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Goal

Given a family of structured matrices M(x),
find accurate and efficient algorithms
to solve linear algebra problems (eg y = det(M(x)) or y = eig(M(x))),
or prove that none exist

Accurate means relative error η < 1, i.e.

� |ycomputed − y| ≤ η |y|,

� η = 10−2 yields two digits of accuracy,

� ycomputed = 0 ⇐⇒ y = 0.

Efficient means in polynomial time



Log10(Eigenvalues) of 50x50 Hilbert Matrix

red line shows eigenvalues from conventional algorithm in 16 digits
blue line shows eigenvalues from new algorithm in 16 digits

Cost of guaranteed accuracy: O(n3(log κ)p) vs O(n3(log log κ)p)
where κ = condition number



Eigenvalues of 40x40 Pascal Matrix

0 10 20 30 40
10

−30

10
−20

10
−10

10
0

10
10

10
20

10
30

vpa(eig, stored)            
eig                         
New, accurate               
λ

max
 × macheps



Eigenvalues of 20x20 Schur complement of
40x40 Vandermonde Matrix
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General Structured Matrices

Any Sym
Type of matrix det A A−1 minor LDU SVD EVD
Acyclic
(bidiagonal and other)
Total Sign Compound
(TSC)
Diagonally Scaled Totally
Unimodular (DSTU)
Weakly diagonally
dominant M-matrix

Cauchy
Displace-
ment Vandermonde
Rank One

Polynomial
Vandermonde

Toeplitz



General Structured Matrices

Any Sym
Type of matrix det A A−1 minor LDU SVD EVD
Acyclic n n2 n ≤ n2 n3 N/A
(bidiagonal and other)
Total Sign Compound n n3 n n4 n4 n4

(TSC)
Diagonally Scaled Totally n3 n5? n3 n3 n3 n3

Unimodular (DSTU)
Weakly diagonally n3 n3 ? n3 n3 n3

dominant M-matrix
Cauchy n2 n2 n2 ≤ n3 n3 n3

Displace-
ment Vandermonde n2 ? ? ? n3 n3

Rank One
Polynomial n2 ? ? ? ? ?
Vandermonde

Toeplitz ? ? ? ? ? ?



Totally Nonnegative Matrices
Type of Any Gauss. elim. NE Ax=b Eig.

Matrix det A A−1 minor NP PP CP NP SVD Val.
Cauchy

Vandermonde
Generalized

Vandermonde
Any TN in
Neville form



Totally Nonnegative Matrices
Type of Any Gauss. elim. NE Ax=b Eig.

Matrix det A A−1 minor NP PP CP NP SVD Val.

Cauchy n2 n2 n2 n2 n3 n3 n2 n2 n3 n3

Vandermonde n2 n3 n3 n2 n2 poly n2 n2 n3 n3

Generalized n2 n3 poly n2 n2 poly n2 n2 n3 n3

Vandermonde

Any TN in n n3 n3 n3 n3 n3 0 n2 n3 n3

Neville form
poly = poly(n, λ), where λ = partition

(mostly due to Plamen Koev)



Totally Nonnegative Matrices
Type of Any Gauss. elim. NE Ax=b Eig.

Matrix det A A−1 minor NP PP CP NP SVD Val.

Cauchy n2 n2 n2 n2 n3 n3 n2 n2 n3 n3

Vandermonde n2 n3 n3 n2 n2 poly n2 n2 n3 n3

Generalized n2 n3 poly n2 n2 poly n2 n2 n3 n3

Vandermonde

Any TN in n n3 n3 n3 n3 n3 0 n2 n3 n3

Neville form
poly = poly(n, λ), where λ = partition

(mostly due to P. Koev)

All eigenproblems arising from elliptic PDE
with tetrahedral discretizations? (S. Vavasis, P. Koev, JD)



Reduce Matrix problem to Polynomial problem

Theorem: Being able to compute det(M) accurately is necessary to
be able to compute LDU , eig, SVD, ... accurately

Theorem: Being able to compute all minors of M accurately is
sufficient for computing M−1, LDU, SVD, ... accurately

(Sufficient conditions for computing eig(M) accurately known only
in symmetric or totally positive cases)



Goal - restated

Given a polynomial (or a family of polynomials) p, either produce an
accurate algorithm to compute y = p(x), or prove that none exists.

Accurate means relative error η < 1, i.e.

� |ycomputed − y| ≤ η |y|,

� η = 10−2 yields two digits of accuracy,

� ycomputed = 0 ⇐⇒ y = 0.
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Traditional Model of Arithmetic

◦ fl(a⊗b) = (a⊗b)(1+δ), with arbitrary roundoff error |δ| < ε � 1

– a, b and δ all real, or all complex

◦ Operations?
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Traditional Model of Arithmetic

◦ fl(a⊗b) = (a⊗b)(1+δ), with arbitrary roundoff error |δ| < ε � 1

◦ Operations?

� in classical arithmetic, +, −, ×; also exact negation;

– How can we lose accuracy in this model?

∗ OK to multiply or add positive numbers

∗ OK to subtract exact numbers (initial data)

∗ Accuracy may only be lost when subtracting approximate
results:

.12345xxx
- .12345yyy

.00000zzz



Recognizing Accuracy

• Ex: Compute p(x) = x1 + x2 + x3

– Try alg(x, δ) = ((x1 + x2)(1 + δ1) + x3)(1 + δ2)

rel err(x, δ) =
alg(x, δ)− p(x)

p(x)

=
x1 + x2

x1 + x2 + x3
(δ1 + δ2 + δ1 · δ2) +

x3

x1 + x2 + x3
(δ2)

– ∀ε > 0, rel err(x, δ) unbounded on an open subset of
(x, δ) with |δi| < ε

• Generally: rel err(x, δ) =
∑

r
pr(x)
p(x)

· qr(δ)

– Each
pr(x)
p(x)

must be bounded near p(x) = 0

• Ex: p(x) positive definite and homogeneous, degree d

– If pr(x) also homogeneous, degree d, then
pr(x)
p(x)

bounded



Traditional Model of Arithmetic

◦ fl(a⊗b) = (a⊗b)(1+δ), with arbitrary roundoff error |δ| < ε � 1

◦ Operations?

� in classical arithmetic, +, −, ×; also exact negation;

� in black-box arithmetic, above plus selected polynomial
expressions

∗ Ex: x− yz (IBM’s fused-multiply-add)

∗ Ex: wx− yz (using double-double)

∗ Ex: small determinants (Shewchuk’s Triangle)

∗ Ex: dot products (using Priest or Demmel/Hida algs)



Traditional Model of Arithmetic

◦ fl(a⊗b) = (a⊗b)(1+δ), with arbitrary roundoff error |δ| < ε � 1

◦ Operations?

� in classical arithmetic, +, −, ×; also exact negation;

� in black-box arithmetic, above plus selected polynomial
expressions

◦ Constants?



Availability of constants?

Example.

• Classical case:

- without
√

2, we cannot compute

x2 − 2 = (x−
√

2)(x +
√

2)

accurately.

– having no explicit constants no loss of generality for
homogeneous, integer-coefficient polynomials.

• Black-box case:

- any constants we choose can be accommodated via black-boxes
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� in black-box arithmetic, above plus selected polynomial
expressions

◦ Constants? none in classical case, anything in black-box case.
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Traditional Model of Arithmetic

◦ fl(a⊗b) = (a⊗b)(1+δ), with arbitrary roundoff error |δ| < ε � 1

◦ Operations?

� in classical arithmetic, +, −, ×; also exact negation;

� in black-box arithmetic, above plus selected polynomial
expressions

◦ Constants? none in classical case, anything in black-box case.

◦ Algorithms?

� exact answer in finite # of steps in absence of roundoff error

� branching based on comparisons

� non-determinism (because determinism is simulable)

� domains to be Cn or Rn (but some domain-specific results).



Problem Restatement

� Notation:

– p(x) multivariate polynomial to be evaluated, x = (x1, . . . , xk).

– δ = (δ1, . . . , δm) is the vector of error (rounding) variables.

– pcomp(x, δ) is the result of algorithm to compute p at x with
errors δ.

� Goal: Decide if ∃ algorithm pcomp(x, δ) to accurately evaluate p(x) on D:

∀ 0 < η < 1 ... for any η = desired relative error

∃ 0 < ε < 1 ... there is an ε = maximum rounding error

∀ x ∈ D ... so that for all x in the domain

∀ |δi| ≤ ε ... and for all rounding errors bounded by ε

|pcomp(x, δ)− p(x)| ≤ η · |p(x)| ... relative error is at most η

� Given p(x) andD, seek effective procedure (”compiler”) to exhibit
algorithm, or show one does not exist



.

Examples in classical arithmetic over Rn (none work over Cn).

• M2(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 2 · z2)

– Positive definite and homogeneous, easy to evaluate accurately

• M3(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 3 · z2)

– Motzkin polynomial, nonnegative, zero at |x| = |y| = |z|

if |x− z| ≤ |x + z| ∧ |y − z| ≤ |y + z|
p = z4 · [4((x− z)2 + (y − z)2 + (x− z)(y − z))] +

+z3 · [2(2(x− z)3 + 5(y − z)(x− z)2 + 5(y − z)2(x− z) +

2(y − z)3)] +

+z2 · [(x− z)4 + 8(y − z)(x− z)3 + 9(y − z)2(x− z)2 +

8(y − z)3(x− z) + (y − z)4] +

+z · [2(y − z)(x− z)((x− z)3 + 2(y − z)(x− z)2 +

2(y − z)2(x− z) + (y − z)3] +

+(y − z)2(x− z)2((x− z)2 + (y − z)2)

else ... 2#vars−1 more analogous cases

• M4(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 4 · z2)

– Impossible to evaluate accurately



Sneak Peak.

The variety,

V (p) = {x : p(x) = 0} ,

plays a necessary role.
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Allowable varieties in classical arithmetic

Define basic allowable sets:

• Zi = {x : xi = 0},
• Sij = {x : xi + xj = 0},
•Dij = {x : xi − xj = 0}.

A variety V (p) is allowable if it can be written as a finite union of
intersections of basic allowable sets.

Denote by
G(p) = V(p)− ∪allowable A ⊂ V(p) A

the set of points in general position.

V (p) unallowable ⇔ G(p) 6= ∅.
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Necessary condition on V (p) for accurate evaluation of p

Theorem 1: V (p) unallowable ⇒ p cannot be evaluated accu-
rately on Rn or on Cn.

Theorem 2: On a domain D, if Int(D) ∩ G(p) 6= ∅, p cannot be
evaluated accurately.



Examples on Rn, revisited

• p(x, y, z) = x + y + z UNALLOWABLE

•M2(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 2 · z2)

ALLOWABLE, V (p) = {0}.

•M3(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 3 · z2)

ALLOWABLE, V (p) = {|x| = |y| = |z|}

•M4(x, y, z) = z6 + x2 · y2 · (x2 + y2 − 4 · z2)

UNALLOWABLE

• V (det(Toeplitz)), UNALLOWABLE⇒ no accurate linear algebra
for Toeplitz in classical arithmetic

• V (minor(Vandermonde)), UNALLOWABLE, but ok on positive
orthant (TP matrices)



Necessary condition on V (p), real and complex

Theorem 1: V (p) unallowable ⇒ p cannot be evaluated accu-
rately on Rn or on Cn.

Theorem 2: On a domain D, if Int(D) ∩ G(p) 6= ∅, p cannot be
evaluated accurately.

Sketch of proof.
Simplest case: non-branching, no data reuse (except for inputs), non-
determinism.

Algorithm can be represented as a tree with extra edges from the
sources, each node corresponds to an operation (+,−,×), each node
has a specific δ, each node has two inputs, one output.

Let x ∈ G(p) and define Allow(x) as the smallest allowable set
containing x.



Necessary condition on V (p), real and complex.

Theorem 1: V (p) unallowable ⇒ p cannot be evaluated accu-
rately on Rn or on Cn.

Theorem 2: On a domain D, if Int(D) ∩ G(p) 6= ∅, p cannot be
evaluated accurately.

Sketch of proof, cont’d.
Key fact: for a positive measure set of δs in δ-space, a zero output
can be “traced back” down the tree to “allowable” condition (xi = 0
or xi + xj = 0), or trivial one (xi − xi = 0).

So for a positive measure set of δs, either

• pcomp(x, δ) is not 0 (though p(x) = 0), or

• for all y ∈ Allow(x) \ V (p), pcomp(y, δ) = 0 (though p(y) 6= 0).

In either case, the polynomial is not accurately evaluable arbitrarily
close to x, q.e.d.



Sufficient Condition on V (p) for
accurate evaluation of p, complex case.

Theorem. Let p be a polynomial over Cn with integer coefficients.
If V (p) is allowable, then p is accurately evaluable.

Sketch of proof.
Can write

p(x) = c
∏
i

pi(x) ,

where pi(x) is a power of some xj or xj ± xk, and c is an integer; all
operations are accurate.



Sufficient Condition on V (p) for
accurate evaluation of p, complex case.

Theorem. Let p be a polynomial over Cn with integer coefficients.
If V (p) is allowable, then p is accurately evaluable.

Sketch of proof.
Can write

p(x) = c
∏
i

pi(x) ,

where pi(x) is a power of some xj or xj ± xk, and c is an integer; all
operations are accurate.

Corollary. If p is a complex multivariate polynomial, p is accurately
evaluable iff p has integer coefficients and V (p) is allowable.



Sufficient condition for accurate evaluation, real case.

Trickier... Allowability (or any condition) on V (p) not sufficient:

• q = (u4 + v4) + (u2 + v2)(x2 + y2 + z2), V (p) = {u = v = 0}:
allowable and accurately evaluable

• p = (u4 + v4) + (u2 + v2)(x + y + z)2, V (p) = {u = v = 0}:
allowable but NOT accurately evaluable!

• Say p = (u4 + v4) + (u2 + v2)p̂ is “locally dominated” by p̂ near
V (p)

– Accurate evaluabilty of p depends on that of p̂

– Leads to induction on hierarchy of varieties and polynomials
defined by “dominance”

– Need to formally define dominance

– Induction is work in progress



What is Dominance? Newton Polytope

p(x, y, z) = y8z12 + x2y2z16 + x8z12 + x6y14 + x10y6z4

Component of V (p) where {x = y = 0}



What is Dominance? Normal Fan

p(x, y, z) = y8z12 + x2y2z16 + x8z12 + x6y14 + x10y6z4

Component of V (p) where {x = y = 0}



What is Dominance? First orthant of -(Normal Fan)

p(x, y, z) = y8z12 + x2y2z16 + x8z12 + x6y14 + x10y6z4

Component of V (p) where {x = y = 0}



What is Dominance? Labeling cones by dominant terms

p(x, y, z) = y8z12 + x2y2z16 + x8z12 + x6y14 + x10y6z4

Component of V (p) where {x = y = 0}



What is Dominance? (x, y) regions where different terms
dominate - by exponentiating cones

p(x, y, z) = y8z12 + x2y2z16 + x8z12 + x6y14 + x10y6z4

Component of V (p) where {x = y = 0}



Sufficient condition for accurate evaluation, real case.

Trickier... Allowability not sufficient:

• q = (u4 + v4) + (u2 + v2)(x2 + y2 + z2), V (p) = {u = v = 0}:
allowable and accurately evaluable

• p = (u4 + v4) + (u2 + v2)(x + y + z)2, V (p) = {u = v = 0}:
allowable but NOT accurately evaluable!

• Say p = (u4 + v4) + (u2 + v2)p̂ is “locally dominated” by p̂ near
V (p)

Theorem. If all “dominant terms” are accurately evaluable on
Rn then p is accurately evaluable. In non-branching case, if p is
accurately evaluable on Rn, then so are all “dominant terms”.



Sketch of showing that accurate evaluation of
dominant terms is necessary for accurate evalution of p

Pruning is used to create accurate algorithm for any dominant
term from accurate algorithm for p
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Allowable varieties in black-box arithmetic

Define black-boxes q1, q2, . . . , qk polynomial operations with var-
ious inputs, and for any j,

Vj = {V 6= Rn : V can be obtained from qj through Process A, below}

Process A:

Step 1. repeat and/or negate, or 0 out some of the inputs,

Step 2. of the remaining variables, keep some symbolic, and find the variety
in terms of the others.

Example: q1(x, y) = x− y has (up to symmetry)

V1 = {{x = 0}, {x− y = 0}, {x + y = 0}} ,

q2(x, y, z) = x− y · z has (up to symmetry)

V2 = {{x = 0}, {y = 0} ∪ {z = 0}, {x = 0} ∪ {x = 1}, {x = 0} ∪ {x = −1},
{x = 0} ∪ {y = 1}, {x = 0} ∪ {y = −1}, {x− y2 = 0}, {x + y2 = 0},
{x− yz = 0}, {x + yz = 0}} .



Allowable varieties in black-box arithmetic

Define black-boxes q1, q2, . . . , qk polynomial operations with var-
ious inputs, and for any j,

Vj = {V 6= Rn : V can be obtained from qj through Process A}

Define basic allowable sets:

• Zi = {x : xi = 0},
• Sij = {x : xi + xj = 0},
•Dij = {x : xi − xj = 0},
• any V for which there is a j such that V ∈ Vj.



Allowable varieties in black-box arithmetic

Define black-boxes q1, q2, . . . , qk polynomial operations with var-
ious inputs, and for any j,

Vj = {V 6= Rn : V can be obtained from qj through Process A}

A variety V (p) is allowable if it is a union of irreducible parts of
finite intersections of basic allowable sets.

Denote by
G(p) = V(p)− ∪allowable A ⊂ V(p) A

the set of points in general position.

V (p) unallowable ⇔ G(p) 6= ∅.
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Necessary condition on V (p) for accurate evaluation of
p, real and complex

Theorem 1: V (p) unallowable ⇒ p cannot be evaluated accu-
rately on Rn or on Cn.

Theorem 2: On a domain D, if Int(D) ∩ G(p) 6= ∅, p cannot be
evaluated accurately.

Sufficiency condition, complex, for all qj irreducible.

Theorem: If V (p) is a union of intersections of sets Zi, Sij, Dij,
and V (qj), then p is accurately evaluable.

Corollary: If all qj are affine, then p is accurately evaluable iff V (p)
is allowable.



General Structured Matrices

Any Sym
Type of matrix det A A−1 minor LDU SVD EVD
Acyclic n n2 n ≤ n2 n3 N/A
(bidiagonal and other)
Total Sign Compound n n3 n n4 n4 n4

(TSC)
Diagonally Scaled Totally n3 n5? n3 n3 n3 n3

Unimodular (DSTU)
Weakly diagonally n3 n3 No n3 n3 n3

dominant M-matrix
Cauchy n2 n2 n2 ≤ n3 n3 n3

Displace-
ment Vandermonde n2 No No No n3 n3

Rank One
Polynomial n2 No No No ∗ ∗
Vandermonde

Toeplitz No No No No No No

∗ = it depends on polynomial (eg orthogonal ok)



Other linear algebra consequences

• Let Mn(x) be a family of n-by-n structured matrices

• Thm: If det(Mn(x)) has an irreducible factor pn(x) over C whose
degree grows with n, then no set of “black-boxes” of bounded
degree can accurately evaluate all det(Mn(x)) over C.

• Cor: det(Toeplitzn(x)) cannot be evaluated accurately by any set
of “black-boxes” of bounded degree over C.

• Thm: If VR(det(Mn(x))) has a regular point at which the tangent
depends on a growing number of coordinates, then no set of “black-
boxes” of bounded degree can accurately evaluate all det(Mn(x))
over R.

• Cor: det(Toeplitzn(x)) cannot be evaluated accurately by any set
of “black-boxes” of bounded degree over R.

• Accurate Toeplitz matrix computations need “infinite precision”

•What other Mn(x) share these properties?
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Other Models of arithmetic

• Other models of real arithmetic

– Blum/Shub/Smale, Cucker/Smale, Pour-El/Richards

• Comparing Reals and Integers

– Reals, with rounded arithmetic as described

∗ Some (most) p(x) impossible to evaluate accurately

– Integers, with bit operations (usual Turing machine)

∗ All p(x) evaluable exactly, only question is cost

∗ det(M) evaluable in polynomial time

∗ Not a good bit model for real arithmetic



A bit model for Reals

• x = m · 2e, m and e integers, with bit operations

• Still a Turing machine, but inputs better capture reals

•Models floating point arithmetic

• All p(x) evaluable exactly, but cost can be much higher

• Cost of arbitrary bit of
∏

i(1 + 2ei) same as permanent

• Cost of x + y + z exponential unless done carefully (next slide)

• Cost of det(M) unknown, even for tridiagonal

• Cost of new matrix algorithms exponentially lower than conven-
tional algorithms to guarantee same accuracy

– log log κ vs log κ

– log log κ is polynomial in size of input



Adding Numbers in Bit Model of Reals (Y. Hida, JD)

• x = m · 2e where m (mantissa) and e (exponent) are integers

• Cancellation is obstable to accuracy:

– (2e + 1)− 2e uses e bits of intermediate precision (conventional algorithm)

– Not polynomial time in size of input log2 e

• “Sort and Sum” Algorithm for S =
∑n

i=1 xi, each xi has b mantissa bits

Sort so |e1| ≥ |e2| ≥ · · · ≥ |en| ... |x1| ≥ · · · ≥ |xn| more than enough

S = 0 ... using B > b bits

for i = 1 to n

S = S + xi

• Thm: Let N = 1 + 2B−b + 2B−2b + · · · 2B mod b = 1 + d 2B−b

1−2−be. Then

– If n ≤ N , then S accurate to nearly b bits, despite any cancellation

– If n ≥ N + 2, then S may be completely wrong (wrong sign)

– If n = N + 1, in between these cases, depending on underflow

• Ex: xi double (b = 53), S extended (B = 64) ⇒ N = 2049



Outline.

1. Motivation and goal(s).

2. Model of arithmetic and setting.

3. What is allowable in classical arithmetic.

4. Results for classical arithmetic, real and complex.

5. What is allowable in black-box arithmetic.

6. Results for black-box arithmetic, real and complex.

7. Other models of arithmetic.

8. Open problems / Future work.



Open problems / Future work.

•Complete the decision procedure (analyze the dominant terms)
when the domain is Rn and V (p) allowable.

•Narrow the necessity and sufficiency conditions for the black-box
case

• Extend to semi-algebraic domains D.

•Apply to more structured matrix classes

• Incorporate division, rational functions, perturbation theory.

– Conjecture (Demmel, ’04): Accurate evaluation is possible iff
condition number has only certain simple singularities (depend
on reciprocal distance to set of ill-posed problems).

• Extend to interval arithmetic.

• Implement decision procedure to “compile” an accurate evalu-
ation program given p(x), D, and minimal set of “black boxes”



Other Topics.

• New releases of LAPACK and ScaLAPACK planned

– International team of collaborators

– More work than we can do ourselves

– See www.netlib.org/lapack-dev for proposal, survey

– Postdoc available - contact me

• OSKI - Optimized Sparse Kernel Interface

– First release of library for automatic tuning of sparse matrix
kernels

– Similar spirit as Atlas, FFTW, PHiPAC, except tuning based
on matrix must be done at run-time

– See bebop.cs.berkeley.edu/oski


