
1

CS267 L5 Distributed Memory.1 Demmel Sp 1999

CS 267 Applications of Parallel Computers

Lecture 5: More about
Distributed Memory Computers

and Programming

James Demmel

http://www.cs.berkeley.edu/~demmel/cs267_Spr99

CS267 L5 Distributed Memory.2 Demmel Sp 1999

Recap of Last Lecture

°Shared memory processors
•If there are caches then hardware must keep

them coherent, i.e. with multiple cached copies
of same location kept equal

•Requires clever hardware (see CS258)
•Distant memory much more expensive to access

°Shared memory programming
•Solaris Threads
•Starting, stopping threads
•Synchronization with barriers, locks
•Sharks and Fish example

2

CS267 L5 Distributed Memory.3 Demmel Sp 1999

Outline

° Distributed Memory Architectures
• Topologies
• Cost models

° Distributed Memory Programming
• Send and Receive
• Collective Communication

° Sharks and Fish
• Gravity

CS267 L5 Distributed Memory.4 Demmel Sp 1999

History and Terminology

3

CS267 L5 Distributed Memory.5 Demmel Sp 1999

Historical Perspective

° Early machines were:
• Collection of microprocessors
• bi-directional queues between neighbors

° Messages were forwarded by processors on path

° Strong emphasis on topology in algorithms

CS267 L5 Distributed Memory.6 Demmel Sp 1999

Network Analogy

° To have a large number of transfers occurring at
once, you need a large number of distinct wires

° Networks are like streets
• link = street
• switch = intersection
• distances (hops) = number of blocks traveled
• routing algorithm = travel plans

° Properties
• latency: how long to get somewhere in the network
• bandwidth: how much data can be moved per unit time

- limited by the number of wires
- and the rate at which each wire can accept data

4

CS267 L5 Distributed Memory.7 Demmel Sp 1999

Components of a Network

° Networks are characterized by

° Topology - how things are connected
• two types of nodes: hosts and switches

° Routing algorithm - paths used
• e.g., all east-west then all north-south (avoids deadlock)

° Switching strategy
• circuit switching: full path reserved for entire message

- like the telephone
• packet switching: message broken into separately-routed packets

- like the post office

° Flow control - what if there is congestion
• if two or more messages attempt to use the same channel
• may stall, move to buffers, reroute, discard, etc.

CS267 L5 Distributed Memory.8 Demmel Sp 1999

Properties of a Network

° Diameter is the maximum shortest path between two
nodes in the graph.

° A network is partitioned if some nodes cannot reach
others.

° The bandwidth of a link in the is: w * 1/t
• w is the number of wires
• t is the time per bit

° Effective bandwidth lower due to packet overhead

° Bisection bandwidth
• sum of the minimum number of channels which, if removed, will

partition the network

R
outing

and control
header

D
ata

payload

E
rror code

Trailer

5

CS267 L5 Distributed Memory.9 Demmel Sp 1999

Topologies
° Originally much research in mapping algorithms to

topologies

° Cost to be minimized was number of “hops” =
communication steps along individual wires

° Modern networks use similar topologies, but hide
hop cost, so algorithm design easier

• changing interconnection networks no longer changes algorithms

° Since some algorithms have “natural topologies”,
still worth knowing

CS267 L5 Distributed Memory.10 Demmel Sp 1999

Linear and Ring Topologies

° Linear array

• diameter is n-1, average distance ~2/3n
• bisection bandwidth is 1

° Torus or Ring

• diameter is n/2, average distance is n/3
• bisection bandwidth is 2

° Used in algorithms with 1D arrays

6

CS267 L5 Distributed Memory.11 Demmel Sp 1999

Meshes and Tori

° 2D
• Diameter: 2 * n
• Bisection bandwidth: n
 2D mesh 2D torus

° Often used as network in machines
° Generalizes to higher dimensions (Cray T3D used 3D Torus)
° Natural for algorithms with 2D, 3D arrays

CS267 L5 Distributed Memory.12 Demmel Sp 1999

Hypercubes

° Number of nodes n = 2d for dimension d
• Diameter: d
• Bisection bandwidth is n/2

° 0d 1d 2d 3d 4d

° Popular in early machines (Intel iPSC, NCUBE)
• Lots of clever algorithms
• See 1996 notes

° Greycode addressing
• each node connected to

d others with 1 bit different
001000

100

010 011

111

101

110

7

CS267 L5 Distributed Memory.13 Demmel Sp 1999

Trees

° Diameter: log n

° Bisection bandwidth: 1

° Easy layout as planar graph

° Many tree algorithms (summation)

° Fat trees avoid bisection bandwidth problem
• more (or wider) links near top
• example, Thinking Machines CM-5

CS267 L5 Distributed Memory.14 Demmel Sp 1999

Butterflies

° Butterfly building block

° Diameter: log n

° Bisection bandwidth: n

° Cost: lots of wires

° Use in BBN Butterfly

° Natural for FFT

O 1O 1

O 1 O 1

8

CS267 L5 Distributed Memory.15 Demmel Sp 1999

Evolution of Distributed Memory Multiprocessors

° Direct queue connections replaced by DMA (direct
memory access)

• Processor packs or copies messages
• Initiates transfer, goes on computing

° Message passing libraries provide store-and-forward
abstraction

• can send/receive between any pair of nodes, not just along one
wire

• Time proportional to distance since each processor along path
must participate

° Wormhole routing in hardware
• special message processors do not interrupt main processors

along path
• message sends are pipelined
• don’t wait for complete message before forwarding

CS267 L5 Distributed Memory.16 Demmel Sp 1999

Performance Models

9

CS267 L5 Distributed Memory.17 Demmel Sp 1999

PRAM

° Parallel Random Access Memory

° All memory access free
• Theoretical, “too good to be true”

° OK for understanding whether an algorithm has
enough parallelism at all

° Slightly more realistic:
• Concurrent Read Exclusive Write (CREW) PRAM

CS267 L5 Distributed Memory.18 Demmel Sp 1999

Latency and Bandwidth

° Time to send message of length n is roughly

° Topology irrelevant

° Often called “α− β model” and written

° Usually α >> β >> time per flop
• One long message cheaper than many short ones

• Can do hundreds or thousands of flops for cost of one message

° Lesson: need large computation to communication
ratio to be efficient

Time = latency + n*cost_per_word
 = latency + n/bandwidth

Time = α + n*β

α + n∗β << n∗(α + 1∗β)

10

CS267 L5 Distributed Memory.19 Demmel Sp 1999

Example communication costs

° α and β measured in units of flops, β measured per 8-byte word

Machine Year α β Mflop rate per proc

 CM-5 1992 1900 20 20
 IBM SP-1 1993 5000 32 100
 Intel Paragon 1994 1500 2.3 50
 IBM SP-2 1994 7000 40 200
 Cray T3D (PVM) 1994 1974 28 94
 UCB NOW 1996 2880 38 180

 SGI Power Challenge 1995 3080 39 308
 SUN E6000 1996 1980 9 180

CS267 L5 Distributed Memory.20 Demmel Sp 1999

More detailed performance model: LogP

° L: latency across the network

° o: overhead (sending and receiving busy time)

° g: gap between messages (1/bandwidth)

° P: number of processors

° People often group overheads into latency
(α, β model)

° Real costs more complicated
• (see Culler/Singh, Chapter 7)

P M P M

os or

L (latency)

11

CS267 L5 Distributed Memory.21 Demmel Sp 1999

Implementing Message Passing
° Many “message passing libraries” available

• Chameleon, from ANL
• CMMD, from Thinking Machines
• Express, commercial
• MPL, native library on IBM SP-2
• NX, native library on Intel Paragon
• Zipcode, from LLL
• …
• PVM, Parallel Virtual Machine, public, from ORNL/UTK
• MPI, Message Passing Interface, industry standard

° Need standards to write portable code

° Rest of this discussion independent of which library

° Will have detailed MPI lecture later

CS267 L5 Distributed Memory.22 Demmel Sp 1999

Implementing Synchronous Message Passing

° Send completes after matching receive and source
data has been sent

° Receive completes after data transfer complete from
matching send

 source destination

1) Initiate send send (Pdest, addr, length,tag) rcv(Psource, addr,length,tag)

2) Address translation on Pdest

3) Send-Ready Request send-rdy-request

4) Remote check for posted receive tag match

5) Reply transaction

 receive-rdy-reply

6) Bulk data transfer

 time

 data-xfer

12

CS267 L5 Distributed Memory.23 Demmel Sp 1999

Example: Permuting Data
° Exchanging data between Procs 0 and 1, V.1: What goes wrong?

Processor 0 Processor 1
 send(1, item0, 1, tag) send(0, item1, 1, tag)
 recv(1, item1, 1, tag) recv(0, item0, 1, tag)

° Deadlock
° Exchanging data between Proc 0 and 1, V.2:

 Processor 0 Processor 1
 send(1, item0, 1, tag) recv(0, item0, 1, tag)
 recv(1, item1, 1, tag) send(0,item1, 1, tag)

° What about a general permutation, where Proc j wants to send to
 Proc s(j), where s(1),s(2),… ,s(P) is a permutation of 1,2,… ,P?

CS267 L5 Distributed Memory.24 Demmel Sp 1999

Implementing Asynchronous Message Passing

° Optimistic single-phase protocol assumes the
destination can buffer data on demand

 source destination

1) Initiate send send (Pdest, addr, length,tag)

2) Address translation on Pdest

3) Send Data Request data-xfer-request

 tag match

 allocate

4) Remote check for posted receive

5) Allocate buffer (if check failed)

6) Bulk data transfer

 rcv(Psource, addr, length,tag)

 time

13

CS267 L5 Distributed Memory.25 Demmel Sp 1999

Safe Asynchronous Message Passing
° Use 3-phase protocol

° Buffer on sending side

° Variations on send completion
• wait until data copied from user to system buffer
• don’t wait -- let the user beware of modifying data

 source destination

1) Initiate send send (Pdest, addr, length,tag) rcv(Psource, addr, length,tag)

2) Address translation on Pdest

3) Send-Ready Request send-rdy-request

4) Remote check for posted receive return and continue tag match

 record send-rdy computing

5) Reply transaction

 receive-rdy-reply

6) Bulk data transfer

 time

 data-xfer

CS267 L5 Distributed Memory.26 Demmel Sp 1999

Example Revisited: Permuting Data
° Processor j sends item to Processor s(j), where
 s(1),… ,s(P) is a permutation of 1,… ,P

Processor j
 send_asynch(s(j), item, 1, tag)
 recv_block(ANY, item, 1, tag)

 ° What could go wrong?
° Need to understand semantics of send and receive

- Many flavors available

14

CS267 L5 Distributed Memory.27 Demmel Sp 1999

Other operations besides send/receive

° “Collective Communication” (more than 2 procs)
• Broadcast data from one processor to all others
• Barrier
• Reductions (sum, product, max, min, boolean and, #, …)

- # is any “associative” operation
• Scatter/Gather
• Parallel prefix

- Proc j owns x(j) and computes y(j) = x(1) # x(2) # … # x(j)
• Can apply to all other processors, or a user-define subset
• Cost = O(log P) using a tree

° Status operations
• Enquire about/Wait for asynchronous send/receives to complete
• How many processors are there
• What is my processor number

CS267 L5 Distributed Memory.28 Demmel Sp 1999

Example: Sharks and Fish

° N fish on P procs, N/P fish per processor
• At each time step, compute forces on fish and move them

° Need to compute gravitational interaction
• In usual n^2 algorithm, every fish depends on every other fish
• every fish needs to “visit” every processor, even if it “lives” on

one

° What is the cost?

15

CS267 L5 Distributed Memory.29 Demmel Sp 1999

2 Algorithms for Gravity: What are their costs?
Algorithm 1

 Copy local Fish array of length N/P to Tmp array
 for j = 1 to N
 for k = 1 to N/P, Compute force from Tmp(k) on Fish(k)
 “Rotate” Tmp by 1
 for k=2 to N/P, Tmp(k) <= Tmp(k-1)
 recv(my_proc - 1,Tmp(1))
 send(my_proc+1,Tmp(N/P)

Algorithm 2

 Copy local Fish array of length N/P to Tmp array
 for j = 1 to P
 for k=1 to N/P, for m=1 to N/P, Compute force from Tmp(k) on Fish(m)
 “Rotate” Tmp by N/P
 recv(my_proc - 1,Tmp(1:N/P))
 send(my_proc+1,Tmp(1:N/P))

What could go wrong? (be careful of overwriting Tmp)

CS267 L5 Distributed Memory.30 Demmel Sp 1999

More Algorithms for Gravity

° Algorithm 3 (in sharks and fish code)
• All processors send their Fish to Proc 0
• Proc 0 broadcasts all Fish to all processors

° Tree-algorithms
• Barnes-Hut, Greengard-Rokhlin, Anderson
• O(N log N) instead of O(N^2)
• Parallelizable with cleverness
• “Just” an approximation, but as accurate as you like (often only a

few digits are needed, so why pay for more)
• Same idea works for other problems where effects of distant

objects becomes “smooth” or “compressible”
- electrostatics, vorticity, …
- radiosity in graphics
- anything satisfying Poisson equation or something like it

• Will talk about it in detail later in course

