Outline

- Understanding Caches
- Optimizing Matrix Multiplication
Idealized Uniprocessor Model

- Processor can name bytes, words, etc. in its address space
 - these represent integers, floats, pointers, structures, arrays, etc.
 - exist in the program stack, static region, or heap

- Operations include
 - read and write (given an address/pointer)
 - arithmetic and other logical operations

- Order specified by program
 - read returns the most recently written data
 - compiler and architecture may reorder operations to optimize performance, as long as the programmer cannot see any reordering

- Cost
 - each operation has roughly the same cost (read, write, multiply, etc.)

Uniprocessor Cost: Reality

- Modern processors use a variety of techniques for performance
 - caches
 - small amount of fast memory where values are “cached” in hope of reusing recently used or nearby data
 - different memory ops can have very different costs
 - parallelism
 - superscalar processors have multiple “functional units” that can run in parallel
 - different orders, instruction mixes have different costs
 - pipelining
 - a form of parallelism, like an assembly line in a factory

- Why is this your problem?
 - In theory, compilers understand all of this and can optimize your program; in practice they don’t.
Matrix-multiply, optimized several ways

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops

Memory Hierarchy

- Most programs have a high degree of **locality** in their accesses
 - spatial locality: accessing things nearby previous accesses
 - temporal locality: reusing an item that was previously accessed
- Memory Hierarchy tries to exploit locality

Memory Hierarchy Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Speed (ns)</th>
<th>Size (bytes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>1s</td>
<td>100s</td>
</tr>
<tr>
<td>Datapath</td>
<td>10s</td>
<td>Ks</td>
</tr>
<tr>
<td>Registers</td>
<td>100s</td>
<td>Ms</td>
</tr>
<tr>
<td>Processor</td>
<td>10s ms</td>
<td>Gs</td>
</tr>
<tr>
<td>Tertiary storage</td>
<td>10s sec</td>
<td>Ts</td>
</tr>
</tbody>
</table>
Cache Basics

- Cache hit: a memory access that is found in the cache -- cheap
- Cache miss: a memory access that is not -- expensive, because we need to get the data elsewhere
- Consider a tiny cache (for illustration only)

![Cache Diagram]

- Cache line length: number of bytes loaded together in one entry
- Direct mapped: only one address (line) in a given range in cache
- Associative: 2 or more lines with different addresses exist

Experimental Study of Memory

- Microbenchmark for memory system performance

 time the following program for each size(A) and stride s
 (repeat to obtain confidence and mitigate timer resolution)
 for array A of size from 4KB to 8MB by 2x
 for stride s from 8 Bytes (1 word) to size(A)/2 by 2x
 for i from 0 to size by s
 load A[i] from memory (8 Bytes)
Observing a Memory Hierarchy

Dec Alpha, 21064, 150 MHz clock

Lessons

- The actual performance of a simple program can be a complicated function of the architecture
- Slight changes in the architecture or program change the performance significantly
- Since we want to write fast programs, we must take the architecture into account, even on uniprocessors
- Since the actual performance is so complicated, we need simple models to help us design efficient algorithms
- We will illustrate with a common technique for improving cache performance, called **blocking**
Optimizing Matrix Addition for Caches

- Dimension $A(n,n)$, $B(n,n)$, $C(n,n)$
- A, B, C stored by column (as in Fortran)
- Algorithm 1:
 - for $i=1:n$, for $j=1:n$, $A(i,j) = B(i,j) + C(i,j)$
- Algorithm 2:
 - for $j=1:n$, for $i=1:n$, $A(i,j) = B(i,j) + C(i,j)$
- What is “memory access pattern” for Algs 1 and 2?
- Which is faster?
- What if A, B, C stored by row (as in C)?

Using a Simpler Model of Memory to Optimize

- Assume just 2 levels in the hierarchy, fast and slow
- All data initially in slow memory
 - $m =$ number of memory elements (words) moved between fast and slow memory
 - $tm =$ time per slow memory operation
 - $f =$ number of arithmetic operations
 - $tf =$ time per arithmetic operation $< tm$
 - $q = f/m$ average number of flops per slow element access
- Minimum possible Time $= f*tf$, when all data in fast memory
- Actual Time $= f*tf + m*tm = f*tf*(1 + (tm/tf)*(1/q))$
- Larger q means Time closer to minimum $f*tf$
Simple example using memory model

- To see results of changing q, consider simple computation

\[
s = 0 \\
\text{for } i = 1, n \\
s = s + h(X[i])
\]

- Assume $t_f = 1 \text{ Mflop/s}$ on fast memory
- Assume moving data is $t_m = 10$
- Assume h takes q flops
- Assume array X is in slow memory

- So $m = n$ and $f = q \cdot n$
- Time = read X + compute = $10 \cdot n + q \cdot n$
- Mflop/s = $f/t = q/(10 + q)$
- As q increases, this approaches the “peak” speed of 1 Mflop/s

Simple Example (continued)

- Algorithm 1

\[
s1 = 0; \quad s2 = 0 \\
\text{for } j = 1 \text{ to } n \\
s1 = s1 + h1(X(j)) \\
s2 = s2 + h2(X(j))
\]

- Algorithm 2

\[
s1 = 0; \quad s2 = 0 \\
\text{for } j = 1 \text{ to } n \\
s1 = s1 + h1(X(j)) \\
\text{for } j = 1 \text{ to } n \\
s2 = s2 + h2(X(j))
\]

- Which is faster?
Optimizing Matrix Multiply for Caches

Several techniques for making this faster on modern processors
 - heavily studied

Some optimizations done automatically by compiler, but can do much better

In general, you should use optimized libraries (often supplied by vendor) for this and other very common linear algebra operations
 - BLAS = Basic Linear Algebra Subroutines

Other algorithms you may want are not going to be supplied by vendor, so need to know these techniques

Warm up: Matrix-vector multiplication $y = y + A^*x$

for $i = 1:n$

 for $j = 1:n$

 $y(i) = y(i) + A(i,j)^*x(j)$
Warm up: Matrix-vector multiplication \(y = y + A^t x \)

\{read \(x(1:n) \) into fast memory\}
\{read \(y(1:n) \) into fast memory\}

\[\begin{align*}
&\text{for } i = 1:n \\
&\quad \{\text{read row } i \text{ of } A \text{ into fast memory}\} \\
&\quad \text{for } j = 1:n \\
&\qquad y(i) = y(i) + A(i,j)^t x(j) \\
&\text{\{write } y(1:n) \text{ back to slow memory\}}
\end{align*}\]

\(m = \text{number of slow memory refs} = 3n + n^2 \)
\(f = \text{number of arithmetic operations} = 2n^2 \)
\(q = f/m \approx 2 \)

Matrix-vector multiplication limited by slow memory speed

Matrix Multiply \(C = C + A^t B \)

\[\begin{align*}
&\text{for } i = 1 \text{ to } n \\
&\quad \text{for } j = 1 \text{ to } n \\
&\quad \text{for } k = 1 \text{ to } n \\
&\quad \quad C(i,j) = C(i,j) + A(i,k) \times B(k,j)
\end{align*}\]
Matrix Multiply $C=C+A^iB$(unblocked, or untiled)

for $i = 1$ to n
{read row i of A into fast memory}
for $j = 1$ to n
{read $C(i,j)$ into fast memory}
{read column j of B into fast memory}
for $k = 1$ to n
$C(i,j) = C(i,j) + A(i,k) \times B(k,j)$
{write $C(i,j)$ back to slow memory}

Matrix Multiply (unblocked, or untiled)

Number of slow memory references on unblocked matrix multiply

$m = n^3$ read each column of B n times
$+ n^2$ read each column of A once for each i
$+ 2^n^2$ read and write each element of C once
$= n^3 + 3^n^2$

So $q = f/m = (2^n^3)/(n^3 + 3^n^2)$
~ $= 2$ for large n, no improvement over matrix-vector mult
Matrix Multiply (blocked, or tiled)

Consider A, B, C to be N by N matrices of b by b subblocks where b=n/N is called the blocksize.

for i = 1 to N
 for j = 1 to N
 {read block C(i,j) into fast memory}
 for k = 1 to N
 {read block A(i,k) into fast memory}
 {read block B(k,j) into fast memory}
 C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
 {write block C(i,j) back to slow memory}

= + *

C(i,j) C(i,j) A(i,k)
B(k,j)

Matrix Multiply (blocked or tiled)

Why is this algorithm correct?

Number of slow memory references on blocked matrix multiply
m = N*n^2 read each block of B N^3 times (N^3 * n/N * n/N)
 + N*n^2 read each block of A N^3 times
 + 2*n^2 read and write each block of C once
 = (2*N + 2)*n^2
So q = f/m = 2*n^3 / ((2*N + 2)*n^2)
 ~ n/N = b for large n

So we can improve performance by increasing the blocksize b
Can be much faster than matrix-vector multiply (q=2)

Limit: All three blocks from A, B, C must fit in fast memory (cache), so we cannot make these blocks arbitrarily large: 3*b^2 <= M, so q ~ b <= sqrt(M/3)

Theorem (Hong, Kung, 1981): Any reorganization of this algorithm (that uses only associativity) is limited to q = O(sqrt(M))
More on BLAS (Basic Linear Algebra Subroutines)

- Industry standard interface (evolving)
- Vendors, others supply optimized implementations

History
- BLAS1 (1970s):
 - vector operations: dot product, saxpy (\(y=\alpha x+y\)), etc
 - \(m=2n, f=2n, q \approx 1\) or less
- BLAS2 (mid 1980s)
 - matrix-vector operations: matrix vector multiply, etc
 - \(m=n^2, f=2^n, q \approx 2\), less overhead
 - somewhat faster than BLAS1
- BLAS3 (late 1980s)
 - matrix-matrix operations: matrix matrix multiply, etc
 - \(m \gg 4n^2, f=O(n^3)\), so \(q\) can possibly be as large as \(n\), so BLAS3
 is potentially much faster than BLAS2

- Good algorithms used BLAS3 when possible (LAPACK)

BLAS speeds on an IBM RS6000/590

- Peak speed = 266 Mflops
- BLAS 3 (n-by-n matrix matrix multiply) vs
- BLAS 2 (n-by-n matrix vector multiply) vs
- BLAS 1 (saxpy of \(n\) vectors)
Optimizing in practice

- Tiling for registers
 - loop unrolling, use of named “register” variables

- Tiling for multiple levels of cache

- Exploiting fine-grained parallelism within the processor
 - super scalar
 - pipelining

- Complicated compiler interactions

- Hard to do by hand (but you’ll try)

- Automatic optimization an active research area
 - PHIPAC: www.icsi.berkeley.edu/~bilmes/hipac
 - www.cs.berkeley.edu/~iyer/asci_slides.ps
 - ATLAS: www.netlib.org/atlas/index.html

PHIPAC: Portable High Performance ANSI C

Speed of n-by-n matrix multiply on Sun Ultra-1/170, peak = 330 MFlops
Strassen’s Matrix Multiply

- The traditional algorithm (with or without tiling) has $O(n^3)$ flops
- Strassen discovered an algorithm with asymptotically lower flops
 - $O(n^{2.81})$
- Consider a 2x2 matrix multiply, normally 8 multiplies

Let $M = \begin{bmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \ast \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$

Let
- $p_1 = (a_{12} - a_{22}) \ast (b_{21} + b_{22})$
- $p_2 = (a_{11} + a_{22}) \ast (b_{11} + b_{22})$
- $p_3 = (a_{11} - a_{21}) \ast (b_{11} + b_{12})$
- $p_4 = (a_{11} + a_{12}) \ast b_{22}$
- $p_5 = a_{11} \ast (b_{12} - b_{22})$
- $p_6 = a_{22} \ast (b_{21} - b_{11})$
- $p_7 = (a_{21} + a_{22}) \ast b_{11}$

Then
- $m_{11} = p_1 + p_2 - p_4 + p_6$
- $m_{12} = p_4 + p_5$
- $m_{21} = p_6 + p_7$
- $m_{22} = p_2 - p_3 + p_5 - p_7$

Extends to $n \times n$ by divide & conquer

Strassen (continued)

$T(n) = \text{Cost of multiplying } n \times n \text{ matrices}$

$= 7 \ast T(n/2) + 18 \ast (n/2)^2$

$= O(n^{\log_2 7})$

$= O(n^{2.81})$

- Why does Hong/Kung theorem not apply?
- Available in several libraries
- Up to several time faster if n large enough (100s)
- Needs more memory than standard algorithm
- Can be less accurate because of roundoff error
- Current world’s record is $O(n^{2.376..})$
Locality in Other Algorithms

° The performance of any algorithm is limited by q
° In matrix multiply, we increase q by changing computation order
 • increased temporal locality

° For other algorithms and data structures, even hand-transformations are still an open problem
 • sparse matrices (reordering, blocking)
 • trees (B-Trees are for the disk level of the hierarchy)
 • linked lists (some work done here)

Summary

° Performance programming on uniprocessors requires
 • understanding of memory system
 - levels, costs, sizes
 • understanding of fine-grained parallelism in processor to produce good instruction mix
° Blocking (tiling) is a basic approach that can be applied to many matrix algorithms
° Applies to uniprocessors and parallel processors
 • The technique works for any architecture, but choosing the blocksize b and other details depends on the architecture
° Similar techniques are possible on other data structures
° You will get to try this in Assignment 2 (see the class homepage)