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CS 267 Applications of Parallel Computers

Lecture 15: 

Graph Partitioning - II

James Demmel

http://www.cs.berkeley.edu/~demmel/cs267_Spr99
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Outline of Graph Partitioning Lectures

° Review of last lecture

° Partitioning without Nodal Coordinates - continued
• Kernighan/Lin
• Spectral Partitioning

° Multilevel Acceleration
• BIG IDEA, will appear often in course

° Available Software
• good sequential and parallel software availble

° Comparison of Methods

° Applications
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Review Definition of Graph Partitioning

° Given a graph G = (N, E, WN, WE)
• N = nodes (or vertices),   E = edges
• WN = node weights,    WE = edge weights

° Ex: N = {tasks}, WN = {task costs}, edge (j,k) in E means task j
sends WE(j,k) words to task k

° Choose a partition N = N1 U N2 U …  U NP such that
• The sum of the node weights in each N j is “about the same”
• The sum of all edge weights of edges connecting all different pairs

N j  and Nk is minimized

° Ex: balance the work load, while minimizing communication

° Special case of N = N1 U N2:   Graph Bisection
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Review of last lecture

° Partitioning with nodal coordinates
• Rely on graphs having nodes connected (mostly) to “nearest neighbors”

in space
• Common when graph arises from physical model
• Algorithm very efficient, does not depend on edges!
• Can be used as good starting guess for subsequent partitioners, which do

examine edges
• Can do poorly if graph less connected:

° Partitioning without nodal coordinates
• Depends on edges
• No assumptions about where “nearest neighbors” are
• Began with Breadth First Search (BFS)
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Partitioning without nodal coordinates - Kernighan/Lin

° Take a initial partition and iteratively improve it
• Kernighan/Lin (1970), cost = O(|N|3) but easy to understand
• Fiduccia/Mattheyses (1982), cost = O(|E|), much better, but more

complicated

° Let G = (N,E,WE) be partitioned as N = A U B, where
|A| = |B|

° T = cost(A,B) = Σ {W(e) where e connects nodes in A
and B}

° Find subsets X of A and Y of B with |X| = |Y| so that
swapping X and Y decreases cost:

- newA = A - X U Y    and    newB = B - Y U X
- newT = cost(newA , newB) < cost(A,B)
- Keep choosing X and Y until cost no longer decreases

° Need to compute newT efficiently for many possible
X and Y, choose smallest
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Kernighan/Lin - Preliminary Definitions

° T = cost(A, B),   newT = cost(newA, newB)

° Need an efficient formula for newT; will use
• E(a) = external cost of a in A = Σ {W(a,b) for b in B}
• I(a)  = internal  cost of a in A = Σ {W(a,a’) for other a’ in A}
• D(a) = cost of a in A               = E(a) - I(a)

- Moving a from A to B would decrease T by D(a)
• E(b), I(b) and D(b) defined analogously for b in B

° Consider swapping X = {a} and Y = {b}
• newA = A - {a} U {b},   newB = B - {b} U {a}

° newT = T - ( D(a) + D(b) - 2*w(a,b) ) = T - gain(a,b)
• gain(a,b) measures improvement gotten by swapping a and b

° Update formulas, after a and b are swapped
• newD(a’) = D(a’) + 2*w(a’,a) - 2*w(a’,b)   for a’ in A, a’ != a
• newD(b’) = D(b’) + 2*w(b’,b) - 2*w(b’,a)   for b’ in B, b’ != b



4

CS267  L15 Graph Partitioning II.7 Demmel Sp 1999

Kernighan/Lin Algorithm
    Compute  T = cost(A,B) for initial A, B                                    …  cost = O(|N|2)
    Repeat 
           …  One pass greedily computes |N|/2 possible X,Y to swap, picks best
           Compute costs D(n) for all n in N                                          …  cost = O(|N|2)
           Unmark all nodes in N                                                            …  cost = O(|N|) 
           While there are unmarked nodes                                           …  |N|/2 iterations
                 Find an unmarked pair (a,b) maximizing gain(a,b)             …  cost = O(|N|2) 
                Mark a and b (but do not swap them)                                   …  cost = O(1)
                Update D(n) for all unmarked n, 
                        as though a and b had been swapped                      …  cost = O(|N|) 
            Endwhile
                …  At this point we have computed a sequence of pairs
                …   (a1,b1), …  , (ak,bk)   and gains gain(1),… ., gain(k)
                …  where k = |N|/2, numbered in the order in which we marked them
           Pick m maximizing Gain = Σk=1 to m   gain(k)                         …  cost = O(|N|)
                …  Gain is reduction in cost from swapping (a1,b1) through (am,bm)
           If Gain > 0 then   …  it is worth swapping
                 Update newA = A - { a1,… ,am } U { b1,… ,bm }              …  cost = O(|N|)
                 Update newB = B - { b1,… ,bm } U { a1,… ,am }              …  cost = O(|N|)
                 Update T = T - Gain                                                          …  cost = O(1)
           endif
     Until Gain <= 0
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 Comments on Kernighan/Lin Algorithm

° Most expensive line show in red

° Some gain(k) may be negative, but if later gains are
large, then final Gain may be positive

• can escape “local minima” where switching no pair helps

° How many times do we Repeat?
• K/L tested on very small graphs (|N|<=360) and got convergence

after 2-4 sweeps
• For random graphs (of theoretical interest) the probability of

convergence in one step appears to drop like 2-|N|/30
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Partitioning without nodal coordinates - Spectral Bisection

° Based on theory of Fiedler (1970s), popularized by
Pothen, Simon, Liou (1990)

° Motivation, by analogy to a vibrating string

° Basic definitions

° Vibrating string, revisited

° Motivation, by using a continuous approximation to
a discrete optimization problem

° Implementation via the Lanczos Algorithm
• To optimize sparse-matrix-vector multiply, we graph partition
• To graph partition, we find an eigenvector of a matrix associated

with the graph
• To find an eigenvector, we do sparse-matrix vector multiply
• No free lunch ...
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Motivation for Spectral Bisection: Vibrating String

° Think of G = 1D mesh as masses (nodes) connected by springs
(edges), i.e. a string that can vibrate

° Vibrating string has modes of vibration, or harmonics

° Label nodes by whether mode - or + to partition into N- and N+

° Same idea for other graphs (eg planar graph ~ trampoline)
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Basic Definitions

° Definition: The incidence matrix In(G) of a graph
G(N,E) is an |N| by |E| matrix, with one row for each
node and one column for each edge. If edge e=(i,j)
then column e of In(G) is zero except for the i-th and
j-th entries, which are +1 and -1, respectively.

° Slightly ambiguous definition because multiplying
column e of In(G) by -1 still satisfies the definition,
but this won’t matter...

° Definition: The Laplacian matrix L(G) of a graph
G(N,E) is an |N| by |N| symmetric matrix, with one
row and column for each node. It is defined by

• L(G) (i,i) = degree of node I (number of incident edges)
• L(G) (i,j) = -1 if i != j and there is an edge (i,j)
• L(G) (i,j) = 0 otherwise
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Example of In(G) and L(G) for 1D and 2D meshes
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Properties of Incidence and Laplacian matrices

° Theorem 1: Given G, In(G) and L(G) have the
following properties  (proof on web page)

• L(G) is symmetric. (This means the eigenvalues of L(G) are real
and its eigenvectors are real and orthogonal.)

• Let e = [1,… ,1]T, i.e. the column vector of all ones. Then L(G)*e=0.
• In(G) * (In(G))T = L(G). This is independent of the signs chosen for

each column of In(G).
• Suppose L(G)*v = λ*v, v != 0, so that  v is an eigenvector and λ an

eigenvalue of L(G). Then

• The eigenvalues of L(G) are nonnegative:
- 0 = λ1 <= λ2 <= …  <= λn

• The number of connected components of G is equal to the
number of λi equal to 0. In particular, λ2 != 0 if and only if G is
connected.

° Definition: λ2(L(G)) is the algebraic connectivity of G

λ = || In(G)T * v ||2 / || v ||2                                                    …  ||x||2 = Σk xk2 
   =  Σ { (v(i)-v(j))2 for all edges e=(i,j) } / Σi v(i)2
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Spectral Bisection Algorithm

° Spectral Bisection Algorithm:
• Compute eigenvector v2 corresponding to λ2(L(G))
• For each node n of G

- if v2(n) < 0 put node n in partition N-
- else put node n in partition N+

° Why does this make sense? First reasons...

° Theorem 2 (Fiedler, 1975): Let G be connected, and
N- and N+ defined as above. Then N- is connected. If
no v2(n) = 0, then N+ is also connected. (proof on web page)

° Recall λ2(L(G)) is the algebraic connectivity of G

°  Theorem 3 (Fiedler): Let G1(N,E1) be a subgraph of
G(N,E), so that G1 is “less connected” than G. Then
λ2(L(G))  <=  λ2(L(G)) , i.e. the algebraic connectivity
of G1 is less than or equal to the algebraic
connectivity of G. (proof on web page)
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Motivation for Spectral Bisection: Vibrating String

° Vibrating string has modes of vibration, or harmonics

° Modes computable as follows
• Model string as masses connected by springs (a 1D mesh)
• Write down F=ma for coupled system, get matrix A
• Eigenvalues and eigenvectors of A are frequencies and shapes of

modes

° Label nodes by whether mode - or + to get N- and N+

° Same idea for other graphs (eg planar graph ~ trampoline)
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Details for vibrating string

° Force on mass j = k*[x(j-1) - x(j)]  + k*[x(j+1) - x(j)]

                               = -k*[-x(j-1) + 2*x(j) - x(j+1)]

° F=ma yields  m*x’’(j) =  -k*[-x(j-1) + 2*x(j) - x(j+1)]    (*)

° Writing (*) for j=1,2,… ,n yields

                 x(1)            2*x(1) - x(2)                          2   -1                           x(1)                 x(1)
                 x(2)            -x(1) + 2*x(2) - x(3)              -1    2    -1                   x(2)                 x(2)
m * d2       …      =-k*     …                                =-k*            …                  *   …       =-k*L*     …  
      dx2     x(j)             -x(j-1) + 2*x(j) - x(j+1)                       -1   2   -1        x(j)                  x(j)
                 …                …                                                               …            …                      …  
                 x(n)            2*x(n-1) - x(n)                                          -1   2       x(n)                 x(n) 

    (-m/k) x’’ = L*x     
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Details for vibrating string - continued

° -(m/k) x’’ = L*x, where x = [x1,x2,… ,xn ]T

° Seek solution of form x(t) = sin(α*t) * x0
• L*x0 = (m/k)*α2 * x0 = λ * x0
• For each integer i, get   λ = 2*(1-cos(i*π/(n+1)),  x0  =   sin(1*i*π/(n+1))
                                                                                              sin(2*i*π/(n+1))
                                                                                                        …
                                                                                              sin(n*i*π/(n+1))
• Thus x0 is a sine curve with frequency proportional to i
• Thus α2 = 2*k/m *(1-cos(i*π/(n+1)) or α ~ sqrt(k/m)*π*i/(n+1)

° L  =  2  -1                   not quite L(1D mesh),

          -1   2   -1                 but we can fix that ...

                 … .

                     -1    2
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A “vibrating string” for L(1D mesh)

° First equation changes to m*x’’(1) = -k*[-x(2)+ 2x(1)]
• First row of T changes from [ 2 -1 0 …  ] to [ 1 -1 0 …  ]

° Last equation changes to m*x’’(n)=-k*[-x(n-1) + 2x(n)]
• Last row of T changes from [ …  0 -1 2 ] to [ …  0 -1 1 ]

° Component j of i-th eigenvector changes to
cos((j-.5)*(i-1)*π/n)
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Eigenvectors of L(1D mesh)

Eigenvector 1
  (all ones)

Eigenvector 2

Eigenvector 3
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2nd eigenvector of L(planar mesh)
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4th eigenvector of L(planar mesh)
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Motivation for Spectral Bisection:
Continuous Approximation to a discrete optimization problem

° Use L(G) to count the number of edges from N- to N+

° Lemma 1: Let N = N- U N+ be a partition of G(N,E).
Let x(j) = -1 if j is in N- and  x(j) = +1 if j is in N+. Then
(proof on web page)

° Restate partitioning problem as finding vector x with
entries +1 or -1 such that

•Σk x(k) = 0, i.e. |N+| = |N-|
• # edges connecting N+ to N-  = .25*xT*L(G)*x   is minimized
• Put node j in N+ (or N-) if x(j) >=0 (or < 0)

The number of edges connecting N- and N+ 
                            = .25 * xT * L(G) * x 
                            = .25 * Σi,k x(i) * L(G)(i,k) * x(k)
                            = .25 * Σ { (x(i) - x(k))2   for all edges (i,j) }
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Converting a discrete to a continuous problem

° Discrete: Find x with entries +1 or -1 such that
•Σk x(k) = 0, i.e. |N+| = |N-|
• # edges connecting N+ to N-  = .25*xT*L(G)*x   is minimized
• Put node j in N+ (or N-) if x(j) >=0 (or < 0)

° Continuous: Find x with real entries such that
•Σk x(k) = 0 and Σk (x(k))2 = |N|    (set includes discrete one above)
• .25*xT*L(G)*x   is minimized
• Put node j in N+ (or N-) if x(j) >=0 (or < 0)

° Theorem 4 (Courant/Fischer “minimax theorem”):
x satisfying continuous problem is eigenvector v2,
for λ2 .          (proof on web page)

° Theorem 5:  The minimum number of edges
connecting N+ and N- in any partitioning with
|N+|=|N-| is at least .25*|N|* λ2.         (proof on web page)

• The larger the algebraic connectivity  λ2, the more edges we need
to cut to bisect the graph
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Computing v2 and λ2 of L(G) using Lanczos

° Given any n-by-n symmetric matrix A (such as L(G))
Lanczos computes a k-by-k “approximation”  T by
doing k matrix-vector products, k << n

° Approximate A’s eigenvalues/vectors using T’s

Choose an arbitrary starting vector r
b(0) = ||r||
j=0
repeat
     j=j+1
     q(j) = r/b(j-1)               …  scale a vector 
     r = A*q(j)                     …  matrix vector multiplication, the most expensive step
     r = r - b(j-1)*v(j-1)       …   “saxpy”, or scalar*vector + vector
    a(j) = v(j)T * r               …  dot product
    r = r - a(j)*v(j)               …  “saxpy”
    b(j) = ||r||                      …  compute vector norm
until convergence          …  details omitted

T =  a(1)   b(1)
        b(1)  a(2)    b(2)
                b(2)    a(3)    b(3)
                          …         …       …  
                                     b(k-2)   a(k-1)  b(k-1)
                                                  b(k-1)  a(k)
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