Towards accurate polynomial evaluation

or

When can Numerical Linear Algebra be done accurately?

James Demmel

UC Berkeley Math and EECS Depts.

Joint work with Ioana Dumitriu and Olga Holtz (UC Berkeley)

Math ArXiv math.NA/0508350

Outline

- 1. Motivation and goal(s).
- 2. Model of arithmetic and setting.
- 3. What is *allowable* in classical arithmetic.
- 4. Results for classical arithmetic, real and complex.
- 5. What is *allowable* in black-box arithmetic.
- 6. Results for black-box arithmetic, real and complex.
- 7. Other models of arithmetic.
- 8. Open problems / Future work.

Outline

- 1. Motivation and goal(s).
- 2. Model of arithmetic and setting.
- 3. What is *allowable* in classical arithmetic.
- 4. Results for classical arithmetic, real and complex.
- 5. What is *allowable* in black-box arithmetic.
- 6. Results for black-box arithmetic, real and complex.
- 7. Other models of arithmetic.
- 8. Open problems / Future work.

Goal

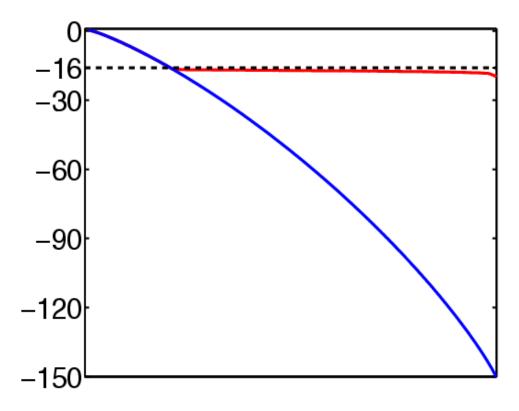
Given a family of structured matrices M(x), find **accurate** and **efficient** algorithms to solve linear algebra problems (eg $y = \det(M(x))$ or $y = \operatorname{eig}(M(x))$), or prove that none exist

Accurate means relative error $\eta < 1$, i.e.

- $\diamond ||y_{\text{computed}} y| \leq \eta ||y|,$
- ♦ $\eta = 10^{-2}$ yields two digits of accuracy,
- $\diamond \quad y_{\text{computed}} = 0 \iff y = 0.$

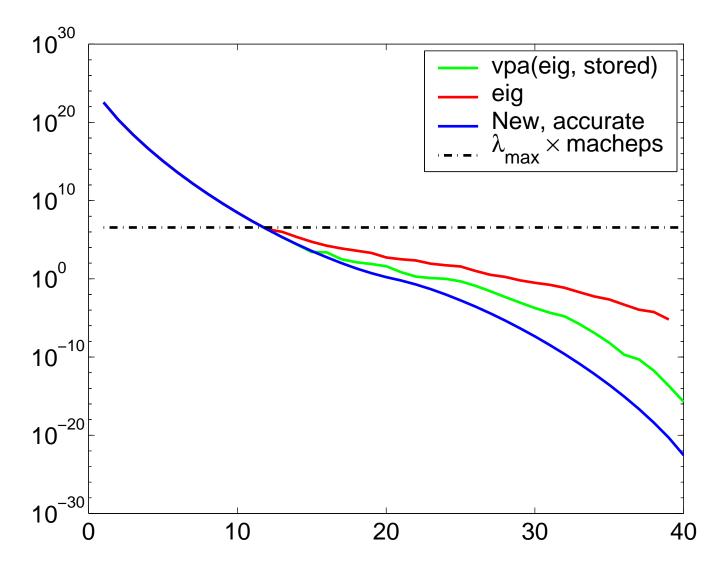
Efficient means in polynomial time

 Log_{10} (Eigenvalues) of 50x50 Hilbert Matrix

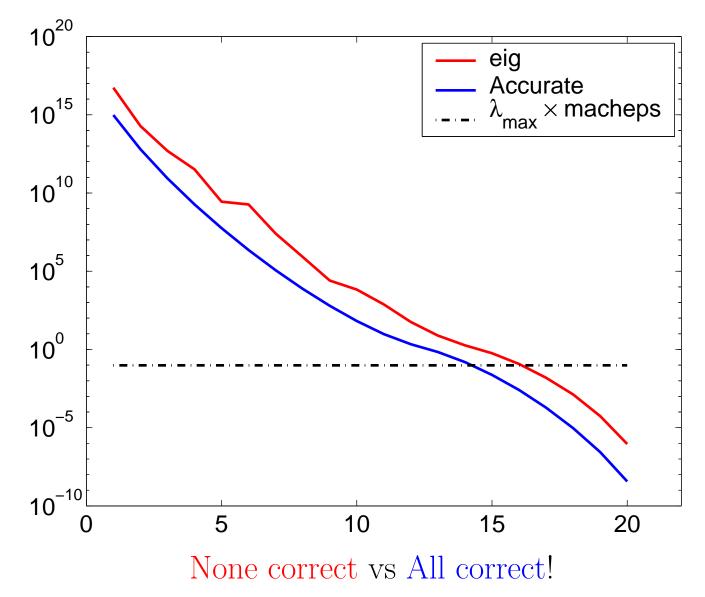


red line shows eigenvalues from conventional algorithm in 16 digits blue line shows eigenvalues from new algorithm in 16 digits Cost of guaranteed accuracy: $O(n^3(\log \kappa)^p)$ vs $O(n^3(\log \log \kappa)^p)$ where $\kappa =$ condition number

Eigenvalues of 40x40 Pascal Matrix



Eigenvalues of 20x20 Schur complement of 40x40 Vandermonde Matrix



General Structured Matrices

				Any			Sym
Type of ma	$\det A$	A^{-1}	minor	LDU	SVD	EVD	
Acyclic							
(bidiagonal	l and other)						
Total Sign	Compound						
(TSC)							
Diagonally	Diagonally Scaled Totally						
Unimodula	Unimodular (DSTU)						
Weakly diagonally							
dominant I	M-matrix						
	Cauchy						
Displace-							
ment	Vandermonde						
Rank One							
	Polynomial						
	Vandermonde						
Toeplitz							

General Structured Matrices

				Any			Sym
Type of ma	$\det A$		minor	LDU	SVD	EVD	
Acyclic		n	n^2	n	$\leq n^2$	n^3	N/A
(bidiagona)							
Total Sign	Compound	n	n^3	n	n^4	n^4	n^4
(TSC)							
Diagonally	Scaled Totally	n^3	$n^{5}?$	n^3	n^3	n^3	n^3
Unimodular (DSTU)							
Weakly diagonally		n^3	n^3	?	n^3	n^3	n^3
dominant I	M-matrix						
	Cauchy	n^2	n^2	n^2	$\leq n^3$	n^3	n^3
Displace-							
ment	Vandermonde	n^2	?	?	?	n^3	n^3
Rank One							
	Polynomial	n^2	?	?	?	?	?
	Vandermonde						
Toeplitz		?	?	?	?	?	?

Totally Nonnegative Matrices

Type of			Any					Ax=b		Eig.
Matrix	$\det A$	$ A^{-1} $	minor	NP	PP	CP	NP		SVD	Val.
Cauchy										
Vandermonde										
Generalized										
Vandermonde										
Any TN in										
Neville form										

Totally Nonnegative Matrices

Trupo of				C_{α}	100		ND	Arr h		Tim
Type of			Any	Gal	JSS.	ennn.		Ax=b		Eig.
Matrix	$\det A$	$ A^{-1} $	minor			CP	NP		SVD	Val.
Cauchy	n^2	n^2	n^2	n^2	n^3		n^2		n^3	n^3
Vandermonde	n^2	n^3	n^3	n^2	n^2	- 0	n^2		n^3	n^3
Generalized	n^2	n^3	poly	n^2	n^2	poly	n^2	n^2	n^3	n^3
Vandermonde										
Any TN in	n	n^3	n^3	n^3	n^3	n^3	0	n^2	n^3	n^3
Neville form										
-	poly - poly(n) where) - portition									

poly = poly (n, λ) , where λ = partition

(mostly due to Plamen Koev)

Totally Nonnegative Matrices

		Any	Gau	lSS.	elim.	NE	Ax=b		Eig.
$\det A$	A^{-1}	minor	NP	PP	CP	NP		SVD	Val.
n^2	n^2	n^2	n^2	n^3	n^3	n^2	n^2	n^3	n^3
n^2	n^3	n^3	n^2	n^2			n^2	n^3	n^3
n^2	n^3	poly	n^2	n^2	poly	n^2	n^2	n^3	n^3
n	n^3	n^3	n^3	n^3	n^3	0	n^2	n^3	n^3
	$ \frac{n^2}{n^2} n^2 $	$egin{array}{cccc} n^2 & n^2 \ n^2 & n^3 \ n^2 & n^3 \ \end{array} \ egin{array}{cccc} n^2 & n^3 \ n^2 & n^3 \ \end{array} \end{array}$	$\begin{array}{c c} \det A & A^{-1} & \min \\ n^2 & n^2 & n^2 \\ n^2 & n^3 & n^3 \\ n^2 & n^3 & poly \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					

poly = poly (n, λ) , where λ = partition

(mostly due to P. Koev)

All eigenproblems arising from elliptic PDE with tetrahedral discretizations? (S. Vavasis, P. Koev, JD)

Reduce Matrix problem to Polynomial problem

Theorem: Being able to compute det(M) accurately is *necessary* to be able to compute LDU, eig, SVD, ... accurately

Theorem: Being able to compute all minors of M accurately is *sufficient* for computing M^{-1} , LDU, SVD, ... accurately

(Sufficient conditions for computing eig(M) accurately known only in symmetric or totally positive cases)

Goal - restated

Given a polynomial (or a family of polynomials) p, either produce an **accurate** algorithm to compute y = p(x), or prove that none exists.

Accurate means relative error $\eta < 1$, i.e.

$$\diamond ||y_{\text{computed}} - y| \le \eta ||y|,$$

♦ $\eta = 10^{-2}$ yields two digits of accuracy,

$$\diamond \quad y_{\text{computed}} = 0 \iff y = 0.$$

Outline

- 1. Motivation and goal(s).
- 2. Model of arithmetic and setting.
- 3. What is *allowable* in classical arithmetic.
- 4. Results for classical arithmetic, real and complex.
- 5. What is *allowable* in black-box arithmetic.
- 6. Results for black-box arithmetic, real and complex.
- 7. Other models of arithmetic.
- 8. Open problems / Future work.

• $fl(a \otimes b) = (a \otimes b)(1+\delta)$, with arbitrary roundoff error $|\delta| < \epsilon \ll 1$ - a, b and δ all real, or all complex

• Operations?

fl(*a*⊗*b*) = (*a*⊗*b*)(1+δ), with arbitrary roundoff error |δ| < ε ≪ 1
Operations?

 \diamond in classical arithmetic, +, -, \times ; also exact negation;

fl(*a*⊗*b*) = (*a*⊗*b*)(1+δ), with arbitrary roundoff error |δ| < ε ≪ 1
Operations?

- \diamond in classical arithmetic, +, -, ×; also exact negation;
- $-\operatorname{How}$ can we lose accuracy in this model?
 - * OK to multiply or add positive numbers
 - * OK to subtract exact numbers (initial data)
 - * Accuracy may only be lost when subtracting approximate results:
 - .12345**xxx**
 - .12345**yyy**

.00000zzz

- Ex: Compute $p(x) = x_1 + x_2 + x_3$
 - $-\operatorname{Try} \ alg(x,\delta) = ((x_1 + x_2)(1 + \delta_1) + x_3)(1 + \delta_2)$ $rel_{-}err(x,\delta) = \frac{alg(x,\delta) p(x)}{p(x)}$ $= \frac{x_1 + x_2}{x_1 + x_2 + x_3}(\delta_1 + \delta_2 + \delta_1 \cdot \delta_2) + \frac{x_3}{x_1 + x_2 + x_3}(\delta_2)$
 - $-orall\epsilon > 0$, $rel_err(x, \delta)$ unbounded on an open subset of (x, δ) with $|\delta_i| < \epsilon$
- Generally: $rel_{-}err(x,\delta) = \sum_{r} \frac{p_r(x)}{p(x)} \cdot q_r(\delta)$
- Each $\frac{p_r(x)}{p(x)}$ must be bounded near p(x) = 0• Ex: p(x) positive definite and homogeneous, degree d- If $p_r(x)$ also homogeneous, degree d, then $\frac{p_r(x)}{p(x)}$ bounded

- \diamond in classical arithmetic, +, -, ×; also exact negation;
- ◊ in black-box arithmetic, above plus selected polynomial expressions
 - * Ex: x yz (IBM's fused-multiply-add)
 - * Ex: wx yz (using double-double)
 - * Ex: small determinants (Shewchuk's Triangle)
 - * Ex: dot products (using Priest or Demmel/Hida algs)

- \diamond in classical arithmetic, +, -, \times ; also exact negation;
- ◊ in black-box arithmetic, above plus selected polynomial expressions
- Constants?

Availability of constants?

Example.

- Classical case:
 - without $\sqrt{2}$, we cannot compute

$$x^2 - 2 = (x - \sqrt{2})(x + \sqrt{2})$$

accurately.

- having no explicit constants no loss of generality for homogeneous, integer-coefficient polynomials.
- Black-box case:
 - any constants we choose can be accommodated via black-boxes

- \diamond in classical arithmetic, +, -, ×; also exact negation;
- ◊ in black-box arithmetic, above plus selected polynomial expressions
- Constants? none in classical case, anything in black-box case.

- \diamond in classical arithmetic, +, -, ×; also exact negation;
- ◊ in black-box arithmetic, above plus selected polynomial expressions
- Constants? none in classical case, anything in black-box case.
- Algorithms?
 - \diamond exact answer in finite # of steps in absence of roundoff error

- \diamond in classical arithmetic, +, -, \times ; also exact negation;
- ◊ in black-box arithmetic, above plus selected polynomial expressions
- Constants? none in classical case, anything in black-box case.
- Algorithms?
 - \diamond exact answer in finite # of steps in absence of roundoff error
 - \diamond branching based on comparisons

- \diamond in classical arithmetic, +, -, ×; also exact negation;
- ◊ in black-box arithmetic, above plus selected polynomial expressions
- Constants? none in classical case, anything in black-box case.
- Algorithms?
 - \diamond exact answer in finite # of steps in absence of roundoff error
 - ♦ branching based on comparisons
 - ◇ non-determinism (because determinism is simulable)

fl(*a*⊗*b*) = (*a*⊗*b*)(1+δ), with arbitrary roundoff error |δ| < ε ≪ 1
Operations?

- \diamond in classical arithmetic, +, -, ×; also exact negation;
- ◊ in black-box arithmetic, above plus selected polynomial expressions
- Constants? none in classical case, anything in black-box case.

• Algorithms?

- \diamond exact answer in finite # of steps in absence of roundoff error
- \diamond branching based on comparisons
- ◇ non-determinism (because determinism is simulable)
- \diamond domains to be \mathbb{C}^n or \mathbb{R}^n (but some domain-specific results).

Problem Restatement

♦ Notation:

- -p(x) multivariate polynomial to be evaluated, $x = (x_1, \ldots, x_k)$.
- $-\delta = (\delta_1, \ldots, \delta_m)$ is the vector of error (rounding) variables.
- $-p_{comp}(x, \delta)$ is the result of algorithm to compute p at x with errors δ .

◇ Goal: Decide if ∃ algorithm $p_{comp}(x, \delta)$ to accurately evaluate p(x) on \mathcal{D} : $\forall 0 < \eta < 1$... for any η = desired relative error $\exists 0 < \epsilon < 1$... there is an ϵ = maximum rounding error $\forall x \in \mathcal{D}$... so that for all x in the domain $\forall |\delta_i| \le \epsilon$... and for all rounding errors bounded by ϵ $|p_{comp}(x, \delta) - p(x)| \le \eta \cdot |p(x)|$... relative error is at most η

♦ Given p(x) and \mathcal{D} , seek effective procedure ("compiler") to exhibit algorithm, or show one does not exist

Examples in classical arithmetic over \mathbb{R}^n (none work over \mathbb{C}^n).

•
$$M_2(x, y, z) = z^6 + x^2 \cdot y^2 \cdot (x^2 + y^2 - 2 \cdot z^2)$$

– Positive definite and homogeneous, easy to evaluate accurately

•
$$M_3(x, y, z) = z^6 + x^2 \cdot y^2 \cdot (x^2 + y^2 - 3 \cdot z^2)$$

– Motzkin polynomial, nonnegative, zero at |x| = |y| = |z|

$$\begin{split} \text{if} & |x-z| \leq |x+z| \wedge |y-z| \leq |y+z| \\ p &= z^4 \cdot [4((x-z)^2 + (y-z)^2 + (x-z)(y-z))] + \\ &+ z^3 \cdot [2(2(x-z)^3 + 5(y-z)(x-z)^2 + 5(y-z)^2(x-z) + \\ &2(y-z)^3)] + \\ &+ z^2 \cdot [(x-z)^4 + 8(y-z)(x-z)^3 + 9(y-z)^2(x-z)^2 + \\ &8(y-z)^3(x-z) + (y-z)^4] + \\ &+ z \cdot [2(y-z)(x-z)((x-z)^3 + 2(y-z)(x-z)^2 + \\ &2(y-z)^2(x-z) + (y-z)^3] + \\ &+ (y-z)^2(x-z)^2((x-z)^2 + (y-z)^2) \\ \text{else} & \dots 2^{\#\text{vars}-1} \text{ more analogous cases} \end{split}$$

• $M_4(x, y, z) = z^6 + x^2 \cdot y^2 \cdot (x^2 + y^2 - 4 \cdot z^2)$

– Impossible to evaluate accurately

Sneak Peak.

The variety,

 $V(p) = \{ x : p(x) = 0 \} \ ,$

plays a necessary role.

Outline

- 1. Motivation and goal(s).
- 2. Model of arithmetic and setting.
- 3. What is *allowable* in classical arithmetic.
- 4. Results for classical arithmetic, real and complex.
- 5. What is *allowable* in black-box arithmetic.
- 6. Results for black-box arithmetic, real and complex.
- 7. Other models of arithmetic.
- 8. Open problems / Future work.

Allowable varieties in classical arithmetic

Define *basic allowable sets*:

- $Z_i = \{x : x_i = 0\},$
- $S_{ij} = \{x : x_i + x_j = 0\},\$
- $D_{ij} = \{x : x_i x_j = 0\}.$

A variety V(p) is *allowable* if it can be written as a finite union of intersections of basic allowable sets.

Denote by

$$\mathbf{G}(\mathbf{p}) = \mathbf{V}(\mathbf{p}) - \cup_{\mathbf{allowable}\ \mathbf{A} \,\subset\, \mathbf{V}(\mathbf{p})}\ \mathbf{A}$$

the set of points in general position.

 $V(p) \text{ unallowable } \Leftrightarrow G(p) \neq \emptyset.$

Outline

- 1. Motivation and goal(s).
- 2. Model of arithmetic and setting.
- 3. What is *allowable* in classical arithmetic.
- 4. Results for classical arithmetic, real and complex.
- 5. What is *allowable* in black-box arithmetic.
- 6. Results for black-box arithmetic, real and complex.
- 7. Other models of arithmetic.
- 8. Open problems / Future work.

Necessary condition on $V(\boldsymbol{p})$ for accurate evaluation of \boldsymbol{p}

Theorem 1: V(p) unallowable $\Rightarrow p$ cannot be evaluated accurately on \mathbb{R}^n or on \mathbb{C}^n .

Theorem 2: On a domain \mathcal{D} , if $\operatorname{Int}(\mathcal{D}) \cap G(p) \neq \emptyset$, p cannot be evaluated accurately.

Examples on \mathbb{R}^n , revisited

- p(x, y, z) = x + y + z UNALLOWABLE
- $M_2(x, y, z) = z^6 + x^2 \cdot y^2 \cdot (x^2 + y^2 2 \cdot z^2)$ ALLOWABLE, $V(p) = \{0\}.$
- $M_3(x, y, z) = z^6 + x^2 \cdot y^2 \cdot (x^2 + y^2 3 \cdot z^2)$ ALLOWABLE, $V(p) = \{|x| = |y| = |z|\}$
- $M_4(x, y, z) = z^6 + x^2 \cdot y^2 \cdot (x^2 + y^2 4 \cdot z^2)$ UNALLOWABLE
- $V(\det(\text{Toeplitz}))$, UNALLOWABLE \Rightarrow no accurate linear algebra for Toeplitz in classical arithmetic
- V(minor(Vandermonde)), UNALLOWABLE, but ok on positive orthant (TP matrices)

Necessary condition on V(p), real and complex

Theorem 1: V(p) unallowable $\Rightarrow p$ cannot be evaluated accurately on \mathbb{R}^n or on \mathbb{C}^n .

Theorem 2: On a domain \mathcal{D} , if $\operatorname{Int}(\mathcal{D}) \cap G(p) \neq \emptyset$, p cannot be evaluated accurately.

Sketch of proof.

Simplest case: non-branching, no data reuse (except for inputs), non-determinism.

Algorithm can be represented as a tree with extra edges from the sources, each node corresponds to an operation $(+, -, \times)$, each node has a specific δ , each node has two inputs, one output.

Let $x \in G(p)$ and define Allow(x) as the smallest allowable set containing x.

Necessary condition on V(p), real and complex.

Theorem 1: V(p) unallowable $\Rightarrow p$ cannot be evaluated accurately on \mathbb{R}^n or on \mathbb{C}^n .

Theorem 2: On a domain \mathcal{D} , if $\operatorname{Int}(\mathcal{D}) \cap G(p) \neq \emptyset$, p cannot be evaluated accurately.

Sketch of proof, cont'd.

Key fact: for a positive measure set of δ s in δ -space, a zero output can be "traced back" down the tree to "allowable" condition ($x_i = 0$ or $x_i + x_j = 0$), or trivial one ($x_i - x_i = 0$).

So for a positive measure set of δ s, either

- $p_{comp}(x, \delta)$ is not 0 (though p(x) = 0), or
- for all $y \in Allow(x) \setminus V(p)$, $p_{comp}(y, \delta) = 0$ (though $p(y) \neq 0$).

In either case, the polynomial is not accurately evaluable arbitrarily close to x, q.e.d.

Sufficient Condition on V(p) for accurate evaluation of p, complex case.

Theorem. Let p be a polynomial over \mathbb{C}^n with integer coefficients. If V(p) is allowable, then p is accurately evaluable.

Sketch of proof.

Can write

$$p(x) = c \prod_i p_i(x) \; ,$$

where $p_i(x)$ is a power of some x_j or $x_j \pm x_k$, and c is an integer; all operations are accurate.

Sufficient Condition on V(p) for accurate evaluation of p, complex case.

Theorem. Let p be a polynomial over \mathbb{C}^n with integer coefficients. If V(p) is allowable, then p is accurately evaluable.

Sketch of proof.

Can write

$$p(x) = c \prod_i p_i(x) \; ,$$

where $p_i(x)$ is a power of some x_j or $x_j \pm x_k$, and c is an integer; all operations are accurate.

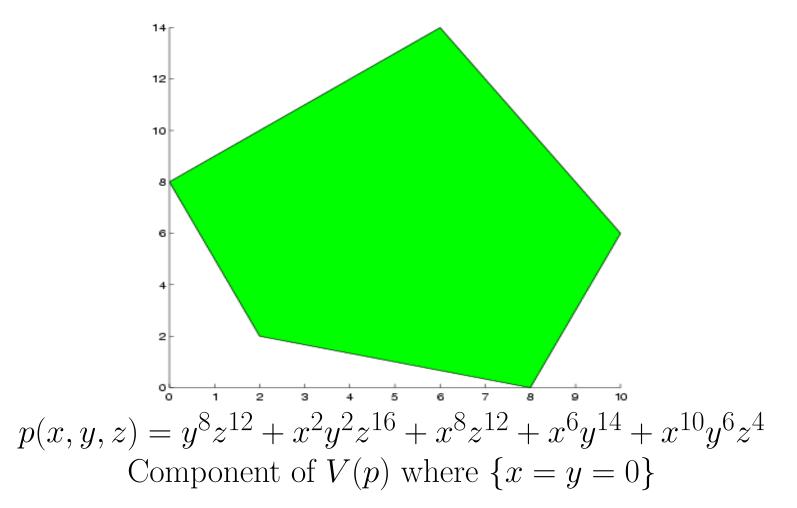
Corollary. If p is a complex multivariate polynomial, p is accurately evaluable iff p has integer coefficients and V(p) is allowable.

Sufficient condition for accurate evaluation, real case.

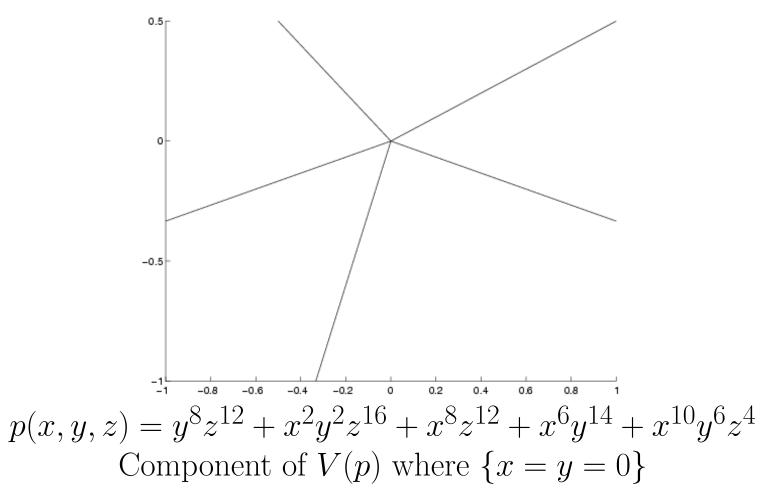
Trickier... Allowability (or any condition) on V(p) not sufficient:

- $q = (u^4 + v^4) + (u^2 + v^2)(x^2 + y^2 + z^2), V(p) = \{u = v = 0\}$: allowable and accurately evaluable
- $p = (u^4 + v^4) + (u^2 + v^2)(x + y + z)^2$, $V(p) = \{u = v = 0\}$: allowable but NOT accurately evaluable!
- Say $p = (u^4 + v^4) + (u^2 + v^2)\hat{p}$ is "locally dominated" by \hat{p} near V(p)
 - Accurate evaluability of p depends on that of \hat{p}
 - Leads to induction on hierarchy of varieties and polynomials defined by "dominance"
 - Need to formally define dominance
 - Induction is work in progress

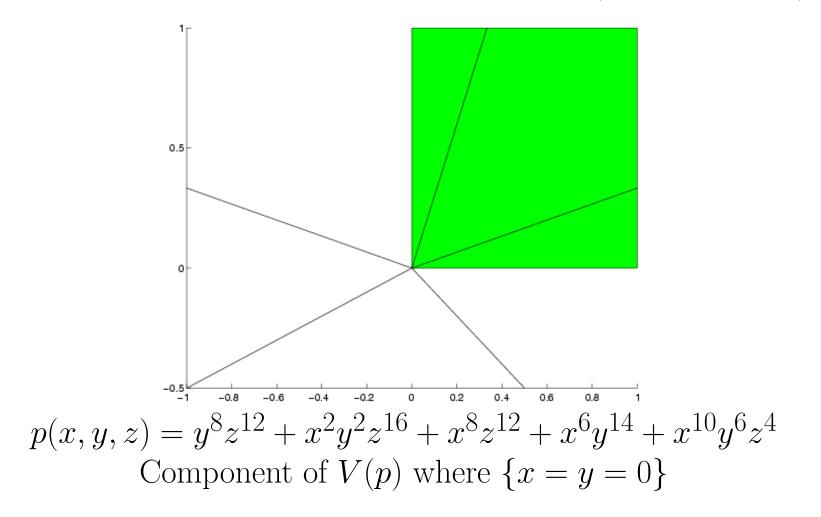
What is Dominance? Newton Polytope



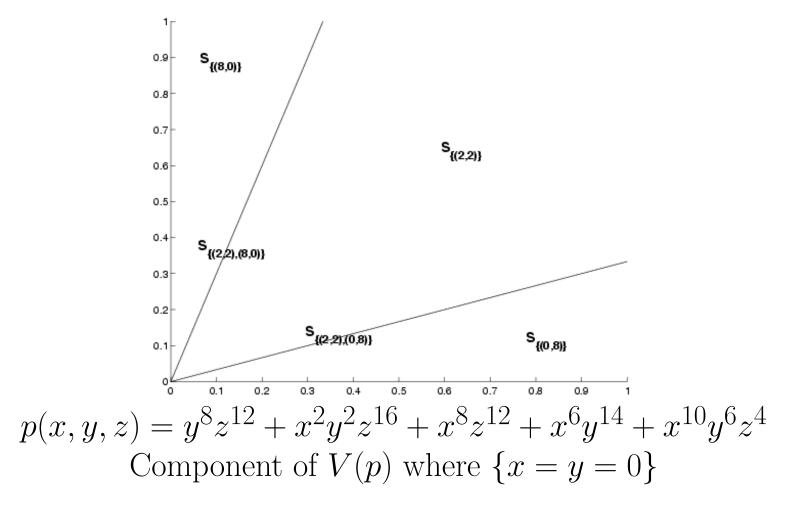
What is Dominance? Normal Fan



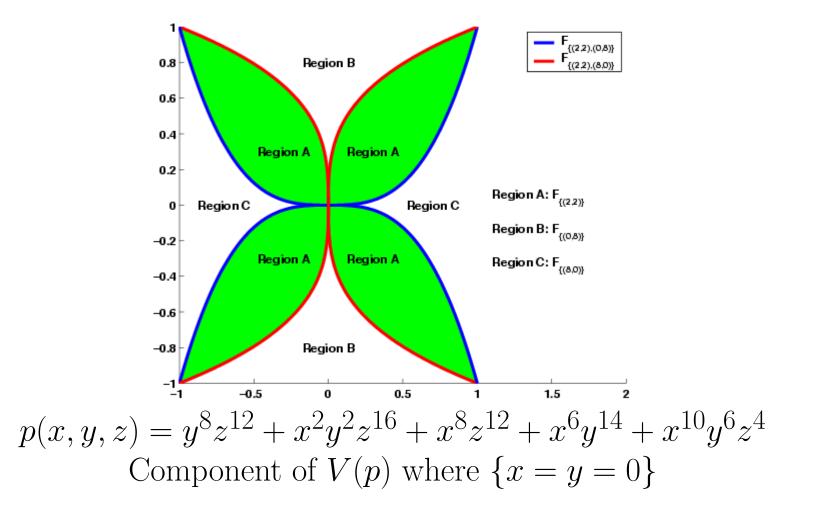
What is Dominance? First orthant of -(Normal Fan)



What is Dominance? Labeling cones by dominant terms



What is Dominance? (x, y) regions where different terms dominate - by exponentiating cones



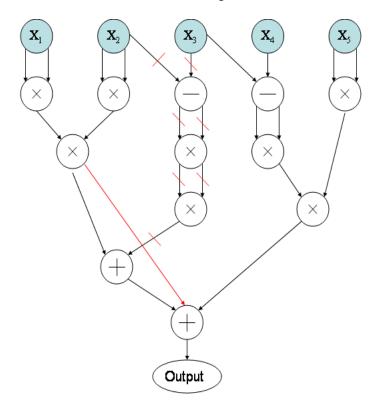
Sufficient condition for accurate evaluation, real case.

Trickier... Allowability *not* sufficient:

- $q = (u^4 + v^4) + (u^2 + v^2)(x^2 + y^2 + z^2), V(p) = \{u = v = 0\}$: allowable and accurately evaluable
- $p = (u^4 + v^4) + (u^2 + v^2)(x + y + z)^2$, $V(p) = \{u = v = 0\}$: allowable but NOT accurately evaluable!
- Say $p = (u^4 + v^4) + (u^2 + v^2)\hat{p}$ is "locally dominated" by \hat{p} near V(p)

Theorem. If all "dominant terms" are accurately evaluable on \mathbb{R}^n then p is accurately evaluable. In non-branching case, if p is accurately evaluable on \mathbb{R}^n , then so are all "dominant terms".

Sketch of showing that accurate evaluation of dominant terms is necessary for accurate evalution of p



 $\label{eq:pruning} Pruning \mbox{ is used to create accurate algorithm for any dominant term from accurate algorithm for p }$

Outline

- 1. Motivation and goal(s).
- 2. Model of arithmetic and setting.
- 3. What is *allowable* in classical arithmetic.
- 4. Results for classical arithmetic, real and complex.
- 5. What is *allowable* in black-box arithmetic.
- 6. Results for black-box arithmetic, real and complex.
- 7. Other models of arithmetic.
- 8. Open problems / Future work.

Allowable varieties in black-box arithmetic

Define **black-boxes** q_1, q_2, \ldots, q_k polynomial operations with various inputs, and for any j,

 $\mathcal{V}_j = \{ V \neq \mathbb{R}^n : V \text{ can be obtained from } q_j \text{ through } \mathbf{Process } \mathbf{A}, \text{ below} \}$

Process A:

Step 1. repeat and/or negate, or 0 out some of the inputs,

Step 2. of the remaining variables, keep some symbolic, and find the variety in terms of the others.

Example: $q_1(x, y) = x - y$ has (up to symmetry) $\mathcal{V}_1 = \{\{x = 0\}, \{x - y = 0\}, \{x + y = 0\}\},$ $q_2(x, y, z) = x - y \cdot z$ has (up to symmetry) $\mathcal{V}_2 = \{\{x = 0\}, \{y = 0\} \cup \{z = 0\}, \{x = 0\} \cup \{x = 1\}, \{x = 0\} \cup \{x = -1\},$ $\{x = 0\} \cup \{y = 1\}, \{x = 0\} \cup \{y = -1\}, \{x - y^2 = 0\}, \{x + y^2 = 0\},$ $\{x - yz = 0\}, \{x + yz = 0\}\}.$

Allowable varieties in black-box arithmetic

Define **black-boxes** q_1, q_2, \ldots, q_k polynomial operations with various inputs, and for any j,

 $\mathcal{V}_j = \{ V \neq \mathbb{R}^n : V \text{ can be obtained from } q_j \text{ through } \mathbf{Process } \mathbf{A} \}$

Define *basic allowable sets*:

- $Z_i = \{x : x_i = 0\},\$
- $S_{ij} = \{x : x_i + x_j = 0\},\$
- $D_{ij} = \{x : x_i x_j = 0\},\$
- any V for which there is a j such that $V \in \mathcal{V}_j$.

Allowable varieties in black-box arithmetic

Define **black-boxes** q_1, q_2, \ldots, q_k polynomial operations with various inputs, and for any j,

 $\mathcal{V}_j = \{ V \neq \mathbb{R}^n : V \text{ can be obtained from } q_j \text{ through } \mathbf{Process } \mathbf{A} \}$

A variety V(p) is *allowable* if it is a union of irreducible parts of finite intersections of basic allowable sets.

Denote by

$$\mathbf{G}(\mathbf{p}) = \mathbf{V}(\mathbf{p}) - \cup_{\text{allowable } \mathbf{A} \subset \mathbf{V}(\mathbf{p})} \mathbf{A}$$

the set of points in general position.

V(p) unallowable $\Leftrightarrow G(p) \neq \emptyset.$

Outline

- 1. Motivation and goal(s).
- 2. Model of arithmetic and setting.
- 3. What is *allowable* in classical arithmetic.
- 4. Results for classical arithmetic, real and complex.
- 5. What is *allowable* in black-box arithmetic.
- 6. Results for black-box arithmetic, real and complex.
- 7. Other models of arithmetic.
- 8. Open problems / Future work.

Necessary condition on V(p) for accurate evaluation of $p, \, {\rm real} \, \, {\rm and} \, \, {\rm complex}$

Theorem 1: V(p) unallowable $\Rightarrow p$ cannot be evaluated accurately on \mathbb{R}^n or on \mathbb{C}^n .

Theorem 2: On a domain \mathcal{D} , if $\operatorname{Int}(\mathcal{D}) \cap G(p) \neq \emptyset$, p cannot be evaluated accurately.

Sufficiency condition, complex, for all q_j irreducible.

Theorem: If V(p) is a union of intersections of sets Z_i , S_{ij} , D_{ij} , and $V(q_j)$, then p is accurately evaluable.

Corollary: If all q_j are affine, then p is accurately evaluable iff V(p) is allowable.

General Structured Matrices

				Any			Sym
Type of matrix		$\det A$	A^{-1}	minor	LDU	SVD	EVD
Acyclic		n	n^2	n	$\leq n^2$	n^3	N/A
(bidiagonal and other)							
Total Sign Compound		n	n^3	n	n^4	n^4	n^4
(TSC)							
Diagonally Scaled Totally		n^3	$n^{5}?$	n^3	n^3	n^3	n^3
Unimodular (DSTU)							
Weakly diagonally		n^3	n^3	No	n^3	n^3	n^3
dominant M-matrix							
	Cauchy	n^2	n^2	n^2	$\leq n^3$	n^3	n^3
Displace-							
ment	Vandermonde	n^2	No	No	No	n^3	n^3
Rank One							
	Polynomial	n^2	No	No	No	*	*
	Vandermonde						
Toeplitz		No	No	No	No	No	No

* = it depends on polynomial (eg orthogonal ok)

Other linear algebra consequences

- Let $M_n(x)$ be a family of *n*-by-*n* structured matrices
- Thm: If $\det(M_n(x))$ has an irreducible factor $p_n(x)$ over \mathbb{C} whose degree grows with n, then no set of "black-boxes" of bounded degree can accurately evaluate all $\det(M_n(x))$ over \mathbb{C} .
- Cor: det(Toeplitz_n(x)) cannot be evaluated accurately by any set of "black-boxes" of bounded degree over \mathbb{C} .
- Thm: If $V_{\mathbb{R}}(\det(M_n(x)))$ has a regular point at which the tangent depends on a growing number of coordinates, then no set of "blackboxes" of bounded degree can accurately evaluate all $\det(M_n(x))$ over \mathbb{R} .
- Cor: det(Toeplitz_n(x)) cannot be evaluated accurately by any set of "black-boxes" of bounded degree over \mathbb{R} .
- Accurate Toeplitz matrix computations need "infinite precision"
- What other $M_n(x)$ share these properties?

Outline

- 1. Motivation and goal(s).
- 2. Model of arithmetic and setting.
- 3. What is *allowable* in classical arithmetic.
- 4. Results for classical arithmetic, real and complex.
- 5. What is *allowable* in black-box arithmetic.
- 6. Results for black-box arithmetic, real and complex.
- 7. Other models of arithmetic
- 8. Open problems / Future work.

Other Models of arithmetic

- Other models of real arithmetic
 - Blum/Shub/Smale, Cucker/Smale, Pour-El/Richards
- Comparing Reals and Integers
 - Reals, with rounded arithmetic as described
 * Some (most) p(x) impossible to evaluate accurately
 Integers, with bit operations (usual Turing machine)
 * All p(x) evaluable exactly, only question is cost
 * det(M) evaluable in polynomial time
 * Not a good bit model for real arithmetic

A bit model for Reals

- $x = m \cdot 2^e$, m and e integers, with bit operations
- Still a Turing machine, but inputs better capture reals
- Models floating point arithmetic
- All p(x) evaluable exactly, but cost can be much higher
- Cost of arbitrary bit of $\prod_i (1+2^{e_i})$ same as permanent
- Cost of x + y + z exponential unless done carefully (next slide)
- \bullet Cost of $\det(M)$ unknown, even for tridiagonal
- Cost of new matrix algorithms exponentially lower than conventional algorithms to guarantee same accuracy
 - $-\log\log\kappa$ vs $\log\kappa$
 - $-\log\log\kappa$ is polynomial in size of input

Adding Numbers in Bit Model of Reals (Y. Hida, JD)

- $x = m \cdot 2^e$ where m (mantissa) and e (exponent) are integers
- Cancellation is obstable to accuracy:
 - $-(2^e+1)-2^e$ uses *e* bits of intermediate precision (conventional algorithm)
 - Not polynomial time in size of input $\log_2 e$
- "Sort and Sum" Algorithm for $S = \sum_{i=1}^{n} x_i$, each x_i has b mantissa bits

Sort so $|e_1| \ge |e_2| \ge \cdots \ge |e_n|$... $|x_1| \ge \cdots \ge |x_n|$ more than enough S = 0 ... using B > b bits for i = 1 to n $S = S + x_i$

• Thm: Let $N = 1 + 2^{B-b} + 2^{B-2b} + \cdots + 2^{B \mod b} = 1 + \lfloor \frac{2^{B-b}}{1-2^{-b}} \rfloor$. Then

- If $n \le N$, then S accurate to nearly b bits, despite any cancellation - If $n \ge N+2$, then S may be completely wrong (wrong sign) - If n = N+1, in between these cases, depending on underflow

• Ex: x_i double (b = 53), S extended $(B = 64) \Rightarrow N = 2049$

Outline.

- 1. Motivation and goal(s).
- 2. Model of arithmetic and setting.
- 3. What is *allowable* in classical arithmetic.
- 4. Results for classical arithmetic, real and complex.
- 5. What is *allowable* in black-box arithmetic.
- 6. Results for black-box arithmetic, real and complex.
- 7. Other models of arithmetic.
- 8. Open problems / Future work.

Open problems / Future work.

- **Complete** the decision procedure (analyze the dominant terms) when the domain is \mathbb{R}^n and V(p) allowable.
- **Narrow** the necessity and sufficiency conditions for the black-box case
- **Extend** to semi-algebraic domains \mathcal{D} .
- Apply to more structured matrix classes
- **Incorporate** division, rational functions, perturbation theory.
 - Conjecture (Demmel, '04): Accurate evaluation is possible iff condition number has only certain simple singularities (depend on reciprocal distance to set of ill-posed problems).
- **Extend** to interval arithmetic.
- **Implement** decision procedure to "compile" an accurate evaluation program given p(x), \mathcal{D} , and minimal set of "black boxes"

Other Topics.

- New releases of LAPACK and ScaLAPACK planned
 - International team of collaborators
 - $-\operatorname{More}$ work than we can do ourselves
 - See www.netlib.org/lapack-dev for proposal, survey
 - Postdoc available contact me
- \bullet OSKI Optimized Sparse Kernel Interface
 - First release of library for automatic tuning of sparse matrix kernels
 - Similar spirit as Atlas, FFTW, PHiPAC, except tuning based on matrix must be done at run-time
 - -See bebop.cs.berkeley.edu/oski