Definition of Graph Partitioning

- Given a graph \(G = (N, E, W_N, W_E) \)
 - \(N \) = nodes (or vertices),
 - \(W_N \) = node weights
 - \(E \) = edges
 - \(W_E \) = edge weights

- Ex: \(N \) = (tasks), \(W_N \) = (task costs), edge \((j, k)\) in \(E \) means task \(j \) sends \(W_E(j, k) \) words to task \(k \)
- Choose a partition \(N = N_1 \cup N_2 \cup \ldots \cup N_P \) such that
 - The sum of the node weights in each \(N_i \) is "about the same"
 - The sum of all edge weights of edges connecting all different pairs \(N_i \) and \(N_j \) is minimized
- Ex: balance the work load, while minimizing communication
- Special case of \(N = N_1 \cup N_2 \): Graph Bisection

Outline of Graph Partitioning Lecture

- Review definition of Graph Partitioning problem
- Overview of heuristics
- Partitioning with Nodal Coordinates
 - Ex: In finite element models, node at point in \((x, y)\) or \((x, y, z)\) space
- Partitioning without Nodal Coordinates
 - Ex: In model of WWW, nodes are web pages
- Multilevel Acceleration
 - BIG IDEA, appears often in scientific computing
- Comparison of Methods and Applications
- Beyond Graph Partitioning: Hypergraphs
Some Applications

- Telephone network design
 - Original application, algorithm due to Kernighan
- Load Balancing while Minimizing Communication
- Sparse Matrix times Vector Multiplication (SpMV)
 - Solving PDEs
 - \(N = \{1, \ldots, n\}, \quad (j,k) \in E \text{ if } A(j,k) \text{ nonzero,} \)
 - \(W(j) = \# \text{nonzeros in row } j, \quad W(j,k) = 1 \)
- VLSI Layout
 - \(N = \{\text{units on chip}\}, \quad E = \{\text{wires}\}, \quad W(j,k) = \text{wire length} \)
- Sparse Gaussian Elimination
 - Used to reorder rows and columns to increase parallelism, and to decrease “fill-in”
- Data mining and clustering
- Physical Mapping of DNA
- Image Segmentation

Sparse Matrix Vector Multiplication \(y = y + A^\top x \)

Partitioning a Sparse Symmetric Matrix

Cost of Graph Partitioning

- Many possible partitionings to search
- Just to divide in 2 parts there are:
 \[n \choose n/2 = n!/(n/2)! \sim (2/(\pi n))^{1/2} \cdot 2^n \text{ possibilities} \]

- Choosing optimal partitioning is NP-complete
 - (NP-complete = we can prove it is a hard as other well-known hard problems in a class Nondeterministic Polynomial time)
 - Only known exact algorithms have cost = exponential(n)
- We need good heuristics

Outline of Graph Partitioning Lectures

- Review definition of Graph Partitioning problem
- Overview of heuristics
 - Partitioning with Nodal Coordinates
 - Ex: In finite element models, node at point in \((x,y)\) or \((x,y,z)\) space
 - Partitioning without Nodal Coordinates
 - Ex: In model of WWW, nodes are web pages
 - Multilevel Acceleration
 - BIG IDEA, appears often in scientific computing
 - Comparison of Methods and Applications
 - Beyond Graph Partitioning: Hypergraphs
First Heuristic: Repeated Graph Bisection

- To partition N into 2^k parts
 - bisect graph recursively k times
- Henceforth discuss mostly graph bisection

Edge Separators vs. Vertex Separators

- **Edge Separator**: E_s (subset of E) separates G if removing E_s from E leaves two ~equal-sized, disconnected components of N: N_1 and N_2
- **Vertex Separator**: N_s (subset of N) separates G if removing N_s and all incident edges leaves two ~equal-sized, disconnected components of N: N_1 and N_2

\[G = (N, E), \text{Nodes } N \text{ and Edges } E \]
\[E_s = \text{green edges or blue edges} \]
\[N_s = \text{red vertices} \]

- Making an N_s from an E_s: pick one endpoint of each edge in E_s
 - $|N_s| \leq |E_s|$
- Making an E_s from an N_s: pick all edges incident on N_s
 - $|E_s| \leq d \cdot |N_s|$ where d is the maximum degree of the graph
- We will find Edge or Vertex Separators, as convenient

Overview of Bisection Heuristics

- Partitioning with Nodal Coordinates
 - Each node has x,y,z coordinates \rightarrow partition space
- Partitioning without Nodal Coordinates
 - E.g., Sparse matrix of Web documents
 - $A(j,k) =$ # times keyword j appears in URL k
- Multilevel acceleration (BIG IDEA)
 - Approximate problem by "coarse graph," do so recursively

Outline of Graph Partitioning Lectures

- Review definition of Graph Partitioning problem
- Overview of heuristics
- **Partitioning with Nodal Coordinates**
 - Ex: In finite element models, node at point in (x,y) or (x,y,z) space
 - Partitioning without Nodal Coordinates
 - Ex: In model of WWW, nodes are web pages
- Multilevel Acceleration
 - BIG IDEA, appears often in scientific computing
- Comparison of Methods and Applications
- Beyond Graph Partitioning: Hypergraphs
Nodal Coordinates: How Well Can We Do?

- A planar graph can be drawn in plane without edge crossings
- Ex: m x m grid of m^2 nodes: ∃ vertex separator N_s with |N_s| = m = |N|\(^1/2\) (see earlier slide for m=5)
- **Theorem** (Tarjan, Lipton, 1979): If G is planar, ∃ N_s such that
 - N = N_1 \cup N_2 \cup N_2 is a partition,
 - |N_1| <= 2/3 |N| and |N_2| <= 2/3 |N|
 - |N_s| <= (8 * |N|)^1/2

• Theorem motivates intuition of following algorithms

Inertial Partitioning

- For a graph in 2D, choose line with half the nodes on one side and half on the other
 - In 3D, choose a plane, but consider 2D for simplicity
- Choose a line L, and then choose a line L⊥ perpendicular to it, with half the nodes on either side
 1. **Choose a line L through the points**
 - L given by \(a(x-xbar)+b(y-ybar)=0\), with \(a^2+b^2=1\); (a,b) is unit vector \(\perp\) L
 2. **Project each point to the line**
 - For each \(n_j = (x_j,y_j)\), compute coordinate \(S_j = -b(x_j-xbar) + a(y_j-ybar)\) along L
 3. **Compute the median**
 - Let \(Sbar = median(S_1,\ldots,S_n)\)
 4. **Use median to partition the nodes**
 - Let nodes with \(S_j < Sbar\) be in \(N_1\), rest in \(N_2\)

Inertial Partitioning: Choosing L

- Clearly prefer L, L⊥ on left below

- Mathematically, choose L to be a total least squares fit of the nodes
 - Minimize sum of squares of distances to L (green lines on last slide)
 - Equivalent to choosing L as axis of rotation that minimizes the moment of inertia of nodes (unit weights) - source of name

\[
\sum_j (\text{length of j-th green line})^2 = S_j^2 (x_j-xbar)^2 + (y_j-ybar)^2 - (-b^2(x_j-xbar) + a^2(y_j-ybar))^2
\]

Pythagorean Theorem

\[
= a^2 S_j^2 (x_j-xbar)^2 + b^2 \sum_j (x_j-xbar) + b^2 \sum_j (y_j-ybar)^2
\]

Minimized by choosing

\[
(xbar,ybar) = (\bar{x}, \bar{y}) / n = \text{center of mass} (a,b) = \text{eigenvector of smallest eigenvalue of}
\]

\[
\begin{bmatrix}
 X_1 & X_2 & X_3
\end{bmatrix}
\]
Nodal Coordinates: Random Spheres

- Generalize nearest neighbor idea of a planar graph to higher dimensions
 - Any graph can fit in 3D without edge crossings
 - Capture intuition of planar graphs of being connected to "nearest neighbors" but in higher than 2 dimensions
- For intuition, consider graph defined by a regular 3D mesh
 - An n by n by n mesh of \(|N| = n^3 \) nodes
 - Edges to 6 nearest neighbors
 - Partition by taking plane parallel to 2 axes
 - Cuts \(n^2 = |N| = n^3 \) = \(O(|E|^{2/3}) \) edges
- For the general graphs
 - Need a notion of "well-shaped" like mesh

Random Spheres: Well Shaped Graphs

- Approach due to Miller, Teng, Thurston, Vavasis
- Def: A k-ply neighborhood system in d dimensions is a set \(\{D_1, \ldots, D_n\} \) of closed disks in \(\mathbb{R}^d \) such that no point in \(\mathbb{R}^d \) is strictly interior to more than k disks
- Def: An \((\alpha, k)\) overlap graph is a graph defined in terms of \(\alpha \geq 1 \) and a k-ply neighborhood system \(\{D_1, \ldots, D_n\} \): There is a node for each \(D_j \) and an edge from j to i if expanding the radius of the smaller of \(D_j \) and \(D_i \) by \(\alpha \) causes the two disks to overlap
- Ex: n-by-n mesh is a \((1, 1)\) overlap graph
- Ex: Any planar graph is \((\alpha, k)\) overlap for some \(\alpha, k \)

Generalizing Lipton/Tarjan to Higher Dimensions

- Theorem (Miller, Teng, Thurston, Vavasis, 1993): Let \(G = (N, E) \) be an \((\alpha, k)\) overlap graph in d dimensions with \(n = |N| \). Then there is a vertex separator \(N_s \) such that
 - \(N = N_1 \cup N_s \cup N_2 \) and
 - \(N_1 \) and \(N_2 \) each has at most \(n(d+1)/(d+2) \) nodes
 - \(N_s \) has at most \(O(\alpha \cdot k^{1/d} \cdot n^{(d-1)/d}) \) nodes
- When \(d = 2 \), similar to Lipton/Tarjan
- Algorithm:
 - Choose a sphere \(S \) in \(\mathbb{R}^d \)
 - Edges that \(S \) "cuts" form edge separator \(E_S \)
 - Build \(N_S \) from \(E_S \)
 - Choose \(S \) "randomly", so that it satisfies Theorem with high probability

Stereographic Projection

- Stereographic projection from plane to sphere
 - In \(d = 2 \), draw line from \(p \) to North Pole, projection \(p' \) of \(p \) is where the line and sphere intersect
 - \(p = (x, y) \)
 - \(p' = \frac{(2x, 2y, x^2 + y^2 - 1)}{x^2 + y^2 + 1} \)
 - Similar in higher dimensions
Choosing a Random Sphere

- Do stereographic projection from \mathbb{R}^d to sphere S in \mathbb{R}^{d+1}
- Find centerpoint of projected points
 - Any plane through centerpoint divides points evenly
 - There is a linear programming algorithm, cheaper heuristics
- Conformally map points on sphere
 - Rotate points around origin so centerpoint at $(0,\ldots,0, r)$ for some r
 - Dilate points (unproject, multiply by $((1-r)/(1+r))^{1/2}$, project)
 - this maps centerpoint to origin $(0,\ldots,0)$, spreads points around S
- Pick a random plane through origin
- Intersection of plane and sphere S is “circle”
- Unproject circle
 - yields desired circle C in \mathbb{R}^d
- Create N_s: j belongs to N_s if α^*D_j intersects C
Random Sphere Algorithm (Gilbert)

Nodal Coordinates: Summary

- Other variations on these algorithms
- Algorithms are efficient
- Rely on graphs having nodes connected (mostly) to “nearest neighbors” in space
 - algorithm does not depend on where actual edges are!
- Common when graph arises from physical model
- Ignores edges, but can be used as good starting guess for subsequent partitioners that do examine edges
- Can do poorly if graph connectivity is not spatial:

- Details at
 - www.cs.berkeley.edu/~demmel/cs267/lecture18/lecture18.html
 - www.cs.ucsb.edu/~gilbert
 - www-bcf.usc.edu/~shanghua/
Outline of Graph Partitioning Lectures

- Review definition of Graph Partitioning problem
- Overview of heuristics
- Partitioning with Nodal Coordinates
 - Ex: In finite element models, node at point in (x,y) or (x,y,z) space
- Partitioning without Nodal Coordinates
 - Ex: In model of WWW, nodes are web pages
- Multilevel Acceleration
 - BIG IDEA, appears often in scientific computing
- Comparison of Methods and Applications
- Beyond Graph Partitioning: Hypergraphs

Coordinate-Free: Breadth First Search (BFS)

- Given G(N,E) and a root node r in N, BFS produces
 - A subgraph T of G (same nodes, subset of edges)
 - T is a tree rooted at r
 - Each node assigned a level = distance from r

BFS partition of a 2D Mesh using center as root:

N1 = levels 0, 1, 2, 3
N2 = levels 4, 5, 6

Breadth First Search (details)

- Queue (First In First Out, or FIFO)
 - Enqueue(x,Q) adds x to back of Q
 - x = Dequeue(Q) removes x from front of Q
- Compute Tree T(N, E)

BFS partitioning heuristic

\[N = N_1 \cup N_2, \text{ where} \]
\[N_1 = \{\text{nodes at level } \leq L\}, \]
\[N_2 = \{\text{nodes at level } > L\} \]
Choose L so \(|N_1| \) close to \(|N_2| \)

Partitioning via Breadth First Search

- BFS identifies 3 kinds of edges
 - Tree Edges - part of T
 - Horizontal Edges - connect nodes at same level
 - Interlevel Edges - connect nodes at adjacent levels
- No edges connect nodes in levels differing by more than 1 (why?)
Coordinate-Free: Kernighan/Lin

- Take an initial partition and iteratively improve it
 - Kernighan/Lin (1970), cost = $O(|N|^2)$ but easy to understand
 - Fiduccia/Mattheyses (1982), cost = $O(|E|)$, much better, but more complicated
- Given $G = (N,E,W_e)$ and a partitioning $N = A \cup B$, where $|A| = |B|
- $T = \text{cost}(A,B) = \sum \{W(e) \text{ where } e \text{ connects nodes in } A \text{ and } B\}$
- Consider swapping X and Y if it decreases cost:
 - $\text{newA} = (A - X) \cup Y$ and $\text{newB} = (B - Y) \cup X$
 - $\text{newT} = \text{cost}(\text{newA}, \text{newB}) < T = \text{cost}(A,B)$
- Need to compute newT efficiently for many possible X and Y, choose smallest (best)

Kernighan/Lin: Preliminary Definitions

- $T = \text{cost}(A, B)$, $\text{newT} = \text{cost}(\text{newA}, \text{newB})$
- Need an efficient formula for newT; will use
- $E(a) = \text{external cost of } a \text{ in } A = \sum \{W(a,b) \text{ for } b \in B\}$
- $I(a) = \text{internal cost of } a \text{ in } A = \sum \{W(a,a') \text{ for other } a' \in A\}$
- $D(a) = \text{cost of } a \text{ in } A = E(a) - I(a)$
- $E(b)$, $I(b)$ and $D(b)$ defined analogously for b in B
- Consider swapping $X = \{a\}$ and $Y = \{b\}$
 - $\text{newA} = (A - \{a\}) \cup \{b\}$, $\text{newB} = (B - \{b\}) \cup \{a\}$
 - $\text{newT} = T - (D(a) + D(b) - 2*w(a,b)) \equiv T - \text{gain}(a,b)$
- $\text{gain}(a,b)$ measures improvement gotten by swapping a and b
 - Update formulas
 - $\text{newD}(a') = D(a') + 2*w(a',a) - 2*w(a',b)$ for $a' \in A$, $a' \neq a$
 - $\text{newD}(b') = D(b') + 2*w(b',b) - 2*w(b',a)$ for $b' \in B$, $b' \neq b$

Kernighan/Lin Algorithm

- Compute $T = \text{cost}(A, B)$ for initial A, B
- Repeat
 - $\text{One pass greedily computes } |N|/2 \text{ possible } X, Y \text{ to swap, picks best}$
 - $\text{Compute costs } D(n) \text{ for all } n \in N$
 - $\text{Unmark all nodes in } N$
 - While there are unmarked nodes
 - $\text{Find an unmarked pair } (a,b) \text{ maximizing } \text{gain}(a,b)$
 - $\text{Mark } a \text{ and } b \text{ (but do not swap them)}$
 - $\text{Update } D(n) \text{ for all unmarked } n,$
 as though a and b had been swapped
 - Endwhile
 - $\text{At this point we have computed a sequence of pairs}$
 - $(a_1,b_1), \ldots, (a_k,b_k)$ and gains $\text{gain}(1), \ldots, \text{gain}(k)$
 - $\text{where } k = |N|/2; \text{ numbered in the order in which we marked them}$
- Pick m maximizing $\text{Gain} = \sum_{k=1}^{m} \text{gain}(k)$
 - $\text{Gain is reduction in cost from swapping } (a_1,b_1) \text{ through } (a_m,b_m)$
- If $\text{Gain} > 0$ then ...
 - $\text{it is worth swapping}$
 - $\text{Update } \text{newA} = A - \{a_1,\ldots,a_m\} \cup \{b_1,\ldots,b_m\}$
 - $\text{Update } \text{newB} = B - \{b_1,\ldots,b_m\} \cup \{a_1,\ldots,a_m\}$
 - $\text{Update } T = T - \text{Gain}$
- Endif
- $\text{Until } \text{Gain} <= 0$

Comments on Kernighan/Lin Algorithm

- Most expensive line shown in red, $O(n^3)$
- Some gain(k) may be negative, but if later gains are large, then final Gain may be positive
 - can escape "local minima" where switching no pair helps
- How many times do we Repeat?
 - K/L tested on very small graphs (|N|=360) and got convergence after 2-4 sweeps
 - For random graphs (of theoretical interest) the probability of convergence in one step appears to drop like $2^{-|N|/30}$
Coordinate-Free: Spectral Bisection

• Based on theory of Fiedler (1970s), popularized by Pothen, Simon, Liou (1990)
• Motivation, by analogy to a vibrating string
• Basic definitions
• Vibrating string, revisited
• Implementation via the Lanczos Algorithm
 • To optimize sparse-matrix-vector multiply, we graph partition
 • To graph partition, we find an eigenvector of a matrix associated with the graph
 • To find an eigenvector, we do sparse-matrix vector multiply
 • No free lunch ...

Motivation for Spectral Bisection

• Vibrating string
• Think of G = 1D mesh as masses (nodes) connected by springs (edges), i.e. a string that can vibrate
• Vibrating string has modes of vibration, or harmonics
• Label nodes by whether mode - or + to partition into N- and N+
• Same idea for other graphs (eg planar graph ~ trampoline)

Basic Definitions

• Definition: The incidence matrix In(G) of a graph G(N,E) is an INI by IEI matrix, with one row for each node and one column for each edge. If edge e=(i,j) then column e of In(G) is zero except for the i-th and j-th entries, which are +1 and -1, respectively.

 • Slightly ambiguous definition because multiplying column e of In(G) by -1 still satisfies the definition, but this won’t matter...

 • Definition: The Laplacian matrix L(G) of a graph G(N,E) is an INI by INI symmetric matrix, with one row and column for each node. It is defined by
 • L(G) (i,i) = degree of node i (number of incident edges)
 • L(G) (i,j) = -1 if i ≠ j and there is an edge (i,j)
 • L(G) (i,j) = 0 otherwise

Example of In(G) and L(G) for Simple Meshes
Properties of Laplacian Matrix

- **Theorem 1:** Given G, L(G) has the following properties
 (proof on 1996 CS267 web page)
 - L(G) is symmetric.
 - This means the eigenvalues of L(G) are real and its eigenvectors are real and orthogonal.
 - ln(G) * (ln(G))^T = L(G)
 - The eigenvalues of L(G) are nonnegative:
 - 0 = \lambda_1 \leq \lambda_2 \leq \ldots \leq \lambda_n
 - The number of connected components of G is equal to the number of \lambda_i equal to 0.
 - **Definition:** \lambda_2(L(G)) is the algebraic connectivity of G
 - The magnitude of \lambda_2 measures connectivity
 - In particular, \lambda_2 \neq 0 if and only if G is connected.

Spectral Bisection Algorithm

- **Spectral Bisection Algorithm:**
 - Compute eigenvector v_2 corresponding to \lambda_2(L(G))
 - For each node n of G
 - if v_2(n) < 0 put node n in partition N-
 - else put node n in partition N+
 - Why does this make sense? First reasons...
 - **Theorem 2 (Fiedler, 1975):** Let G be connected, and N- and N+ defined as above. Then N- is connected. If no v_2(n) = 0, then N+ is also connected. (proof on 1996 CS267 web page)
 - Recall \lambda_2(L(G)) is the algebraic connectivity of G
 - **Theorem 3 (Fiedler):** Let G_1(N,E_1) be a subgraph of G(N,E), so that G_1 is "less connected" than G. Then \lambda_2(L(G_1)) \leq \lambda_2(L(G)), i.e. the algebraic connectivity of G_1 is less than or equal to the algebraic connectivity of G. (proof on 1996 CS267 web page)

Motivation for Spectral Bisection (recap)

- Vibrating string has modes of vibration, or harmonics
- Modes computable as follows
 - Model string as masses connected by springs (a 1D mesh)
 - Write down F=ma for coupled system, get matrix A
 - Eigenvalues and eigenvectors of A are frequencies and shapes of modes
- Label nodes by whether mode - or + to get N- and N+
- Same idea for other graphs (eg planar graph ~ trampoline)

Modes of a Vibrating String

- **Lower Frequency Mode:**
 - First frequency of vibration
- **Second Frequency Mode:**
 - Second frequency of vibration
- **Third Frequency Mode:**
 - Third frequency of vibration
Details for Vibrating String Analogy

- Force on mass \(j \) = \(k^*\{x(j-1) - x(j)\} + k^*\{x(j+1) - x(j)\} \)
- \(F=ma \) yields \(m^*x''(j) = -k^*\{-x(j-1) + 2x(j) - x(j+1)\} \)
- Writing (*) for \(j=1,2,\ldots,n \) yields

\[
\begin{pmatrix}
 x(1) \\
 2x(1) - x(2) \\
 2x(2) - x(1) \\
 \vdots \\
 x(n)
\end{pmatrix}
\begin{pmatrix}
 2 & -1 & 0 & \cdots & 0 \\
 -1 & 2 & -1 & \cdots & 0 \\
 0 & -1 & 2 & \cdots & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & -1 & 2 \\
\end{pmatrix}
\begin{pmatrix}
 x(1) \\
 x(2) \\
 x(3) \\
 \vdots \\
 x(n)
\end{pmatrix}
\]

\[\Rightarrow \frac{(-m/k)}{m} x'' = L^*x\]

Details for Vibrating String (continued)

- \(-m/k\) \(x'' = L^*x \), where \(x = [x_1, x_2, \ldots, x_n]^T \)
- Seek solution of form \(x(t) = \sin(\alpha t) \cdot x_0 \)
- \(L x_0 = \frac{(m/k)}{\lambda} x_0 \)
- For each integer \(i \), get \(\lambda_i = 2^2(1-\cos(i\pi/(n+1))) \), \(x_i = \sin(1^i\pi/(n+1)) \cdot \sin(2^i\pi/(n+1)) \cdot \sin(3^i\pi/(n+1)) \cdot \cdots \cdot \sin(n^i\pi/(n+1)) \)
- Thus \(x_0 \) is a sine curve with frequency proportional to \(i \)
- Thus \(\alpha_i = \sqrt{2^2(k/m)(1-\cos(i\pi/(n+1)))} \approx (k/m)^{1/2} \cdot \pi \cdot n/(n+1) \)
- \(L = \begin{pmatrix}
 2 & -1 & \cdots & \cdots & -1 \\
 -1 & 2 & -1 & \cdots & 0 \\
 \vdots & \vdots & \ddots & \ddots & \vdots \\
 \cdots & \cdots & \cdots & -1 & 2 \\
 -1 & 0 & \cdots & 0 & 2
\end{pmatrix} \)

\[\text{not quite Laplacian of 1D mesh, but we can fix that...}\]

Eigenvectors of \(L(1D \text{ mesh}) \)

- Eigenvector 1 (all ones)
- Eigenvector 2
- Eigenvector 3
Computing v_2 and λ_2 of $L(G)$ using Lanczos

- Given any n-by-n symmetric matrix A (such as $L(G)$), Lanczos computes a k-by-k “approximation” T by doing k matrix-vector products, $k \ll n$.

Choose an arbitrary starting vector r

- $b(0) = \|r\|$

repeat

- $j := j + 1$
- $q(j) = r/b(j-1)$
 ... scale a vector (BLAS1)
- $r = A\cdot q(j)$
 ... matrix vector multiplication, the most expensive step
- $r = r - b(j-1)\cdot v(j-1)$
 ... “axpy”, or scalar*vector + vector (BLAS1)
- $a(j) = v(j)\cdot r$
 ... dot product (BLAS1)
- $r = r - a(j)\cdot v(j)$
 ... “axpy” (BLAS1)
- $b(j) = \|r\|$
 ... compute vector norm (BLAS1)

until convergence
 ... details omitted

$T = \begin{bmatrix} a(1) & b(1) \\ b(1) & a(2) \\ \vdots & \vdots \\ b(k-1) & a(k-1) \\ b(k-1) & a(k) \end{bmatrix}$

- Approximate A’s eigenvalues/vectors using T’s

Spectral Bisection: Summary

- Laplacian matrix represents graph connectivity
- Second eigenvector gives a graph bisection
 - Roughly equal “weights” in two parts
 - Weak connection in the graph will be separator
- Implementation via the Lanczos Algorithm
 - To optimize sparse-matrix-vector multiply, we graph partition
 - To graph partition, we find an eigenvector of a matrix associated with the graph
 - To find an eigenvector, we do sparse-matrix vector multiply
- Have we made progress?
 - The first matrix-vector multiplies are slow, but use them to learn how to make the rest faster
Outline of Graph Partitioning Lectures

- Review definition of Graph Partitioning problem
- Overview of heuristics
- Partitioning with Nodal Coordinates
 - Ex: In finite element models, node at point in (x,y) or (x,y,z) space
- Partitioning without Nodal Coordinates
 - Ex: In model of WWW, nodes are web pages
- Multilevel Acceleration
 - BIG IDEA, appears often in scientific computing
- Comparison of Methods and Applications
- Beyond Graph Partitioning: Hypergraphs

Introduction to Multilevel Partitioning

- If we want to partition G(N,E), but it is too big to do efficiently, what can we do?
 - 1) Replace G(N,E) by a coarse approximation Gc(Nc,Ec), and partition Gc instead
 - 2) Use partition of Gc to get a rough partitioning of G, and then iteratively improve it
- What if Gc still too big?
 - Apply same idea recursively

Multilevel Partitioning - High Level Algorithm

(N+N-) = Multilevel_Partition(N, E)
...recursive partitioning routine returns N+ and N- where N = N+ U N-
if |N| is small
(1) Partition G = (N,E) directly to get N = N+ U N-
 Return (N+, N-)
else
(2) Coarsen G to get an approximation Gc = (Nc, Ec)
(3) (Nc+, Nc-) = Multilevel_Partition(Nc, Ec)
(4) Expand (Nc+, Nc-) to a partition (N+, N-) of N
(5) Improve the partition (N+, N-)
 Return (N+, N-)
endif

How do we
- Coarsen?
- Expand?
- Improve?

Multilevel Kernighan-Lin

- Coarsen graph and expand partition using maximal matchings
- Improve partition using Kernighan-Lin
Maximal Matching

- **Definition:** A matching of a graph G(N,E) is a subset E_m of E such that no two edges in E_m share an endpoint.

- **Definition:** A maximal matching of a graph G(N,E) is a matching E_m to which no more edges can be added and remain a matching.

- A simple greedy algorithm computes a maximal matching:

  ```
  let E_m be empty
  mark all nodes in N as unmatched
  for i = 1 to |N|  … visit the nodes in any order
    if i has not been matched
      mark i as matched
      if there is an edge e=(i,j) where j is also unmatched,
        add e to E_m
        mark j as matched
      endif
    endif
  endfor
  ```

Maximal Matching: Example

![Maximal Matching Example Diagram]

Example of Coarsening

How to coarsen a graph using a maximal matching

```
G = ( N, E )
E_m is shown in red
Edge weights shown in blue
Node weights shown in black
```

```
G_c = ( N_c, E_c )
N_c is shown in red
Edge weights shown in blue
Node weights shown in black
```

Coarsening using a maximal matching (details)

1) Construct a maximal matching E_m of G(N,E)
 for all edges e=(j,k) in E_m
 \[W(n(e)) = W(j) + W(k) \] … gray statements update node/edge weights
 for all nodes n in N not incident on an edge in E_m
 \[W(n) \] … do not change W(n)

 2) Collapse matched nodes into a single one
 For each other edge e'=(j,r) or (k,r) in E
 Put edge ee' = (n(e),n(r)) in E_c
 W(ee') = W(e')

 3) Add unmatched nodes
 For all edges e=(j,k) in E
 Put n in N_c

 4) Connect two nodes in N_c if nodes inside them are connected in E
 For all edges e''=(j,r) or (k,r) in E
 Put edge ee'' = (n(e),n(r)) in E_c
 W(ee'') = W(e'')

 If there are multiple edges connecting two nodes in N_c, collapse them,... adding edge weights.
Expanding a partition of G_n to a partition of G

Converting a coarse partition to a fine partition

Maximal Independent Sets

- **Definition**: An independent set of a graph $G(N,E)$ is a subset N_i of N such that no two nodes in N_i are connected by an edge.
- **Definition**: A maximal independent set of a graph $G(N,E)$ is an independent set N_i to which no more nodes can be added and remain an independent set.
- A simple greedy algorithm computes a maximal independent set:

  ```
  let $N_i$ be empty
  for $k = 1$ to $|N|$ ...
  visit the nodes in any order
  if node $k$ is not adjacent to any node already in $N_i$
  add $k$ to $N_i$
  endif
  endfor
  ```

Multilevel Spectral Bisection

- Coarsen graph and expand partition using maximal independent sets.
- Improve partition using Rayleigh Quotient Iteration.

Example of Coarsening

Computing G_c from G
Coarsening using Maximal Independent Sets (details)

... Build "domains" $D(k)$ around each node k in N_i to get nodes in N_c ... Add an edge to E_c whenever it would connect two such domains $E_c = \emptyset$ for all nodes k in N_i $D(k) = \{ k \}$, empty set ... first set contains nodes in $D(k)$, second set contains edges in $D(k)$ unmark all edges in E repeat choose an unmarked edge $e = (k,j)$ from E if exactly one of k and j (say k) is in some $D(m)$ mark e add j and e to $D(m)$ else if k and j are in two different $D(m)$'s (say $D(m_k)$ and $D(m_j)$) mark e add edge (m_k, m_j) to E_c else if both k and j are in the same $D(m)$ mark e add e to $D(m)$ else leave e unmarked endif until no unmarked edges

Expanding a partition of G_c to a partition of G

- Need to convert an eigenvector v_C of $L(G_c)$ to an approximate eigenvector v of $L(G)$

- Use interpolation:
 - For each node j in N
 - If j is also a node in N_c, then
 - $v(j) = v_C(j)$... use same eigenvector component
 - Else
 - $v(j) = \text{average of } v_C(k) \text{ for all neighbors } k \text{ of } j \text{ in } N_c$
 - End if

Improve eigenvector: Rayleigh Quotient Iteration

$j = 0$
pick starting vector $v(0)$... from expanding v_C
repeat
 $j = j+1$
 $r(j) = v^T(j-1) \cdot L(G) \cdot v(j-1)$
 ... $r(j) = \text{Rayleigh Quotient of } v(j-1)$
 ... $= \text{good approximate eigenvalue}$
 $v(j) = (L(G) - r(j)I)^{-1} \cdot v(j-1)$
 ... expensive to do exactly, so solve approximately
 ... using an iteration called SYMMLQ,
 ... which uses matrix-vector multiply (no surprise)
 $v(j) = v(j) / \| v(j) \| \ldots \text{ normalize } v(j)$
until $v(j)$ converges
... Convergence is very fast: cubic
Example of cubic convergence for 1D mesh

Outline of Graph Partitioning Lectures

- Review definition of Graph Partitioning problem
- Overview of heuristics
- Partitioning with Nodal Coordinates
 - Ex: In finite element models, node at point in (x,y) or (x,y,z) space
- Partitioning without Nodal Coordinates
 - Ex: In model of WWW, nodes are web pages
- Multilevel Acceleration
 - BIG IDEA, appears often in scientific computing
- Comparison of Methods and Applications
- Beyond Graph Partitioning: Hypergraphs

Available Implementations

- Multilevel Kernighan/Lin
 - METIS and ParMETIS (glaros.dtc.umn.edu/gkhome/views/metis)
 - SCOTCH and PT-SCOTCH (www.labri.fr/perso/pelegrin/scotch/)
- Multilevel Spectral Bisection
- Hybrids possible
 - Ex: Using Kernighan/Lin to improve a partition from spectral bisection
- Recent package, collection of techniques
 - Zoltan (www.cs.sandia.gov/Zoltan)
- See www.cs.sandia.gov/~bahendr/partitioning.html

Comparison of methods

- Compare only methods that use edges, not nodal coordinates
 - See www-users.cs.umn.edu/~karypis/metis/publications/main.html
 - Ex: Normalized Cuts and Image Segmentation by J. Malik, J. Shi
Number of edges cut for a 64-way partition, by METIS

<table>
<thead>
<tr>
<th>Graph</th>
<th># of Nodes</th>
<th># of Edges</th>
<th># cuts for 64-way partition</th>
<th>Expected # cuts for 32 mesh</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>144649</td>
<td>1074393</td>
<td>88806</td>
<td>8427</td>
<td>3D FE Mesh</td>
</tr>
<tr>
<td>4ELT</td>
<td>15606</td>
<td>45878</td>
<td>2965</td>
<td>2111</td>
<td>2D FE Mesh</td>
</tr>
<tr>
<td>ADD32</td>
<td>4960</td>
<td>9462</td>
<td>1190</td>
<td>7208</td>
<td>32 bit adder</td>
</tr>
<tr>
<td>AUTO</td>
<td>446995</td>
<td>3314611</td>
<td>76747</td>
<td>5327</td>
<td>3D FE Mesh</td>
</tr>
<tr>
<td>BBMAT</td>
<td>38754</td>
<td>993481</td>
<td>113520</td>
<td>57647</td>
<td>3D FE Mesh</td>
</tr>
<tr>
<td>FINAN512</td>
<td>74752</td>
<td>261120</td>
<td>11388</td>
<td>4620</td>
<td>3D FE Mesh</td>
</tr>
<tr>
<td>LHR10</td>
<td>19672</td>
<td>209093</td>
<td>59784</td>
<td>20481</td>
<td>3D FE Mesh</td>
</tr>
<tr>
<td>MAP1</td>
<td>267241</td>
<td>334931</td>
<td>8736</td>
<td>74878</td>
<td>2D Stiffness M.</td>
</tr>
<tr>
<td>MEMPLUS</td>
<td>17758</td>
<td>54196</td>
<td>2252</td>
<td>7856</td>
<td>Lin. Prog.</td>
</tr>
<tr>
<td>SHYY161</td>
<td>76480</td>
<td>152002</td>
<td>4365</td>
<td>20796</td>
<td>Memory circuit</td>
</tr>
<tr>
<td>TORSO</td>
<td>201142</td>
<td>1479989</td>
<td>7579</td>
<td>39623</td>
<td>3D FE Mesh</td>
</tr>
</tbody>
</table>

Speed of 256-way partitioning (from KK95a)

<table>
<thead>
<tr>
<th>Graph</th>
<th># of Nodes</th>
<th># of Edges</th>
<th># cuts for 64-way partition</th>
<th>Expected # cuts for 32 mesh</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>144</td>
<td>144649</td>
<td>1074393</td>
<td>88806</td>
<td>8427</td>
<td>3D FE Mesh</td>
</tr>
<tr>
<td>4ELT</td>
<td>15606</td>
<td>45878</td>
<td>2965</td>
<td>2111</td>
<td>2D FE Mesh</td>
</tr>
<tr>
<td>ADD32</td>
<td>4960</td>
<td>9462</td>
<td>1190</td>
<td>7208</td>
<td>32 bit adder</td>
</tr>
<tr>
<td>AUTO</td>
<td>446995</td>
<td>3314611</td>
<td>76747</td>
<td>5327</td>
<td>3D FE Mesh</td>
</tr>
<tr>
<td>BBMAT</td>
<td>38754</td>
<td>993481</td>
<td>113520</td>
<td>57647</td>
<td>3D FE Mesh</td>
</tr>
<tr>
<td>FINAN512</td>
<td>74752</td>
<td>261120</td>
<td>11388</td>
<td>4620</td>
<td>3D FE Mesh</td>
</tr>
<tr>
<td>LHR10</td>
<td>19672</td>
<td>209093</td>
<td>59784</td>
<td>20481</td>
<td>3D FE Mesh</td>
</tr>
<tr>
<td>MAP1</td>
<td>267241</td>
<td>334931</td>
<td>8736</td>
<td>74878</td>
<td>2D Stiffness M.</td>
</tr>
<tr>
<td>MEMPLUS</td>
<td>17758</td>
<td>54196</td>
<td>2252</td>
<td>7856</td>
<td>Lin. Prog.</td>
</tr>
<tr>
<td>SHYY161</td>
<td>76480</td>
<td>152002</td>
<td>4365</td>
<td>20796</td>
<td>Memory circuit</td>
</tr>
<tr>
<td>TORSO</td>
<td>201142</td>
<td>1479989</td>
<td>7579</td>
<td>39623</td>
<td>3D FE Mesh</td>
</tr>
</tbody>
</table>

Kernighan/Lin much faster than Spectral Bisection!

Outline of Graph Partitioning Lectures

- Review definition of Graph Partitioning problem
- Overview of heuristics
- Partitioning with Nodal Coordinates
 - Ex: In finite element models, node at point in (x,y) or (x,y,z) space
- Partitioning without Nodal Coordinates
 - Ex: In model of WWW, nodes are web pages
- Multilevel Acceleration
 - BIG IDEA, appears often in scientific computing
- Comparison of Methods and Applications
- Beyond Graph Partitioning: Hypergraphs

Beyond simple graph partitioning:

Representing a sparse matrix as a hypergraph

\[
\begin{bmatrix}
x & 0 & x & 0 \\
0 & x & 0 & 0 \\
0 & 0 & 0 & x \\
x & c1 & c2 & c3 \\
c2 & c1 & c2 & c3 \\
c3 & c2 & c3 & c4 \\
c4 & c3 & c4 & c1 \\
\end{bmatrix}
\]
But graph cut is 3!
\[\Rightarrow \text{Cut size of graph partition may not accurately count communication volume} \]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

Source vector entries corresponding to \(c_2 \) and \(c_3 \) are needed by both partitions - so total volume of communication is 2.

\[\Rightarrow \text{Cut size of graph partition may not accurately count communication volume} \]

Two Different 2D Mesh Partitioning Strategies

<table>
<thead>
<tr>
<th>Graph: Cartesian Partitioning</th>
<th>Hypergraph: MeshPart Algorithm [Ucar, Catalyurek, 2010]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SpMV communication volume = 64</td>
<td>Total SpMV communication volume = 58</td>
</tr>
</tbody>
</table>

Experimental Results: Hypergraph vs. Graph Partitioning

-8% reduction in total communication volume using hypergraph partitioning (PaToH) versus graph partitioning (METIS)
Further Benefits of Hypergraph Model: Nonsymmetric Matrices

- Graph model of matrix has edge \((i,j)\) if either \(A(i,j)\) or \(A(j,i)\) nonzero
- Same graph for \(A\) as \(|A| + |A^T|\)
- Ok for symmetric matrices, what about nonsymmetric?
 - Try \(A\) upper triangular

<table>
<thead>
<tr>
<th>Graph Partitioning (Metis)</th>
<th>Hypergraph Partitioning (PaToH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Communication Volume = 254</td>
<td>Total Communication Volume = 181</td>
</tr>
<tr>
<td>Load imbalance ratio = 6%</td>
<td>Load imbalance ratio = 0.1%</td>
</tr>
</tbody>
</table>

Summary: Graphs versus Hypergraphs

- Pros and cons
 - When matrix is non-symmetric, the graph partitioning model (using \(A+A^T\)) loses information, resulting in suboptimal partitioning in terms of communication and load balance.
 - Even when matrix is symmetric, graph cut size is not an accurate measurement of communication volume
 - Hypergraph partitioning model solves both these problems
 - However, hypergraph partitioning (PaToH) can be much more expensive than graph partitioning (METIS)

- Hypergraph partitioners: PaToH, HMETIS, ZOLTAN
- For more see Bruce Hendrickson’s web page
 - “Load Balancing Fictions, Falsehoods and Fallacies”