CS267 – Lecture 15
Automatic Performance Tuning
and
Sparse-Matrix-Vector-Multiplication (SpMV)

James Demmel
www.cs.berkeley.edu/~demmel/cs267_Spr16

Outline
• Motivation for Automatic Performance Tuning
• Results for sparse matrix kernels
• OSKI = Optimized Sparse Kernel Interface
 – pOSKI for multicore
• Tuning Higher Level Algorithms
• Future Work, Class Projects

Motivation for Automatic Performance Tuning
• Writing high performance software is hard
 – Make programming easier while getting high speed
• Ideal: program in your favorite high level language (Matlab, Python, …) and get a high fraction of peak performance
• Reality: Best algorithm (and its implementation) can depend strongly on the problem, computer architecture, compiler,…
 – Best choice can depend on knowing a lot of applied mathematics and computer science
• How much of this can we teach?
• How much of this can we automate?

Examples of Automatic Performance Tuning (1)
• Dense BLAS
 – Sequential
 – PHIPAC (UCB), then ATLAS (UTK) (used in Matlab)
 – math-atlas.sourceforge.net/
 – Internal vendor tools
• Fast Fourier Transform (FFT) & variations
 – Sequential and Parallel
 – FFTW (MIT)
 – www.fftw.org
• Digital Signal Processing
 – SPIRAL: www.spiral.net (CMU)
• Communication Collectives (UCB, UTK)
• Rose (LLNL), Bernoulli (Cornell), Telescoping Languages (Rice), …
• More projects, conferences, government reports, …
Examples of Automatic Performance Tuning (2)

- What do dense BLAS, FFTs, signal processing, MPI reductions have in common?
 - Can do the tuning **off-line**: once per architecture, algorithm
 - Can take as much time as necessary (hours, a week...)
 - At run-time, algorithm choice may depend only on few parameters
 - Matrix dimension, size of FFT, etc.

Tuning Register Tile Sizes (Dense Matrix Multiply)

![Chart showing performance in MFlop/s for different register tile sizes](chart.png)

Needle in a haystack

Example: Select a Matmul Implementation

![Graph showing performance comparison](graph.png)

Example: Support Vector Classification

![Graph showing performance comparison](graph2.png)
Machine Learning in Automatic Performance Tuning

- **References**
 - Statistical Models for Empirical Search-Based Performance Tuning
 Richard Vuduc, J. Demmel, and Jeff A. Bilmes.
 - Predicting and Optimizing System Utilization and Performance via Statistical Machine Learning

- **More references**
 - Machine Learning for Predictive Autotuning with Boosted Regression Trees,
 - Practical Bayesian Optimization of Machine Learning Algorithms,
 (NIPS 2012) J. Snoek et al
 - OpenTuner: An Extensible Framework for Program Autotuning,
 (dspace.mit.edu/handle/1721.1/81958) S. Amarasinghe et al

Examples of Automatic Performance Tuning (3)

- What do dense BLAS, FFTs, signal processing, MPI reductions have in common?
 - Can do the tuning off-line: once per architecture, algorithm
 - Can take as much time as necessary (hours, a week...)
 - At run-time, algorithm choice may depend only on few parameters
 - Matrix dimension, size of FFT, etc.
- Can’t always do off-line tuning
 - Algorithm and implementation may strongly depend on data only known at run-time
 - Ex: Sparse matrix nonzero pattern determines both best data structure and implementation of Sparse-matrix-vector-multiplication (SpMV)
 - Part of search for best algorithm just be done (very quickly!) at run-time

Source: Accelerator Cavity Design Problem (Ko via Husbands)
Linear Programming Matrix

A Sparse Matrix You Encounter Every Day

Matrix-vector multiply kernel:
\[y(i) \leftarrow y(i) + A(i,j)x(j) \]
for each row \(i \)
for \(k = \text{ptr}[i] \) to \(\text{ptr}[i+1]-1 \) do
\[y[i] = y[i] + \text{val[k]} \cdot x[\text{ind[k]}] \]

SpMV with Compressed Sparse Row (CSR) Storage

Example: The Difficulty of Tuning

- \(n = 21200 \)
- \(\text{nnz} = 1.5 \text{ M} \)
- kernel: SpMV
- Source: NASA structural analysis problem
Example: The Difficulty of Tuning

- \(n = 21200 \)
- \(nnz = 1.5 \text{ M} \)
- kernel: SpMV
- Source: NASA structural analysis problem
- \(8 \times 8 \) dense substructure

Taking advantage of block structure in SpMV

- Bottleneck is time to get matrix from memory
 - Only 2 flops for each nonzero in matrix
- Don’t store each nonzero with index, instead store each nonzero \(r \)-by-\(c \) block with index
 - Storage drops by up to 2x, if \(rc \gg 1 \), all 32-bit quantities
 - Time to fetch matrix from memory decreases
- Change both data structure and algorithm
 - Need to pick \(r \) and \(c \)
 - Need to change algorithm accordingly
- In example, is \(r = c = 8 \) best choice?
 - Minimizes storage, so looks like a good idea...

Speedups on Itanium 2: The Need for Search

- Reference: 4x2
- Best: 4x2

Register Profile: Itanium 2

- SpMV/ESGR Profile [ref-204.3Mflop/s] (ref-274.3Mflop/s)
- 190 Mflop/s
- 1190 Mflop/s
SpMV Performance (Matrix #2): Generation 1

- Power3: 13%
- Power4: 14%
- Itanium 2: 31%
- Itanium 1: 7%

195 Mflop/s, 703 Mflop/s, 225 Mflop/s, 1.1 Gflop/s

Register Profiles: IBM and Intel IA-64

- Power3: 17%
- Power4: 16%
- Itanium 2: 33%
- Itanium 1: 8%

252 Mflop/s, 122 Mflop/s, 247 Mflop/s, 107 Mflop/s

1.2 Gflop/s

SpMV Performance (Matrix #2): Generation 2

- Ultra 2i: 9%
- Ultra 3: 5%
- Pentium III-M: 15%
- Pentium III: 19%

63 Mflop/s, 35 Mflop/s, 96 Mflop/s, 42 Mflop/s

Register Profiles: Sun and Intel x86

- Ultra 2i: 11%
- Ultra 3: 5%
- Pentium III-M: 15%
- Pentium III: 21%

72 Mflop/s, 35 Mflop/s, 108 Mflop/s, 42 Mflop/s

122 Mflop/s, 58 Mflop/s
Another example of tuning challenges

- More complicated non-zero structure in general
- \(N = 16614 \)
- \(NNZ = 1.1M \)

Zoom in to top corner

- More complicated non-zero structure in general
- \(N = 16614 \)
- \(NNZ = 1.1M \)

3x3 blocks look natural, but...

- More complicated non-zero structure in general
- Example: 3x3 blocking
 - Logical grid of 3x3 cells
- But would lead to lots of "fill-in"

Extra Work Can Improve Efficiency!

- More complicated non-zero structure in general
- Example: 3x3 blocking
 - Logical grid of 3x3 cells
 - Fill-in explicit zeros
 - Unroll 3x3 block multiplies
 - "Fill ratio" = 1.5
- On Pentium III: 1.5x speedup!
 - Actual mflop rate \(1.5^2 = 2.25 \) higher
Automatic Register Block Size Selection

- Selecting the $r \times c$ block size
 - **Off-line benchmark**
 - Precompute $\text{Mflops}(r,c)$ using dense A for each $r \times c$
 - Once per machine/architecture
 - **Run-time "search"**
 - Sample A to estimate $\text{Fill}(r,c)$ for each $r \times c$
 - **Run-time heuristic model**
 - Choose r, c to minimize $\text{time} \sim \frac{\text{Fill}(r,c)}{\text{Mflops}(r,c)}$

Accurate and Efficient Adaptive Fill Estimation

- **Idea:** Sample matrix
 - Fraction of matrix to sample: $s \in [0,1]$
 - Cost $\sim O(s \times \text{nnz})$
 - Control cost by controlling s
 - Search at run-time: the constant matters!
 - Control s automatically by computing statistical confidence intervals
 - Idea: Monitor variance
 - Cost of tuning
 - Lower bound: convert matrix in 5 to 40 unblocked SpMVs
 - Heuristic: 1 to 11 SpMVs

Accuracy of the Tuning Heuristics

See p. 375 of Vuduc’s thesis for matrices

NOTE: “Fair” flops used (ops on explicit zeros not counted as “work”)
Accuracy of the Tuning Heuristics [Itanium 2]

DGEMV

- Upper Bounds on Performance for blocked SpMV

- \(P = \frac{\text{flops}}{\text{time}} \)
 - Flops = 2 * \(\text{nnz}(A) \)

- Lower bound on time: Two main assumptions
 1. Count memory ops only (streaming)
 2. Count only compulsory, capacity misses: ignore conflicts
 - Account for line sizes
 - Account for matrix size and nnz

- Charge minimum access “latency” \(\alpha \) at L1 cache & \(\alpha_{\text{mem}} \)
 - e.g., Saavedra-Barrera and PMaC MAPS benchmarks

\[
\text{Time} \geq \sum_{i} \alpha_{L1} \cdot \text{Hits}_{i} + \alpha_{\text{mem}} \cdot \text{Hit}_{\text{miss}} \sum_{i} \left(\alpha_{L1} - \alpha_{L1} \right) \cdot \text{Misses}_{i} + \left(\alpha_{\text{mem}} - \alpha_{\text{mem}} \right) \cdot \text{Misses}_{i}
\]

Example: L2 Misses on Itanium 2

Misses measured using PAPI [Browne '00]

Example: Bounds on Itanium 2

Performance Bounds on Register Blocked SpMV [Itanium 2]

Upper bound: 0.3611
Lower bound: 0.3333
Summary of Other Sequential Performance Optimizations

- **Optimizations for SpMV**
 - **Register blocking (RB)**: up to 4x over CSR
 - **Variable block splitting**: 2.1x over CSR, 1.8x over RB
 - **Diagonals**: 2x over CSR
 - **Reordering** to create dense structure + splitting: 2x over CSR
 - **Symmetry**: 2.8x over CSR, 2.6x over RB
 - **Cache blocking**: 2.8x over CSR
 - **Multiple vectors (SpMM)**: 7x over CSR
 - And combinations...

- **Sparse triangular solve**
 - Hybrid sparse/dense data structure: 1.8x over CSR

- **Higher-level kernels**
 - \(A \cdot A^T \cdot x\), \(A^T \cdot A \cdot x\): 4x over CSR, 1.8x over RB
 - \(A^T \cdot x\): 2x over CSR, 1.5x over RB
 - \(A^x, A \cdot x, A^T \cdot x, \ldots, A^* \cdot x\)

Example: Sparse Triangular Factor

- **Raefsky4 (structural problem) + SuperLU + colmmd**
- \(N=19779, \text{nnz}=12.6 \ M\)

Dense trailing triangle:
- \(\text{dim}=2268, 20\% \text{ of total } \text{nz}\)
- Can be as high as 90+\%! 1.8x over CSR
Cache Optimizations for $AA^T \mathbf{x}$

- **Cache-level:** Interleave multiplication by A, A^T
 - Only fetch A from memory once

$$AA^T \cdot \mathbf{x} = \left(a_1 \ldots a_n \right) \begin{pmatrix} a_1^T \\ \vdots \\ a_n^T \end{pmatrix} \cdot \mathbf{x} = \sum_{i=1}^{n} a_i \left(a_i^T \mathbf{x} \right)$$

- **Register-level:** a_i^T to be $r \times c$ block row, or diag row

Example: Combining Optimizations (1/2)

- Register blocking, symmetry, multiple (k) vectors
 - Three low-level tuning parameters: r, c, v

Example: Combining Optimizations (2/2)

- Register blocking, symmetry, and multiple vectors
 - [Ben Lee @ UCB]
 - Symmetric, blocked, 1 vector
 - Up to 2.6x over nonsymmetric, blocked, 1 vector
 - Symmetric, blocked, k vectors
 - Up to 2.1x over nonsymmetric, blocked, k vectors
 - Up to 7.3x over nonsymmetric, nonblocked, 1 vector
 - Symmetric Storage: up to 64.7% savings

Why so much about SpMV?

- Contents of the "Sparse Motif"

 - What is "sparse linear algebra"?
 - Direct solvers for $Ax=b$, least squares
 - Sparse Gaussian elimination, QR for least squares
 - How to choose: crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
 - Iterative solvers for $Ax=b$, least squares, $Ax=\lambda \mathbf{x}$, SVD
 - Used when SpMV only affordable operation on A
 - Krylov Subspace Methods
 - How to choose
 - For $Ax=b$: www.netlib.org/linalg/html_templates/Templates.html
 - For $Ax=\lambda \mathbf{x}$: www.cs.ucdavis.edu/~bai/ET/contents.html
 - What about Multigrid?
 - In overlap of sparse and (un)structured grid motifs – details later
How to choose an iterative solver - example

Is storage expensive?
No Yes

A available?
No Yes

A symmetric?
No Yes

Is A well-conditioned?
No Yes

A definite?
No Yes

Largest and smallest eigenvalues known?
No Yes

Is A well-conditioned?
No Yes

Try CGS or Bi-CGStab or GMRES(k)
Try MINRES
nonsymmetric A
Try GMRES
Try CG

All methods (GMRES, CGS, CG...) depend on SpMV (or variations...)
See www.netlib.org/templates/templates.html for details

Potential Impact on Applications: Omega3P

Application: accelerator cavity design [Ko]
Relevant optimization techniques
 - Symmetric storage
 - Register blocking
 - Reordering, to create more dense blocks
 - Reverse Cuthill-McKee ordering to reduce bandwidth
 - Do Breadth-First-Search, number nodes in reverse order visited
 - Traveling Salesman Problem-based ordering to create blocks
 - Nodes = columns of A
 - Weights(u, v) = no. of nonzeros u, v have in common
 - Tour = ordering of columns
 - Choose maximum weight tour
 - See [Pinar & Heath ’97]
 - 2.1x speedup on Power 4

Source: Accelerator Cavity Design Problem (Ko via Husbands)
Post-RCM Reordering

100x100 Submatrix Along Diagonal

“Microscopic” Effect of RCM Reordering

“Microscopic” Effect of Combined RCM+TSP Reordering

Before: Green + Red
After: Green + Blue
How do permutations affect algorithms?

- $A = \text{original matrix}$, $A^p = A$ with permuted rows, columns
- Naïve approach: permute x, multiply $y = A^p x$, permute y
- Faster way to solve $Ax = b$
 - Write $A^p = P^T A P$ where P is a permutation matrix
 - Solve $A^p x^p = P^t b$, using SpMV with A^p, then let $x = Px^p$
 - Only need to permute vectors twice, not twice per iteration
- Faster way to solve $Ax = \lambda x$
 - A and A^p have same eigenvalues, no vectors to permute!
 - $A^p x^p = \lambda x^p$ implies $Ax = \lambda x$ where $x = Px^p$
- Where else do optimizations change higher level algorithms? More later...

Multicore SMPs Used

- Intel Xeon E5345 (Clovertown)
- AMD Opteron 2356 (Barcelona)
- IBM QS20 Cell Blade
- Sun T2 + T5140 (Victoria Falls)

Tuning SpMV on Multicore
Multicore SMPs Used
(Conventional cache-based memory hierarchy)

- Intel Xeon E5535 (Clovertown)
- AMD Opteron 2356 (Barcelona)
- Sun T2+ T5140 (Victoria Falls)
- IBM QS20 Cell Blade

Source: Sam Williams

Multicore SMPs Used
(Local store-based memory hierarchy)

- Intel Xeon E5535 (Clovertown)
- AMD Opteron 2356 (Barcelona)
- Sun T2+ T5140 (Victoria Falls)
- IBM QS20 Cell Blade

Source: Sam Williams

Multicore SMPs Used
(CMT = Chip-MultiThreading)

- Intel Xeon E5535 (Clovertown)
- AMD Opteron 2356 (Barcelona)
- Sun T2+ T5140 (Victoria Falls)
- IBM QS20 Cell Blade

Source: Sam Williams

Multicore SMPs Used
(threads)

- Intel Xeon E5535 (Clovertown)
- AMD Opteron 2356 (Barcelona)
- Sun T2+ T5140 (Victoria Falls)
- IBM QS20 Cell Blade

8 threads
128 threads

Source: Sam Williams

*SPEs only
Multicore SMPs Used
(Non-Uniform Memory Access - NUMA)

AMD Opteron 2356 (Barcelona)
Intel Xeon E5345 (Clovertown)
IBM QS20 Cell Blade
Sun T2+ T5140 (Victoria Falls)

75 GFlop/s
74 Gflop/s
19 GFlop/s
29* GFlop/s

"SPEs only"

Source: Sam Williams

Multicore SMPs Used
(peak double precision flops)

AMD Opteron 2356 (Barcelona)
Intel Xeon E5345 (Clovertown)
IBM QS20 Cell Blade
Sun T2+ T5140 (Victoria Falls)

75 GFlop/s
74 Gflop/s
19 GFlop/s
29* GFlop/s

"SPEs only"

Source: Sam Williams

Multicore SMPs Used
(Total DRAM bandwidth)

AMD Opteron 2356 (Barcelona)
Intel Xeon E5345 (Clovertown)
Sun T2+ T5140 (Victoria Falls)
IBM QS20 Cell Blade

21 GB/s (read)
10 GB/s (write)
21 GB/s
42 GB/s (read)
21 GB/s (write)
51 GB/s

"SPEs only"

Source: Sam Williams

Results from
"Auto-tuning Sparse Matrix-Vector Multiplication (SpMV)"

Samuel Williams, Leonid Oliker, Richard Vuduc, John Shalf, Katherine Yelick, James Demmel,
"Optimization of Sparse Matrix-Vector Multiplication on Emerging Multicore Platforms",
Supercomputing (SC), 2007.
Test matrices

- Suite of 14 matrices
- All bigger than the caches of our SMPs
- We’ll also include a median performance number

2K x 2K Dense matrix stored in sparse format

Well Structured (sorted by nonzeros/row)

Poorly Structured (hodgepodge)

Extremely Aspect Ratio (linear programming)

Source: Sam Williams

SpMV Parallelization

- How do we parallelize a matrix-vector multiplication?

We could parallelize by columns (sparse matrix time dense sub vector) and in the worst case simplify the random access challenge but:

- each thread would need to store a temporary partial sum
- and we would need to perform a reduction (inter-thread data dependency)

Source: Sam Williams
SpMV Parallelization

- How do we parallelize a matrix-vector multiplication?
- By rows blocks
- No inter-thread data dependencies, but random access to x

Source: Sam Williams

Summary of Multicore Optimizations

- NUMA - Non-Uniform Memory Access
 - pin submatrices to memories close to cores assigned to them
- Prefetch – values, indices, and/or vectors
 - use exhaustive search on prefetch distance
- Matrix Compression – not just register blocking (BCSR)
 - 32 or 16-bit indices, Block Coordinate format for submatrices
- Cache-blocking
 - 2D partition of matrix, so needed parts of x,y fit in cache

Source: Sam Williams

SpMV Performance

- Out-of-the-box SpMV performance on a suite of 14 matrices
- Simplest solution = parallelization by rows
- Scalability isn’t great
- Can we do better?

Source: Sam Williams

NUMA

(Data Locality for Matrices)

- On NUMA architectures, all large arrays should be partitioned either
 - explicitly (multiple malloc()’s + affinity)
 - implicitly (parallelize initialization and rely on first touch)
- You cannot partition on granularities less than the page size
 - 512 elements on x86
 - 2M elements on Niagara
- For SpMV, partition the matrix and perform multiple malloc()’s
- Pin submatrices so they are co-located with the cores tasked to process them

Source: Sam Williams
NUMA (Data Locality for Matrices)

- Source: Sam Williams

Prefetch for SpMV

- SW prefetch injects more MLP into the memory subsystem.
- Supplement HW prefetchers
- Can try to prefetch the
 - values
 - indices
 - source vector
 - or any combination thereof
- In general, should only insert one prefetch per cache line (works best on unrolled code)

```c
for(all rows){
    y0 = 0.0;
    y1 = 0.0;
    y2 = 0.0;
    y3 = 0.0;
    for(all tiles in this row){
        PREFETCH(V[i]+PFDistance);
        y0+=V[i]*X[C[i]]
        y1+=V[i+1]*X[C[i]]
        y2+=V[i+2]*X[C[i]]
        y3+=V[i+3]*X[C[i]]
    }
    y[r+0] = y0;
    y[r+1] = y1;
    y[r+2] = y2;
    y[r+3] = y3;
}
```

Source: Sam Williams

SpMV Performance

- NUMA-aware allocation is essential on memory-bound NUMA SMPs.
- Explicit software prefetching can boost bandwidth and change cache replacement policies
- Cell PPEs are latency-limited.
- used exhaustive search for best prefetch distance

Matrix Compression

- Goal: minimize memory traffic
- Register blocking
 - Choose block size to minimize memory traffic
 - Only power-of-2 block sizes
 - Simplifies search, achieves most of the possible speedup
- Shorter indices
 - 32-bit, or 16-bit if possible
- Different sparse matrix formats
 - BCSR – Block compressed sparse row
 - Like CSR but with register blocks
 - BCOO – Block coordinate
 - Stores row and column index of each register block
 - Better on very sparse sub-blocks (see cache blocking later)
ILP/DLP vs Bandwidth

- In the multicore era, which is the bigger issue?
 - a lack of ILP/DLP (a major advantage of BCSR)
 - insufficient memory bandwidth per core
- There are many architectures that when running low arithmetic intensity kernels, there is so little available memory bandwidth per core that you won’t notice a complete lack of ILP
- Perhaps we should concentrate on minimizing memory traffic rather than maximizing ILP/DLP
- Rather than benchmarking every combination, just Select the register blocking that minimizes the matrix footprint.

Matrix Compression Strategies

- Where possible we may encode indices with less than 32 bits
- We may also select different matrix formats
- Register blocking creates small dense tiles
 - better ILP/DLP
 - reduced overhead per nonzero
- Let each thread select a unique register blocking
- In this work, we only considered power-of-two register blocks
 - select the register blocking that minimizes memory traffic

Matrix Compression Strategies

- Where possible we may encode indices with less than 32 bits
- We may also select different matrix formats
- In this work, we considered 16-bit and 32-bit indices (relative to thread’s start)
- We explored BCSR/BCOO (GCSR in book chapter)

SpMV Performance

- After maximizing memory bandwidth, the only hope is to minimize memory traffic.
- Compression: exploit
 - register blocking
 - other formats
 - smaller indices
- Use a traffic minimization heuristic rather than search
- Benefit is clearly matrix-dependent.
- Register blocking enables efficient software prefetching (one per cache line)
Cache blocking for SpMV
(Data Locality for Vectors)

- Store entire submatrices contiguously
- The columns spanned by each cache block are selected to use same space in cache, i.e. access same number of \(x(i)\)
- TLB blocking is a similar concept but instead of on 8 byte granularities, it uses 4KB granularities

Source: Sam Williams

Auto-tuned SpMV Performance
(cache and TLB blocking)

- Fully auto-tuned SpMV performance across the suite of matrices
- Why do some optimizations work better on some architectures?
- matrices with naturally small working sets
- architectures with giant caches

Source: Sam Williams
Auto-tuned SpMV Performance
(max speedup)

- Fully auto-tuned SpMV performance across the suite of matrices
- Included SPE/local store optimized version
- Why do some optimizations work better on some architectures?

\[\begin{align*}
\text{Xeon E5-2670V3 (Lancaster)} & : 2.7x \\
\text{Opteron 2386 (Barcelona)} & : 4.0x \\
\text{UltraSparc T2+ TS140 (Victoria Falls)} & : 2.9x \\
\text{Q530 Cell Blade (SPEs)} & : 35x \\
\end{align*} \]

Source: Sam Williams

Optimized Sparse Kernel Interface - pOSKI
bebop.cs.berkeley.edu/poski

- Provides sparse kernels automatically tuned for user’s matrix & machine
 - BLAS-style functionality: SpMV, Ax & \(A^T y\)
 - Hides complexity of run-time tuning

- Based on OSKI – bebop.cs.berkeley.edu/oski
 - Autotuner for sequential sparse matrix operations:
 - SpMV (Ax and \(A^T x\)), \(A^T A x\), solve sparse triangular systems, ...
 - So far pOSKI only does multicore optimizations of SpMV
 - Up to 4.5x faster SpMV (Ax) on Intel Sandy Bridge E

- Work by the Berkeley Benchmarking and Optimization (BeBop) group

Optimizations in pOSKI, so far

- Fully automatic heuristics for
 - Sparse matrix-vector multiply (Ax, \(A^T x\))
 - Register-level blocking, Thread-level blocking
 - SIMD, software prefetching, software pipelining, loop unrolling
 - NUMA-aware allocations

- “Plug-in” extensibility
 - Very advanced users may write their own heuristics, create new data structures/code variants and dynamically add them to the system, using embedded scripting language Lua

- Other optimizations that could be added
 - Cache-level blocking, Reordering (ROM, TSP), variable block structure, index compressing, Symmetric storage, etc.

How the pOSKI Tunes (Overview)

Library Install-Time (offline) → Application Run-Time

1. Build for Target Arch
2. Benchmark
 - Empirical & Heuristic Search
 - Workload from program monitoring
3. Select Submatrix
 - Sample Dense Matrix
 - User’s Matrix
 - User’s hints

To user: Matrix handle for kernel calls

\[(r,c) = \text{Register Block size} \at \text{(}\delta) = \text{prefetching distance} \at (\text{imp}) = \text{SIMD implementation} \]
How the pOSKI Tunes (Overview)

- At library build/install-time
 - Generate code variants
 - Code generator (Python) generates code variants for various implementations
 - Collect benchmark data
 - Measures and records speed of possible sparse data structure and code variants on target architecture
 - Select best code variants & benchmark data
 - Prefetching distance, SIMD implementation
 - Installation process uses standard, portable GNU AutoTools

- At run-time
 - Library "tunes" using heuristic models
 - Models analyze user’s matrix & benchmark data to choose optimized data structure and code
 - User may re-collect benchmark data with user’s sparse matrix (under development)
 - Non-trivial tuning cost: up to ~40 mat-vecs
 - Library limits the time it spends tuning based on estimated workload
 - provided by user or inferred by library
 - User may reduce cost by saving tuning results for application on future runs with same or similar matrix (under development)

How to Call pOSKI: Basic Usage

- May gradually migrate existing apps
 - Step 1: "Wrap" existing data structures
 - Step 2: Make BLAS-like kernel calls

```c
int* ptr = ..., *ind = ...; double* val = ...; /* Matrix, in CSR format */
double* x = ..., *y = ...; /* Let x and y be two dense vectors */
```

/* Compute y = βy + αA’x, 500 times */
for (i = 0; i < 500; i++)
 my_matmult(ptr, ind, val, α, x, β, y);

How to Call pOSKI: Basic Usage

- May gradually migrate existing apps
 - Step 1: "Wrap" existing data structures
 - Step 2: Make BLAS-like kernel calls

```c
int* ptr = ..., *ind = ...; double* val = ...; /* Matrix, in CSR format */
double* x = ..., *y = ...; /* Let x and y be two dense vectors */
```

/* Step 1: Create a default pOSKI thread object */
poski_threadarg_t* poski_thread = poski_InitThread();
/* Step 2: Create pOSKI wrappers around this data */
poski_mat_t A_tunable = poski_CreateMatCSR(ptr, ind, val, nrows, ncols, nnz, SHARE_INPUTMAT, poski_thread, NULL, ...);
poski_vec_t x_view = poski_CreateVecView(x, ncols, UNIT_STRIDE, NULL);
poski_vec_t y_view = poski_CreateVecView(y, nrows, UNIT_STRIDE, NULL);

/* Compute y = βy + αA’x, 500 times */
for (i = 0; i < 500; i++)
poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);

How to Call pOSKI: Basic Usage

- May gradually migrate existing apps
 - Step 1: "Wrap" existing data structures
 - Step 2: Make BLAS-like kernel calls

```c
int* ptr = ..., *ind = ...; double* val = ...; /* Matrix, in CSR format */
double* x = ..., *y = ...; /* Let x and y be two dense vectors */
```

/* Step 1: Create a default pOSKI thread object */
poski_threadarg_t* poski_thread = poski_InitThread();
/* Step 2: Create pOSKI wrappers around this data */
poski_mat_t A_tunable = poski_CreateMatCSR(ptr, ind, val, nrows, ncols, nnz, SHARE_INPUTMAT, poski_thread, NULL, ...);
poski_vec_t x_view = poski_CreateVecView(x, ncols, UNIT_STRIDE, NULL);
poski_vec_t y_view = poski_CreateVecView(y, nrows, UNIT_STRIDE, NULL);

/* Step 3: Compute y = βy + αA’x, 500 times */
for (i = 0; i < 500; i++)
poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);
How to Call pOSKI: Tune with Explicit Hints

- User calls “tune” routine (optional)
 - May provide explicit tuning hints

```c
poski_mat_t A_tunable = poski_CreateMatCSR( ... );
/* ... */
/* Tell pOSKI we will call SpMV 500 times (workload hint) */
poski_TuneHint_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view, 500);
/* Tell pOSKI we think the matrix has 8x8 blocks (structural hint) */
poski_TuneHint_Structure(A_tunable, HINT_SINGLE_BLOCKSIZE, 8, 8);
/* Ask pOSKI to tune */
poski_TuneMat(A_tunable);
for( i = 0; i < 500; i++ )
poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);
```

How to Call pOSKI: Implicit Tuning

- Ask library to infer workload (optional)
 - Library profiles all kernel calls
 - May periodically re-tune

```c
poski_mat_t A_tunable = poski_CreateMatCSR( ... );
/* ... */
for( i = 0; i < 500; i++ ) {
poski_MatMult(A_tunable, OP_NORMAL, α, x_view, β, y_view);
poski_TuneMat(A_tunable); /* Ask pOSKI to tune */
}
```

How to Call pOSKI: Modify a thread object

- Ask library to infer thread hints (optional)
 - Number of threads
 - Threading model (PthreadPool, Pthread, OpenMP)
 - Default: PthreadPool, #threads=#available cores on system

```c
poski_threadarg_t *poski_thread = poski_InitThread();
/* Ask pOSKI to use 8 threads with OpenMP */
poski_ThreadHints(poski_thread, NULL, OPENMP, 8);
poski_mat_t A_tunable = poski_CreateMatCSR( ..., poski_thread, ... );
poski_MatMult( ... );
```

How to Call pOSKI: Modify a partition object

- Ask library to infer partition hints (optional)
 - Number of partitions
 - #partition = k×#threads
 - Partitioning model (OneD, SemiOneD, TwoD)
 - Default: OneD, #partitions = #threads

```c
Matrix:
/* Ask pOSKI to partition 16 sub-matrices using SemiOneD */
poski_partitionarg_t *pmat = poski_PartitionMatHints(SemiOneD, 16);
poski_mat_t A_tunable = poski_CreateMatCSR( ..., pmat, ... );

Vector:
/* Ask pOSKI to partition a vector for SpMV input vector based on A_tunable */
poski_partitionVec_t *pvec = poski_PartitionVecHints(A_tunable, KERNEL_MatMult, OP_NORMAL, INPUTVEC);
poski_vec_t x_view = poski_CreateVec( ..., pvec);
```
Performance on Intel Sandy Bridge E

- Jaketown: i7-3960X @ 3.3 GHz
- #Cores: 6 (2 threads per core), L3:15MB
- pOSKI SpMV (Ax) with double precision floating point
- MKL Sparse BLAS Level 2: mkl_dcsrmv()

<table>
<thead>
<tr>
<th>Performance in GFlops</th>
<th>OSKI</th>
<th>MKL</th>
<th>pOSKI</th>
</tr>
</thead>
<tbody>
<tr>
<td>dense</td>
<td>11.0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>kkt_power</td>
<td>4.8x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>bone</td>
<td>3.2x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>largebasis</td>
<td>2.9x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>tsopf</td>
<td>4.1x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>lidoor</td>
<td>4.5x</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>wiki</td>
<td>4.7x</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Is tuning SpMV all we can do?

- Iterative methods all depend on it
- But speedups are limited
 - Just 2 flops per nonzero
 - Communication costs dominate
- Can we beat this bottleneck?
- Need to look at next level in stack:
 - What do algorithms that use SpMV do?
 - Can we reorganize them to avoid communication?
- Only way significant speedups will be possible

Tuning Higher Level Algorithms than SpMV

- We almost always do many SpMVs, not just one
 - "Krylov Subspace Methods" (KSMs) for Ax=b, Ax = λx
 - Conjugate Gradients, GMRES, Lanczos, ...
 - Do a sequence of k SpMVs to get vectors \([x_1, \ldots, x_k] \)
 - Find best solution \(x \) as linear combination of \([x_1, \ldots, x_k] \)
- Main cost is \(k \) SpMVs
- Since communication usually dominates, can we do better?
- Goal: make communication cost independent of \(k \)
 - Parallel case: \(O(\log P) \) messages, not \(O(k \log P) \) - optimal
 - same bandwidth as before
 - Sequential case: \(O(1) \) messages and bandwidth, not \(O(k) \) - optimal
- Achievable when matrix partitionable with low surface-to-volume ratio

Communication Avoiding Kernels:

The Matrix Powers Kernel: \([Ax, A^2x, \ldots, A^kx]\)

- Replace \(k \) iterations of \(y = A\cdot x \) with \([Ax, A^2x, \ldots, A^kx]\)

\[
\begin{align*}
A^3x & \cdots \cdots \cdots \cdots \cdots \cdots \\
A^2x & \cdots \cdots \cdots \cdots \cdots \\
A^1x & \cdots \cdots \cdots \cdots \cdots \\
x & \cdots \cdots \cdots \cdots \cdots \\
1 & 2 & 3 & 4 & \ldots & 32
\end{align*}
\]

- Example: A tridiagonal, \(n=32, k=3 \)
- Works for any “well-partitioned” \(A \)
Communication Avoiding Kernels: The Matrix Powers Kernel: $[Ax, A^2x, \ldots, A^kx]$

- Replace k iterations of $y = Ax$ with $[Ax, A^2x, \ldots, A^kx]$

• Example: A tridiagonal, $n=32$, $k=3$

Communication Avoiding Kernels: The Matrix Powers Kernel: $[Ax, A^2x, \ldots, A^kx]$

- Replace k iterations of $y = Ax$ with $[Ax, A^2x, \ldots, A^kx]$

• Example: A tridiagonal, $n=32$, $k=3$
Communication Avoiding Kernels: The Matrix Powers Kernel: \([Ax, A^2x, \ldots, A^kx]\)

- Replace \(k\) iterations of \(y = Ax\) with \([Ax, A^2x, \ldots, A^kx]\)

- Example: A tridiagonal, \(n=32, k=3\)

Sequential Algorithm

- Example: A tridiagonal, \(n=32, k=3\)
Communication Avoiding Kernels:
The Matrix Powers Kernel: $[Ax, A^2x, ..., A^kx]$

- Replace k iterations of $y = A\cdot x$ with $[Ax, A^2x, ..., A^kx]$
- Sequential Algorithm

- Example: A tridiagonal, $n=32$, $k=3$

Communication Avoiding Kernels:
The Matrix Powers Kernel: $[Ax, A^2x, ..., A^kx]$

- Replace k iterations of $y = A\cdot x$ with $[Ax, A^2x, ..., A^kx]$
- Parallel Algorithm

- Example: A tridiagonal, $n=32$, $k=3$

Communication Avoiding Kernels:
The Matrix Powers Kernel: $[Ax, A^2x, ..., A^kx]$

- Replace k iterations of $y = A\cdot x$ with $[Ax, A^2x, ..., A^kx]$
- Parallel Algorithm

- Example: A tridiagonal, $n=32$, $k=3$

Communication Avoiding Kernels:
The Matrix Powers Kernel: $[Ax, A^2x, ..., A^kx]$

- Replace k iterations of $y = A\cdot x$ with $[Ax, A^2x, ..., A^kx]$
- Parallel Algorithm

- Example: A tridiagonal, $n=32$, $k=3$

- Each processor communicates once with neighbors
Communication Avoiding Kernels:
The Matrix Powers Kernel : \([Ax, A^2x, \ldots, A^kx]\)

- Replace \(k\) iterations of \(y = Ax\) with \([Ax, A^2x, \ldots, A^kx]\)
- Parallel Algorithm

Example: A tridiagonal, \(n=32, k=3\)

- Each processor works on (overlapping) trapezoid
Communication Avoiding Kernels:
The Matrix Powers Kernel: \([Ax, A^2x, \ldots, A^kx]\)

Same idea works for general sparse matrices

Simple block-row partitioning \(\rightarrow\) (hyper)graph partitioning

Top-to-bottom processing \(\rightarrow\) Traveling Salesman Problem

Communication Avoiding Kernels:
The Matrix Powers Kernel: \([Ax, A^2x, \ldots, A^kx]\)

- Replace \(k\) iterations of \(y = A \cdot x\) with \([Ax, A^2x, \ldots, A^kx]\)
- Parallel Algorithm

- Example: A tridiagonal, \(n=32\), \(k=3\)
- Entries in overlapping regions (triangles) computed redundantly

Locally Dependent Entries for \([x, Ax, \ldots, A^kx]\), A tridiagonal

Can be computed without communication
\(k=8\) fold reuse of \(A\)

Remotely Dependent Entries for \([x, Ax, \ldots, A^kx]\), A tridiagonal

One message to get data needed to compute remotely dependent entries, not \(k=8\)
Fewer Remotely Dependent Entries for $[x, Ax, \ldots, A^8x]$, A tridiagonal

- Reduce redundant work by half

Remotely Dependent Entries for $[x, Ax, A^2x, A^3x]$, 2D Laplacian

Remotely Dependent Entries for $[x, Ax, A^2x, A^3x]$, A irregular, multiple processors

Speedups on Intel Clovertown (8 core)
Performance Results

- Measured Multicore (Clovertown) speedups up to 6.4x
- Measured/Modeled sequential OOC speedup up to 3x
- Modeled parallel Petascale speedup up to 6.9x
- Modeled parallel Grid speedup up to 22x

Sequential speedup due to bandwidth, works for many problem sizes
Parallel speedup due to latency, works for smaller problems on many processors
Multicore results used both techniques

Avoiding Communication in Iterative Linear Algebra

- k-steps of typical iterative solver for sparse Ax=b or Ax=λx
 - Does k SpMVs with starting vector
 - Finds “best” solution among all linear combinations of these k+1 vectors
 - Many such “Krylov Subspace Methods”
 - Conjugate Gradients, GMRES, Lanczos, Arnoldi, ...
- Goal: minimize communication in Krylov Subspace Methods
 - Assume matrix “well-partitioned,” with modest surface-to-volume ratio
 - Parallel implementation
 - Conventional: O(k log p) messages, because k calls to SpMV
 - New: O(\log p) messages - optimal
 - Serial implementation
 - Conventional: O(k) moves of data from slow to fast memory
 - New: O(1) moves of data - optimal
- Lots of speed up possible (modeled and measured)
 - Price: some redundant computation
- Much prior work
 - See theses of Mark Hoemmen, Erin Carson, other papers at bebop.cs.berkeley.edu

Minimizing Communication of GMRES to solve Ax=b

- GMRES: find x in span{b,Ab,...,A^k b} minimizing || Ax-b ||_2
- Cost of k steps of standard GMRES vs new GMRES

<table>
<thead>
<tr>
<th>Standard GMRES</th>
<th>Communication-avoiding GMRES</th>
</tr>
</thead>
<tbody>
<tr>
<td>for i=1 to k</td>
<td></td>
</tr>
<tr>
<td>w = A · v[i-1]</td>
<td>W = [v, Av, A^2v, ... , A^kv]</td>
</tr>
<tr>
<td>MGS(w, v(0),...,v(i-1))</td>
<td>[Q,R] = TSQR(W) "Tall Skinny QR"</td>
</tr>
<tr>
<td>update v(i), H</td>
<td>Build H from R, solve LSQ problem</td>
</tr>
<tr>
<td>endfor</td>
<td></td>
</tr>
<tr>
<td>solve LSQ problem with H</td>
<td></td>
</tr>
</tbody>
</table>

Sequential: #wordsMoved = 0(nnz) from SpMV + O(k^2·n) from MGS
Parallel: #messages = O(k) from SpMV + O(log p) from MGS

• Oops – W from power method, precision lost!
Speed ups of GMRES on 8-core Intel Clovertown
Requires co-tuning kernels [MHDY09]

Sample Application Speedups

- Geometric Multigrid (GMG) w/ CA Bottom Solver
 - Compared BICGSTAB vs. CA-BICGSTAB with s = 4
 - Hopper at NERSC (Cray XE6), weak scaling: Up to 4096 MPI processes (24,576 cores total)
 - Speedups for miniGMG benchmark (HPGMG benchmark predecessor)
 - 4.2x in bottom solve, 2.5x overall GMG solve
 - Implemented as a solver option in BoxLib and CHOMBO AMR frameworks
 - 3D LMC (a low-mach number combustion code)
 - 2.5x in bottom solve, 1.5x overall GMG solve
 - 3D Nyx (an N-body and gas dynamics code)
 - 2x in bottom solve, 1.15x overall GMG solve
 - Solve Horn-Schunck Optical Flow Equations
 - Compared CG vs. CA-CG with s = 3, 43% faster on NVIDIA GT 640 GPU

President Obama cites Communication-Avoiding Algorithms in the FY 2012 Department of Energy Budget Request to Congress:

“New Algorithm Improves Performance and Accuracy on Extreme-Scale Computing Systems. On modern computer architectures, communication between processors takes longer than the performance of a floating point arithmetic operation by a given processor. ASCR researchers have developed a new method, derived from commonly used linear algebra methods, to minimize communications between processors and the memory hierarchy, by reformulating the communication patterns specified within the algorithm. This method has been implemented in the TRILINOS framework, a highly-regarded suite of software, which provides functionality for researchers around the world to solve large scale, complex multi-physics problems.”

CA-GMRES (Hoemmen, Mohiyuddin, Yelick, JD)
"Tall-Skinny" QR (Grigori, Hoemmen, Langou, JD)
Tuning space for Krylov Methods

• Many different algorithms (GMRES, BiCGStab, CG, Lanczos,…), polynomials, preconditioning
• Classifications of sparse operators for avoiding communication
 • Explicit indices or nonzero entries cause most communication, along with vectors
 • Ex: With stencils (all implicit) all communication for vectors

<table>
<thead>
<tr>
<th>Nonzero entries</th>
<th>Explicit (O(nnz))</th>
<th>Implicit (o(nnz))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indices</td>
<td>Explicit (O(nnz))</td>
<td>Implicit (o(nnz))</td>
</tr>
<tr>
<td>CSR and variations</td>
<td>Vision, climate, AMR,…</td>
<td></td>
</tr>
<tr>
<td>Graph Laplacian</td>
<td>Stencils</td>
<td></td>
</tr>
</tbody>
</table>

• Operations
 • \([x, Ax, A^2x,…, A^kx]\) or \([x, p_1(A)x, p_2(A)x, …, p_k(A)x]\)
 • Number of columns in \(x\)
 • \([x, Ax, A^2x,…, A^kx]\) and \([y, A'y, (A')^2y,…, (A')^ky]\), or \([y, A'y, (A')^2y,…, (A')^ky]\),
 • return all vectors or just last one
• Cotuning and/or interleaving
 • \(W = [x, Ax, A^2x,…, A^kx]\) and \(\{\text{TSQR}(W)\text{ or } W^TW\text{ or }…\}\)
 • Ditto, but throw away \(W\)

Possible Class Projects

• Come to BEBOP meetings (Th 12:30 – 2, 380 Soda)
• Experiment with SpMV on different architectures
 • Which optimizations are most effective?
• Try to speed up particular matrices of interest
 • Data mining, "bottom solver" from AMR
• Explore tuning space of \([x, Ax,…, A^kx]\) kernel
 • Different matrix representations (last slide)
 • New Krylov subspace methods, preconditioning
• Experiment with new frameworks (SPF, Halide)
• More details available

Extra Slides