI)$ has a root, say $t = -c$. So $\det(AB^{-1} + cI) = 0$, and hence $AB^{-1} + cI$ is not invertible. It follows that $A + cB$ is not invertible, since $\det(A + cB) = \det((AB^{-1} + cI)B) = \det(AB^{-1} + cI)\det(B) = 0$.

(b) Here is one possibility: $A = I_2$ and $B = E_{12}$. The inverse of $I_2 + cE_{12}$ is $I_2 - cE_{12}$

Problem 20. By definition of characteristic polynomial, $f(t) = \det(A - tI_n)$. So $a_0 = f(0) = \det(A)$. Finally, recall that a matrix is invertible if and only if its determinant is not zero. (See the Corollary on p. 223.)

§5.2: Diagonalizability

Problem 1.

(a) False. For example, consider the identity linear operator.

(b) False, cf. Example 4 on p. 265.

(c) True. See the definition of E_λ on p. 264.

(d) True. This follows from Theorem 5.5, since if $0 \neq v \in E_{\lambda_1} \cap E_{\lambda_2}$, then, setting $v_1 = v = v_2$, $\{v_1, v_2\}$ is a linearly dependent set.

(e) True, see p. 272.

(f) False. By the test on p. 269, the characteristic polynomial of T must split in order for T to be diagonalizable.

(g) True. By the test on p. 269, the characteristic polynomial of a diagonalizable linear operator splits and hence has at least one root. Therefore, the linear operator has at least one eigenvalue, by Theorem 5.2.

Problem 2(e). $\det(A - tI) = -x^3 + x^2 - x + 1 = -(x - 1)(x^2 + 1)$, which does not split over \mathbb{R}. So, by the test on p. 269, A is not diagonalizable.

Problem 12.
(a) Let \(x \) be an eigenvector of \(T \) corresponding to \(\lambda (\neq 0) \). Then \(x = T^{-1}Tx = T^{-1}(\lambda x) = \lambda T^{-1}x \), so \(T^{-1}x = \lambda^{-1}x \), i.e., \(x \) is an eigenvector of \(T^{-1} \) corresponding to \(\lambda^{-1} \). Reversing this calculation, we also conclude that if \(x \) is an eigenvector of \(T^{-1} \) corresponding to \(\lambda^{-1} \), then \(x \) be an eigenvector of \(T \) corresponding to \(\lambda \).

(b) Let \(\lambda_1, \lambda_2, \ldots, \lambda_k \) be the distinct eigenvalues of \(T \), and denote the multiplicity of \(\lambda_i \) by \(m(\lambda_i) \). If \(T \) is diagonalizable, then, by Theorem 5.9, \(m(\lambda_i) = \dim(E_{\lambda_i}) \) for all \(i \). Now, for each \(i \), \(\dim(E_{\lambda_i}) = \dim(E_{\lambda_i^{-1}}) \), by (a). So, by Theorem 5.7, \(m(\lambda_i^{-1}) \geq \dim(E_{\lambda_i^{-1}}) = m(\lambda_i) \). But, the characteristic polynomials of \(T \) and \(T^{-1} \) have the same degree, which equals \(\sum_{i=1}^{k} m(\lambda_i) = \sum_{i=1}^{k} m(\lambda_i^{-1}) \). So, in fact, \(m(\lambda_i) = m(\lambda_i^{-1}) \) for each \(i \), and hence \(m(\lambda_i^{-1}) = \dim(E_{\lambda_i^{-1}}) \) for each \(i \). Applying Theorem 5.9 again, we conclude that \(T^{-1} \) is diagonalizable.

Problem 18(b). Let \(C \) and \(D \) be any two diagonal \(n \times n \) matrices. Then for all \(1 \leq i, j \leq n \), \((CD)_{ij} = \sum_{k=1}^{n} C_{ik}D_{kj} = C_{ii}D_{jj} \) and \((DC)_{ij} = \sum_{k=1}^{n} D_{ik}C_{kj} = D_{ii}C_{jj} \), since \(C_{ik} = 0 \) and \(D_{ik} = 0 \) whenever \(i \neq k \). Hence, if \(i \neq j \), then \((CD)_{ij} = 0 = (DC)_{ij} \), and if \(i = j \), then \((CD)_{ij} = C_{ii}D_{ii} = D_{ii}C_{ii} = (DC)_{ij} \). We conclude that \(CD = DC \).

Now, suppose that \(A \) and \(B \) are simultaneously diagonalizable. Then there is an invertible matrix \(Q \) such that \(Q^{-1}AQ \) and \(Q^{-1}BQ \) are both diagonal. Hence, \(Q^{-1}ABQ = Q^{-1}AQQ^{-1}BQ = Q^{-1}BQQ^{-1}AQ = Q^{-1}BAQ \). Multiplying by \(Q \) on the left and \(Q^{-1} \) on the right, we see that \(AB = BA \).