
1

CS267 L15 Graph Partitioning II.1 Demmel Sp 1999

CS 267 Applications of Parallel Computers

Lecture 15:

Graph Partitioning - II

James Demmel

http://www.cs.berkeley.edu/~demmel/cs267_Spr99

CS267 L15 Graph Partitioning II.2 Demmel Sp 1999

Outline of Graph Partitioning Lectures

° Review of last lecture

° Partitioning without Nodal Coordinates - continued
• Kernighan/Lin
• Spectral Partitioning

° Multilevel Acceleration
• BIG IDEA, will appear often in course

° Available Software
• good sequential and parallel software availble

° Comparison of Methods

° Applications

2

CS267 L15 Graph Partitioning II.3 Demmel Sp 1999

Review Definition of Graph Partitioning

° Given a graph G = (N, E, WN, WE)
• N = nodes (or vertices), E = edges
• WN = node weights, WE = edge weights

° Ex: N = {tasks}, WN = {task costs}, edge (j,k) in E means task j
sends WE(j,k) words to task k

° Choose a partition N = N1 U N2 U … U NP such that
• The sum of the node weights in each N j is “about the same”
• The sum of all edge weights of edges connecting all different pairs

N j and Nk is minimized

° Ex: balance the work load, while minimizing communication

° Special case of N = N1 U N2: Graph Bisection

CS267 L15 Graph Partitioning II.4 Demmel Sp 1999

Review of last lecture

° Partitioning with nodal coordinates
• Rely on graphs having nodes connected (mostly) to “nearest neighbors”

in space
• Common when graph arises from physical model
• Algorithm very efficient, does not depend on edges!
• Can be used as good starting guess for subsequent partitioners, which do

examine edges
• Can do poorly if graph less connected:

° Partitioning without nodal coordinates
• Depends on edges
• No assumptions about where “nearest neighbors” are
• Began with Breadth First Search (BFS)

3

CS267 L15 Graph Partitioning II.5 Demmel Sp 1999

Partitioning without nodal coordinates - Kernighan/Lin

° Take a initial partition and iteratively improve it
• Kernighan/Lin (1970), cost = O(|N|3) but easy to understand
• Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but more

complicated

° Let G = (N,E,WE) be partitioned as N = A U B, where
|A| = |B|

° T = cost(A,B) = Σ {W(e) where e connects nodes in A
and B}

° Find subsets X of A and Y of B with |X| = |Y| so that
swapping X and Y decreases cost:

- newA = A - X U Y and newB = B - Y U X
- newT = cost(newA , newB) < cost(A,B)
- Keep choosing X and Y until cost no longer decreases

° Need to compute newT efficiently for many possible
X and Y, choose smallest

CS267 L15 Graph Partitioning II.6 Demmel Sp 1999

Kernighan/Lin - Preliminary Definitions

° T = cost(A, B), newT = cost(newA, newB)

° Need an efficient formula for newT; will use
• E(a) = external cost of a in A = Σ {W(a,b) for b in B}
• I(a) = internal cost of a in A = Σ {W(a,a’) for other a’ in A}
• D(a) = cost of a in A = E(a) - I(a)

- Moving a from A to B would decrease T by D(a)
• E(b), I(b) and D(b) defined analogously for b in B

° Consider swapping X = {a} and Y = {b}
• newA = A - {a} U {b}, newB = B - {b} U {a}

° newT = T - (D(a) + D(b) - 2*w(a,b)) = T - gain(a,b)
• gain(a,b) measures improvement gotten by swapping a and b

° Update formulas, after a and b are swapped
• newD(a’) = D(a’) + 2*w(a’,a) - 2*w(a’,b) for a’ in A, a’ != a
• newD(b’) = D(b’) + 2*w(b’,b) - 2*w(b’,a) for b’ in B, b’ != b

4

CS267 L15 Graph Partitioning II.7 Demmel Sp 1999

Kernighan/Lin Algorithm
 Compute T = cost(A,B) for initial A, B … cost = O(|N|2)
 Repeat
 … One pass greedily computes |N|/2 possible X,Y to swap, picks best
 Compute costs D(n) for all n in N … cost = O(|N|2)
 Unmark all nodes in N … cost = O(|N|)
 While there are unmarked nodes … |N|/2 iterations
 Find an unmarked pair (a,b) maximizing gain(a,b) … cost = O(|N|2)
 Mark a and b (but do not swap them) … cost = O(1)
 Update D(n) for all unmarked n,
 as though a and b had been swapped … cost = O(|N|)
 Endwhile
 … At this point we have computed a sequence of pairs
 … (a1,b1), … , (ak,bk) and gains gain(1),… ., gain(k)
 … where k = |N|/2, numbered in the order in which we marked them
 Pick m maximizing Gain = Σk=1 to m gain(k) … cost = O(|N|)
 … Gain is reduction in cost from swapping (a1,b1) through (am,bm)
 If Gain > 0 then … it is worth swapping
 Update newA = A - { a1,… ,am } U { b1,… ,bm } … cost = O(|N|)
 Update newB = B - { b1,… ,bm } U { a1,… ,am } … cost = O(|N|)
 Update T = T - Gain … cost = O(1)
 endif
 Until Gain <= 0

CS267 L15 Graph Partitioning II.8 Demmel Sp 1999

 Comments on Kernighan/Lin Algorithm

° Most expensive line show in red

° Some gain(k) may be negative, but if later gains are
large, then final Gain may be positive

• can escape “local minima” where switching no pair helps

° How many times do we Repeat?
• K/L tested on very small graphs (|N|<=360) and got convergence

after 2-4 sweeps
• For random graphs (of theoretical interest) the probability of

convergence in one step appears to drop like 2-|N|/30

5

CS267 L15 Graph Partitioning II.9 Demmel Sp 1999

Partitioning without nodal coordinates - Spectral Bisection

° Based on theory of Fiedler (1970s), popularized by
Pothen, Simon, Liou (1990)

° Motivation, by analogy to a vibrating string

° Basic definitions

° Vibrating string, revisited

° Motivation, by using a continuous approximation to
a discrete optimization problem

° Implementation via the Lanczos Algorithm
• To optimize sparse-matrix-vector multiply, we graph partition
• To graph partition, we find an eigenvector of a matrix associated

with the graph
• To find an eigenvector, we do sparse-matrix vector multiply
• No free lunch ...

CS267 L15 Graph Partitioning II.10 Demmel Sp 1999

Motivation for Spectral Bisection: Vibrating String

° Think of G = 1D mesh as masses (nodes) connected by springs
(edges), i.e. a string that can vibrate

° Vibrating string has modes of vibration, or harmonics

° Label nodes by whether mode - or + to partition into N- and N+

° Same idea for other graphs (eg planar graph ~ trampoline)

6

CS267 L15 Graph Partitioning II.11 Demmel Sp 1999

Basic Definitions

° Definition: The incidence matrix In(G) of a graph
G(N,E) is an |N| by |E| matrix, with one row for each
node and one column for each edge. If edge e=(i,j)
then column e of In(G) is zero except for the i-th and
j-th entries, which are +1 and -1, respectively.

° Slightly ambiguous definition because multiplying
column e of In(G) by -1 still satisfies the definition,
but this won’t matter...

° Definition: The Laplacian matrix L(G) of a graph
G(N,E) is an |N| by |N| symmetric matrix, with one
row and column for each node. It is defined by

• L(G) (i,i) = degree of node I (number of incident edges)
• L(G) (i,j) = -1 if i != j and there is an edge (i,j)
• L(G) (i,j) = 0 otherwise

CS267 L15 Graph Partitioning II.12 Demmel Sp 1999

Example of In(G) and L(G) for 1D and 2D meshes

7

CS267 L15 Graph Partitioning II.13 Demmel Sp 1999

Properties of Incidence and Laplacian matrices

° Theorem 1: Given G, In(G) and L(G) have the
following properties (proof on web page)

• L(G) is symmetric. (This means the eigenvalues of L(G) are real
and its eigenvectors are real and orthogonal.)

• Let e = [1,… ,1]T, i.e. the column vector of all ones. Then L(G)*e=0.
• In(G) * (In(G))T = L(G). This is independent of the signs chosen for

each column of In(G).
• Suppose L(G)*v = λ*v, v != 0, so that v is an eigenvector and λ an

eigenvalue of L(G). Then

• The eigenvalues of L(G) are nonnegative:
- 0 = λ1 <= λ2 <= … <= λn

• The number of connected components of G is equal to the
number of λi equal to 0. In particular, λ2 != 0 if and only if G is
connected.

° Definition: λ2(L(G)) is the algebraic connectivity of G

λ = || In(G)T * v ||2 / || v ||2 … ||x||2 = Σk xk2
 = Σ { (v(i)-v(j))2 for all edges e=(i,j) } / Σi v(i)2

CS267 L15 Graph Partitioning II.14 Demmel Sp 1999

Spectral Bisection Algorithm

° Spectral Bisection Algorithm:
• Compute eigenvector v2 corresponding to λ2(L(G))
• For each node n of G

- if v2(n) < 0 put node n in partition N-
- else put node n in partition N+

° Why does this make sense? First reasons...

° Theorem 2 (Fiedler, 1975): Let G be connected, and
N- and N+ defined as above. Then N- is connected. If
no v2(n) = 0, then N+ is also connected. (proof on web page)

° Recall λ2(L(G)) is the algebraic connectivity of G

° Theorem 3 (Fiedler): Let G1(N,E1) be a subgraph of
G(N,E), so that G1 is “less connected” than G. Then
λ2(L(G)) <= λ2(L(G)) , i.e. the algebraic connectivity
of G1 is less than or equal to the algebraic
connectivity of G. (proof on web page)

8

CS267 L15 Graph Partitioning II.15 Demmel Sp 1999

Motivation for Spectral Bisection: Vibrating String

° Vibrating string has modes of vibration, or harmonics

° Modes computable as follows
• Model string as masses connected by springs (a 1D mesh)
• Write down F=ma for coupled system, get matrix A
• Eigenvalues and eigenvectors of A are frequencies and shapes of

modes

° Label nodes by whether mode - or + to get N- and N+

° Same idea for other graphs (eg planar graph ~ trampoline)

CS267 L15 Graph Partitioning II.16 Demmel Sp 1999

Details for vibrating string

° Force on mass j = k*[x(j-1) - x(j)] + k*[x(j+1) - x(j)]

 = -k*[-x(j-1) + 2*x(j) - x(j+1)]

° F=ma yields m*x’’(j) = -k*[-x(j-1) + 2*x(j) - x(j+1)] (*)

° Writing (*) for j=1,2,… ,n yields

 x(1) 2*x(1) - x(2) 2 -1 x(1) x(1)
 x(2) -x(1) + 2*x(2) - x(3) -1 2 -1 x(2) x(2)
m * d2 … =-k* … =-k* … * … =-k*L* …
 dx2 x(j) -x(j-1) + 2*x(j) - x(j+1) -1 2 -1 x(j) x(j)
 … … … … …
 x(n) 2*x(n-1) - x(n) -1 2 x(n) x(n)

 (-m/k) x’’ = L*x

9

CS267 L15 Graph Partitioning II.17 Demmel Sp 1999

Details for vibrating string - continued

° -(m/k) x’’ = L*x, where x = [x1,x2,… ,xn]T

° Seek solution of form x(t) = sin(α*t) * x0
• L*x0 = (m/k)*α2 * x0 = λ * x0
• For each integer i, get λ = 2*(1-cos(i*π/(n+1)), x0 = sin(1*i*π/(n+1))
 sin(2*i*π/(n+1))
 …
 sin(n*i*π/(n+1))
• Thus x0 is a sine curve with frequency proportional to i
• Thus α2 = 2*k/m *(1-cos(i*π/(n+1)) or α ~ sqrt(k/m)*π*i/(n+1)

° L = 2 -1 not quite L(1D mesh),

 -1 2 -1 but we can fix that ...

 … .

 -1 2

CS267 L15 Graph Partitioning II.18 Demmel Sp 1999

A “vibrating string” for L(1D mesh)

° First equation changes to m*x’’(1) = -k*[-x(2)+ 2x(1)]
• First row of T changes from [2 -1 0 …] to [1 -1 0 …]

° Last equation changes to m*x’’(n)=-k*[-x(n-1) + 2x(n)]
• Last row of T changes from [… 0 -1 2] to [… 0 -1 1]

° Component j of i-th eigenvector changes to
cos((j-.5)*(i-1)*π/n)

10

CS267 L15 Graph Partitioning II.19 Demmel Sp 1999

Eigenvectors of L(1D mesh)

Eigenvector 1
 (all ones)

Eigenvector 2

Eigenvector 3

CS267 L15 Graph Partitioning II.20 Demmel Sp 1999

2nd eigenvector of L(planar mesh)

11

CS267 L15 Graph Partitioning II.21 Demmel Sp 1999

4th eigenvector of L(planar mesh)

CS267 L15 Graph Partitioning II.22 Demmel Sp 1999

Motivation for Spectral Bisection:
Continuous Approximation to a discrete optimization problem

° Use L(G) to count the number of edges from N- to N+

° Lemma 1: Let N = N- U N+ be a partition of G(N,E).
Let x(j) = -1 if j is in N- and x(j) = +1 if j is in N+. Then
(proof on web page)

° Restate partitioning problem as finding vector x with
entries +1 or -1 such that

•Σk x(k) = 0, i.e. |N+| = |N-|
• # edges connecting N+ to N- = .25*xT*L(G)*x is minimized
• Put node j in N+ (or N-) if x(j) >=0 (or < 0)

The number of edges connecting N- and N+
 = .25 * xT * L(G) * x
 = .25 * Σi,k x(i) * L(G)(i,k) * x(k)
 = .25 * Σ { (x(i) - x(k))2 for all edges (i,j) }

12

CS267 L15 Graph Partitioning II.23 Demmel Sp 1999

Converting a discrete to a continuous problem

° Discrete: Find x with entries +1 or -1 such that
•Σk x(k) = 0, i.e. |N+| = |N-|
• # edges connecting N+ to N- = .25*xT*L(G)*x is minimized
• Put node j in N+ (or N-) if x(j) >=0 (or < 0)

° Continuous: Find x with real entries such that
•Σk x(k) = 0 and Σk (x(k))2 = |N| (set includes discrete one above)
• .25*xT*L(G)*x is minimized
• Put node j in N+ (or N-) if x(j) >=0 (or < 0)

° Theorem 4 (Courant/Fischer “minimax theorem”):
x satisfying continuous problem is eigenvector v2,
for λ2 . (proof on web page)

° Theorem 5: The minimum number of edges
connecting N+ and N- in any partitioning with
|N+|=|N-| is at least .25*|N|* λ2. (proof on web page)

• The larger the algebraic connectivity λ2, the more edges we need
to cut to bisect the graph

CS267 L15 Graph Partitioning II.24 Demmel Sp 1999

Computing v2 and λ2 of L(G) using Lanczos

° Given any n-by-n symmetric matrix A (such as L(G))
Lanczos computes a k-by-k “approximation” T by
doing k matrix-vector products, k << n

° Approximate A’s eigenvalues/vectors using T’s

Choose an arbitrary starting vector r
b(0) = ||r||
j=0
repeat
 j=j+1
 q(j) = r/b(j-1) … scale a vector
 r = A*q(j) … matrix vector multiplication, the most expensive step
 r = r - b(j-1)*v(j-1) … “saxpy”, or scalar*vector + vector
 a(j) = v(j)T * r … dot product
 r = r - a(j)*v(j) … “saxpy”
 b(j) = ||r|| … compute vector norm
until convergence … details omitted

T = a(1) b(1)
 b(1) a(2) b(2)
 b(2) a(3) b(3)
 … … …
 b(k-2) a(k-1) b(k-1)
 b(k-1) a(k)

13

CS267 L15 Graph Partitioning II.25 Demmel Sp 1999

References

° Details of all proofs on web page

° A. Pothen, H. Simon, K.-P. Liou, “Partitioning sparse
matrices with eigenvectors of graphs”, SIAM J. Mat.
Anal. Appl. 11:430-452 (1990)

° M. Fiedler, “Algebraic Connectivity of Graphs”,
Czech. Math. J., 23:298-305 (1973)

° M. Fiedler, Czech. Math. J., 25:619-637 (1975)

° B. Parlett, “The Symmetric Eigenproblem”, Prentice-
Hall, 1980

° www.cs.berkeley.edu/~ruhe/lantplht/lantplht.html

° www.netlib.org/laso

